
Incremental Face Alignment in the Wild

Akshay Asthana1 Stefanos Zafeiriou1 Shiyang Cheng1 Maja Pantic1,2

1Department of Computing, Imperial College London, United Kingdom
2EEMCS, University of Twente, Netherlands

{a.asthana, s.zafeiriou, shiyang.cheng11, m.pantic}@imperial.ac.uk

Abstract

The development of facial databases with an abundance

of annotated facial data captured under unconstrained ’in-

the-wild’ conditions have made discriminative facial de-

formable models the de facto choice for generic facial land-

mark localization. Even though very good performance

for the facial landmark localization has been shown by

many recently proposed discriminative techniques, when it

comes to the applications that require excellent accuracy,

such as facial behaviour analysis and facial motion capture,

the semi-automatic person-specific or even tedious manual

tracking is still the preferred choice. One way to construct

a person-specific model automatically is through incremen-

tal updating of the generic model. This paper deals with

the problem of updating a discriminative facial deformable

model, a problem that has not been thoroughly studied in

the literature. In particular, we study for the first time, to the

best of our knowledge, the strategies to update a discrimi-

native model that is trained by a cascade of regressors. We

propose very efficient strategies to update the model and we

show that is possible to automatically construct robust dis-

criminative person and imaging condition specific models

’in-the-wild’ that outperform state-of-the-art generic face

alignment strategies.

1. Introduction

The problem of construction and alignment1 of generic

deformable models capable of capturing the variability of

a non-rigid object is among the most popular and well-

studied problem in the field of computer vision. Arguably,

the most studied non-rigid object is the human face. Based

on the ways the various deformable models are built and

their respective alignment procedure, the existing method-

ologies can be broadly classified into Generative and Dis-

criminative. The Generative methods use an analysis-by-

synthesis loop where the optimization strategy attempts to

find the required parameters by maximizing the probabil-

1Problem of deformable model alignment can be encountered under

different names in literature, including fitting, landmark localization etc.

ity of the input image being constructed by the facial de-

formable model. Most notable example of this category is

the Active Appearance Model (AAM) [10, 21].

The Discriminative methods rely on the use of discrim-

inative information (i.e. a set of facial landmark classi-

fiers [28] or discriminative functions [19, 15, 32] or both

[2, 27, 29]). Many discriminative methods use part-based

approaches, most notable example being the Constrained

Local Model (CLM) [7, 28] paradigm, that represents the

face via a set of local image patches cropped around the

landmark points. Recently, a number of discriminative

methodologies have shown excellent results for facial land-

mark localization [4, 2, 32]. The common characteristic of

these methods is that they used a cascade of regression func-

tions to map the textual features to shape directly [4, 32]

or to shape parameters [2]2. Furthermore, the authors of

[32] went a step further arguing that the cascaded linear re-

gression can be presented as a supervised gradient descent

methodology.

Many of the above discriminative methodologies have

shown to be successful for facial landmark localization un-

der uncontrolled environments, recently referred to as in-

the-wild settings [4, 2, 32], achieving even real time perfor-

mance [2, 32, 5]. Without exception, these methods rely on

a static generic model that is built completely on off-line

training data. Nevertheless, when it comes to the applica-

tions that require perfect facial alignment and tracking ac-

curacy, such as the analysis of human facial behavior (e.g.,

facial expression and action unit recognition [6]) and the

facial motion capture, person-specific rather than generic

models are mainly applied [1, 6, 11].

One way to automatically create a personalized facial de-

formable model from a generic one is through incremen-

tal learning. Very limited research has been conducted to-

wards incremental deformable models, mostly restricted to

AAM [30, 22] in which the incremental Principal Compo-

nent Analysis (iPCA) [18] is applied to the fittings produced

by a generic AAM or via update of the mean template of the

AAM [23]. Apart from the problems associated with the

2Similar ideas have been explored for human pose estimation [9].
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AAM framework in handling generic face alignment sce-

nario and uncontrolled natural settings, the main drawback

of these incremental approaches is that the erroneous fitting,

which are very difficult to spot by simply thresholding the

fitting score [30, 22], may arbitrarily bias iPCA and results

in model drifting. Moreover, these incremental methodolo-

gies are applicable only to the generative AAMs.

In this paper, we study the problem of incremental train-

ing for the discriminative facial deformable models. The

incremental training of discriminative models is not only

important for building person-specific models but also to

update a generic model in case a new annotated data arrives,

since the training procedure is very expensive and time con-

suming. In particular, we study incremental training of dis-

criminative models that use a cascade of linear regressors to

learn the mapping from facial texture to the shape, a prob-

lem that, to the best of our knowledge, has not been stud-

ied in the literature before. For this, we exploit the fact

that the cascade of regressors is trained using the Monte-

Carlo sampling methodologies [2, 32] and present a very

efficient methodology which can incrementally update all

linear regressors in cascade in parallel. We demonstrate that

the proposed incremental methods for deformable model

alignment: (1) Are capable of adding new training samples

and updating the model, without re-training from scratch,

thereby, constantly increasing robustness of the generic

model; (2) Can automatically tailor themselves to the sub-

ject being tracked and the imaging conditions using image

sequences, and hence, become person-specific over time.

Note that it has been shown in [12, 33] that the main

challenge for the deformable face models is the difficulty

encountered in modeling the facial texture, whereas, the

generative model of the sparse facial shape, trained even on

the faces captured under constrained conditions, is capable

of faithfully representing the facial shape of unseen faces

captured under unconstrained conditions. Hence, we do not

deal with the problem of updating the shape model and fo-

cus entirely on the problem of incrementally updating the

function that maps facial texture to facial shape.

2. Problem and Motivation

In this section, we describe the general framework of

cascade linear regression for discriminative face alignment

[32]. Then, we show that the incremental update of the cas-

cade of linear regression is a very challenging task, since

the results from one level have to propagated to the next.

Due to this sequential nature of the training procedure, we

refer to this method [32] as Sequential Cascade of Linear

Regression in the rest of the paper. And finally, since learn-

ing the cascade of regression is by nature a Monte-Carlo

procedure [32], we argue that we can train every level inde-

pendently using only the statistics of the previous level. To

this end, we propose a Parallel Cascade of Linear Regres-

sion method which not only performs as accurately as (if

not better than) the sequential method [32], but also allows

for the incremental update of the cascades in a feasible and

a computationally efficient manner.

2.1. Sequential Cascade of Linear Regression

Let a set of M images I = {Ii}
M
i=1 and the set of

ground-truth shapes S = {s∗i }
M
i=1 with so ∈ R

n×1. Also,

let a feature function f(I, s) ∈ R
1×f , where, f is the dimen-

sionality of the feature. This function could return the vec-

tor of the concatenation of SIFT [20] or Histogram of Ori-

ented Gradient (HoG) [8] features around each landmark of

shape s [32, 2] from image I. The training procedure of the

discriminative methods in [15, 32, 2] can be summarized as

follows: Find a function g that can map an initial shape sa of

image Ii to the ground-truth shape s∗i , as g(sa, It, f) = s∗i .

The initial shape could be just the mean shape initialized in

the bounding box returned by a face detector [32, 2].

In [32], function g is learned iteratively using a cascade

of regression functions that maps the extracted feature vec-

tors of images to shape [32] directly. In this paper, we use a

parametric 3D shape model [2, 28] described as:

s(p) = sR(̄s+Φsg) + t, (1)

where R (computed via pitch rx, yaw ry and roll rz), s and

t = [tx; ty; 0] control the rigid 3D rotation, scale and trans-

lations respectively, while g controls the non-rigid varia-

tions of the shape. Therefore, the parameters for the 3D

shape model are p = [s; rx; ry; rz; tx; ty;g]
T . Hence, in-

stead of S , we have a set of ground-truth of shape parame-

ters P∗ = {p∗

i }
M
i=1. Hence, the goal is to learn a function

from an initial estimate of p that takes us to the ground-truth

shape parameters p∗, where, both p∗ and p ∈ R
1×l, and l

is the total number of shape parameters.

The Monte-Carlo procedure to learn the sequential cas-

cade of regression functions can be described as follows.

For each of the training shapes in S , the shape model param-

eter subspace is sampled within a pre-defined range around

ground-truth shape parameters P∗ and an initial set of L

perturbed shapes is sampled which provides as set of L per-

turbed shape parameters {p
(1)
j }Lj=1. We want to learn a lin-

ear rule from the perturbed parameters p(1) of image I such

that
p∗ = p(1) + f(I, s(p(1)))W + b

= p(1) + [f(I, s(p(1))) 1]W̃

= p(1) + f̃(I, s(p(1)))W̃

where, W̃ = [W;b] and f̃(I, s(p(1))) = [f(I, s(p(1))) 1].
Since it is difficult to learn only one W̃ that directly maps

the perturbed p(1) to the ground-truth p∗, we can train a

cascade of regression functions in a sequential manner as

following. We learn the first W̃(1) by solving the following

least squares problem [32]:



argmin
W(1),b(1)

M
∑

i=1

∑

j

||∆p
(1)
ij − f̃(Ii,p

(1)
ij )W̃(1)||2 (2)

where ∆p
(1)
ij = p∗

i − p
(1)
ij and j counts the perturbations.

For notation simplicity, let f̃(Ii,pij) = f̃ij , X(1) = [̃fij ]

and Y(1) = [∆p
(1)
ij ], W̃(1) can be estimated as:

W̃(1) =
[

(X(1))TX(1) + λE
]

−1

(X(1))TY(1) , (3)

where, E is the identity matrix and the term λE is included

in case that (X(1))TX(1) is singular. This is also known as

Ridge Regression[14].

Let us apply the update rule p
(2)
ij = p

(1)
ij +

f̃(Ii, s(p
(1)
ij ))W̃(1), and get a new set of estimates P(2) =

{p
(2)
ij }. Now, we want to find a new W̃(2) that takes us

closer to p∗

i . We can now generalize to find W̃(k) for the

k-th step and the updated rule for the next set of shape pa-

rameters p(k+1). At step k:

W̃(k) =
[

(X(k))TX(k) + λE
]−1

(X(k))TY(k)

p
(k+1)
ij = p

(k)
ij + f̃(Ii, s(p

(k)
ij ))W̃(k)

(4)

This procedure is sequentially repeated such that at each

step, we get closer to the ground-truth parameters p∗ i.e.

the variance for the perturbations ∆p(k) decreases as the

number of iterations k increases. We refer to this as the Se-

quential Cascade of Linear Regression (Seq-CLR) method.

2.2. Problem with Incremental Seq­CLR

While the above discussed Seq-CLR method (Section

2.1) has been shown to give state-of-the-art face alignment

results, the sequential procedure involved in training the

cascade of regression functions is not well suited for the

task of incremental update. In that, if new data samples have

to be added (for example, images captured under previously

unseen imaging conditions), the entire cascade of regres-

sion functions have to be re-trained from scratch which is

extremely expensive and time consuming. The problem

is illustrated in Figure 1. Given the initial set of pertur-

bations ∆p(1), we compute the initial regression function

W̃(1). We then propagate ∆p(1) through W̃(1) to generate

the subsequent set of perturbations ∆p(2) and compute the

regression function W̃(2). Similarly, to compute W̃(3), we

generate ∆p(3) by propagating ∆p(2) through W̃(2). This

procedure is repeated until the convergence criteria has been

met. See Eqn. 4 for details.

Now, if a new sample or a set of new samples pnew

have to be added, the initial regression function W̃(1) can

be incrementally updated to W̃
(1)
new (Section 3.1) which is

computed simply by using the augmented set of samples

p
(1)
new = {p(1),pnew}. However, since the initial regression

function W̃
(1)
new has changed, the subsequent set of samples

(a) Seq-CLR Training Procedure.

(b) Updating Seq-CLR after adding new samples.

Figure 1: Problem with Incremental Seq-CLR

p
(2)
new will be re-computed by propagating the entire aug-

mented set p
(1)
new through W̃

(1)
new. As a result, the regression

function W̃
(2)
new will also have to re-computed from scratch

using Eqn. 4 which is computationally extremely intensive

(requires huge matrix inversion) and time consuming. The

same also applies to the subsequent iterations. As such, us-

ing the Seq-CLR training procedure (Section 2.1), only the

computation of the initial regression function W̃(1) can be

formulated in an incremental framework, while all the other

regression functions have to be computed from scratch (fol-

lowing the usual sequential training procedure and update

rules given in Eqn. 4) as they rely on the perturbations gen-

erated from the previous iterations.

2.3. Parallel Cascade of Linear Regression

To address the problem of incremental formulation of

Seq-CLR, discussed above in Section 2.2, we propose a

Parallel Cascade of Linear Regression (Par-CLR) method

that has the following properties: (1) The Par-CLR method

shows the same level of alignment accuracy as the Seq-CLR

method; and (2) In Par-CLR, the perturbations required for

training or updating the cascade of regression functions do

not rely on previous iterations; (3) The Par-CLR method is

extremely well suited for the incremental formulation (Sec-

tion 3) and is highly parallelizable making the incremental

formulation real-time capable.

Note that for training the Seq-CLR method, the initial set

of perturbations (∆p(1)) are obtained by Monte-Carlo sam-

pling procedure [32], in that the perturbations are randomly

drawn within a fixed pre-defined range around the ground-

truth shape parameters (p∗). For the experiments in this

paper, this predefined range was set to ±15 pixels for trans-

lation, ±10◦ for rotation, ±0.1 for scaling and 1.5 standard

deviation (based on the available training set) for the non-

rigid shape parameters (g). In a Monte-Carlo setting, the

aim of the cascade is to reduce the variance of the pertur-

bations at each level. Motivated by this, we argue that the

regression functions at all levels in a cascade can be trained

(and updated) independently using only the statistics of the



(a) Par-CLR Training Procedure.

(b) Updating Par-CLR after adding new samples.

Figure 2: Incremental Formulation of Par-CLR.

previous level, thereby, eliminating the need for propagat-

ing the samples through all the previous iterations. We refer

to this method as the Parallel Cascade of Linear Regression

(Par-CLR) method.

For this, we collect the statistics for each shape parame-

ter (in the form of its variance) at each iteration while train-

ing the cascade of regression functions using the Seq-CLR

method (Section 2.1) on an offline database. Let this distri-

bution be D = {σ(1), . . . , σ(η)}, where, η is the maximum

number of iterations. For the experiments presented in this

paper, D was set so as to capture the spread of 98% of the

samples at each iteration. In Par-CLR method, the pertur-

bations for training the cascade of regression functions can

be drawn directly from this distribution, without relying on

the previous iteration. This modification in the training pro-

cedure not only makes it highly parallelizable in that all the

regression functions can now be trained independently but,

more importantly, this is achieved without any loss in the

alignment accuracy as compared to the Seq-CLR method.

See the next section for a motivating experiments.

2.4. Experiment 1: Seq­CLR Vs. Par­CLR

The goal for this motivating experiment is to compare the

performance of the Seq-CLR method (Section 2.1) against

the Par-CLR method (Section 2.3). For this we use LFPW

[3, 26, 25] and Helen [17, 26, 25] datasets as they contain

images captured in the wild. The results are reported in Fig-

ure 3.

Firstly, we trained the cascade of regression functions

using the Seq-CLR method using only the LFPW training

set, referred to as Seq-CLR-LFPW. This model was used for

aligning images in the LFPW testing set. Next, we compute

the distribution DLFPW (Section 2.3), signifying the spread

of perturbations at each level of the cascade obtained during

the training of Seq-CLR-LFPW. Using this distribution for

drawing the perturbations, the training for each level of the

cascade is also performed independently using the LFPW

training set. We refer to this method as Par-CLR-LFPW.

To validate the results, we also aligned images in the Helen

testing set using the Seq-CLR-LFPW and Par-CLR-LFPW

models. Overall, the results indicate that Seq-CLR and Par-

CLR show identical performance (Figure 3).

Next, we augment the LFPW training set with the new

Helen training set. To test the generalization capability of

the Par-CLR method, we use the same distribution as above

i.e. DLFPW, and train the cascade of regression functions in-

dependently using the Par-CLR method. We refer to this

model as Par-CLR-LFPW-Helen. For comparison, we also

train the model using the Seq-CLR method and refer to

this as Seq-CLR-LFPW-Helen. Again, both methods show

identical performance (Figure 3).

Overall, the results clearly indicate that by using simple

statistic to model the spread of perturbations, the Monte-

Carlo sampling based sequential training procedure can be

compensated and each of the cascaded regression functions

can be trained independently of the previous iteration with-

out loss in alignment accuracy. In the next section, we

will exploit this parallel training procedure and formulate a

very efficient methodology to incrementally update the cas-

cade of regression functions. The underlying assumption of

the parallel assumption is that at each step the distribution

of the perturbations is Gaussian. The assumption is valid

in the first step by definition, since the perturbation have

been drawn from a single multivariate Gaussian. To vali-

date that this is true for the remaining steps of the cascade,

we have employed the Kolmogorov-Smirnov (KS) statisti-

cal test [24], which validated our assumption.

0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

RMS Error as the Fraction of Face Size

P
ro

p
o

rt
io

n
 o

f 
Im

a
g

e
s

 

 

Seq−CLR−LFPW

Par−CLR−LFPW

Seq−CLR−LFPW−Helen

Par−CLR−LFPW−Helen

0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

RMS Error as the Fraction of Face Size

P
ro

p
o

rt
io

n
 o

f 
Im

a
g

e
s

 

 

Seq−CLR−LFPW

Par−CLR−LFPW

Seq−CLR−LFPW−Helen

Par−CLR−LFPW−Helen

(a) LFPW Test Set (b) Helen Test Set

Figure 3: Seq-CLR Vs. Par-CLR Results.

3. Incremental Face Alignment Framework

The above discussed Par-CLR method (Section 2.3) is

the foundation for the proposed incremental face alignment

framework. The Par-CLR method not only has an exact in-

cremental solution per level, but it also allows for all the

regression functions in a cascade to be updated indepen-

dently of each other in parallel. This makes the proposed

incremental framework highly parallelizable and real-time

capable. In Section 3.1, we derive the solution for the In-

cremental Linear Least-Squares problem and list the update



rules. Next, in Section 3.2, we present the Incremental Par-

allel Cascade of Linear Regression (iPar-CLR) method.

3.1. Incremental Linear Least­Squares Problem

Given the feature matrix X(T ) and perturbation (∆p)

matrix Y(T ), where, T is the number of training samples,

the regression function W̃(T ) is computed as follows:

W̃(T ) =V(T )X(T )TY(T )

V(T ) =[X(T )TX(T ) + λE]−1
(5)

See Eqn. 2 and Eqn. 3 for details. Now, let us assume that R

new training samples are added i.e. X(R) and Y(R). The

Update Rules are as follows (Derivation in Appendix A):

V(T +R) =V(T )−QV(T ) (6)

W̃(T +R) =W̃(T )−QW̃(T ) (7)

+V(T +R)X(R)TY(R)

where, Q =V(T )X(R)TUX(R) (8)

and U =
[

E+X(R)V(T )X(R)T
]−1

(9)

Properties

• Solution in Eqn. 7 is an exact mathematical equivalent

of the closed-form solution of W̃(T +R).
• Computationally very efficient and update for adding

R new samples is achieved in just one step.

• Does not requires data to be stored. Only W̃(T ) and

V(T ) need to be saved.

• Matrix inversion is required just once for U and the

size of this matrix is just R × R. The closed-form

solution requires the inversion of matrix of size f̃ × f̃ ,

where f̃ is dimensionality of feature (usually large).

Special Case: If one sample at a time, say x and y, is added

(i.e. R = 1), the Update Rules is as follows:

V(T + 1) = V(T )−
V(T )xTxV(T )

1 + xV(T )xT
(10)

W̃(T + 1) = W̃(T )−V(T + 1)xT
(

y− xW̃(T )
)

(11)

This is the well-known recursive linear least-squares solu-

tion [13]. Similar to Eqn. 7, this is an exact mathematical

equivalent of the closed-form solution of W̃(T +1). More-

over, this method is computationally extremely efficient as

the update procedure requires only matrix/vector multipli-

cations and no matrix inversion is required.

3.2. Incremental Par­CLR Formulation

In this section, we present an incremental formulation

for the Parallel Cascade of Linear Regression method (Sec-

tion 2.3). We state the update rules for incrementally adding

new training samples and updating the cascade of regres-

sion functions in an efficient manner. We call this incre-

mental Par-CLR (iPar-CLR) method and an overview of the

method is shown in Figure 2.

Given the initial cascade of regression functions

(Eqn. 5), represented by V = {V(1), . . . ,V(η)} and

W = {W̃(1), . . . ,W̃(η)}, and the distribution D =
{σ(1), . . . , σ(η)} to be used for sampling the perturbations,

the goal is to add a new training image {Inew,Snew} and up-

date the cascade of regression functions in V and W . Let us

sample R perturbation from the new training image using

D for each iteration i = {1, . . . , η}. The step-by-step pro-

cedure to update each of the cascaded regression functions

is given in Algorithm 1.

As discussed in Section 3.1, the update procedure is very

efficient in that the update for adding R samples is achieved

in one step. Also, the update procedure for each cascaded

regression function is independent of the previous iterations

and hence, the entire update can be performed in parallel.

Algorithm 1: iPar-CLR Update Procedure

Require: V , W , D, Inew, Snew, R

parfor i = 1 → η do1

Get R samples {∆p
(i)
j }Rj=1 using distribution σ(i)

2

Compute {f̃
(i)
j }Rj=1 using the perturbed shapes3

generated from {∆p
(i)
j }Rj=1.

Generate X(R)(i) ∈ R
R×f̃ and Y(R)(i) ∈ R

R×l
4

Compute V
(i)
new using Eqn. 6, where, V(T +R) = V

(i)
new5

and V(T ) = V(i)

Compute W̃
(i)
new using Eqn. 7, where,6

W̃(T +R) = W̃
(i)
new , W̃(T ) = W̃(i) ,

V(T +R) = V
(i)
new and V(T ) = V(i)

Output : Updated Cascade Vnew and Wnew.

4. Experiments

In this section, we present detailed experiments for face

alignment both in static images and videos. The first exper-

iment investigates the ability of the incremental iPar-CLR

method to continuously update the generic model, as the

new annotated data arrives, thereby increasing its accuracy

and robustness as more and more new training images are

added. The second experiment investigates the incremental

iPar-CLR method in a face tracking scenario with the par-

ticular focus on automatically updating the generic model

on-the-fly and accessing its ability to adapt to the subject’s

face being tracked and the imaging conditions. Finally, in

our experiments we have also considered a simple alterna-

tive of the Seq-CLR in which only the new arriving sam-

ple was propagated to the next levels. This alternative is

much faster than the orginal Seq-CLR procedure since does

not need to propagate the whole training set but, since we

found out that it performs significantly worst than Seq-CLR

and iPar-CLR, we opted not to include so that we do not

clutter our graphs. Furthermore, according to our experi-

ments this alternative of Seq-CLR was more susceptible to



outliers propagation and model-drifting. While, we verified

that parallel approaches are more resilient to outliers, since

its step is updated independently.

4.1. Face Alignment in Static Images

The goal of this experiment is to investigate the utility

of the incremental iPar-CLR method (Section 3.2) in case

a new annotated data arrives. More specifically, we inves-

tigate the scenario in which a new batch of training sam-

ples is added (for example, images captured under previ-

ously unseen imaging conditions). Obviously, the Seq-CLR

(Section 2.1) and the Par-CLR (Section 2.3) methods have

a static model in that the entire cascade of regression func-

tions will have to be re-trained from scratch in order to in-

corporate the new samples. The proposed iPar-CLR frame-

work, however, can update all the regression functions in a

cascade on the fly. Similar to the experiment in Section 2.4,

we use both the LFPW [3, 26, 25] and Helen [17, 26, 25]

datasets.

We use the previously trained Par-CLR-LFPW model

(Section 2.4) as the baseline and use the same distribution

DLFPW for drawing the perturbation from. Also, we initial-

ize the cascades for iPar-CLR method (Section 3.2) with

the cascade of Par-CLR-LFPW model. Note that the up-

date procedure for the iPar-CLR method can be performed

in two different ways: (1) By adding one sample at a time

(See Eqn. 11 for update rules). We refer to this method as

iPar-CLR-LFPW-Helen-Single; and (2) By adding multiple

samples at a time (See Eqn. 7 for update rules). We refer to

this method as iPar-CLR-LFPW-Helen-Multiple.

Now, one by one, we begin to add images from the Helen

training set and update the cascade of regression functions

using the iPar-CLR method (Algorithm 1). To validate the

performance of the update procedure, we use these models

for aligning images from both the LFPW and Helen test-

ing sets. We observe a consistent increase in the alignment

accuracy as the iPar-CLR model is being incrementally up-

dated with new training images. See supplement material

for detailed experimental results obtained after adding 500,

1000, 1500 and 2000 images from Helen training set. But

perhaps, the most important result is obtained after all the

training images from the Helen training set have been incre-

mentally added. From Figure 4, we can see that the perfor-

mance of iPar-CLR-LFPW-Helen models is slightly better

than the performance of the Par-CLR-LFPW-Helen models.

This is significant because it shows that not only does iPar-

CLR method present a very useful and efficient incremental

training procedure but it does this without any loss in the

face alignment accuracy.

4.2. Face Tracking in Videos

The goal of this experiment is to investigate the utility

of the incremental iPar-CLR method (Section 3.2) to auto-

0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

RMS Error as the Fraction of Face Size

P
ro

p
o

rt
io

n
 o

f 
Im

a
g

e
s

 

 

Par−CLR−LFPW

Par−CLR−LFPW−Helen

iPar−CLR−LFPW−Helen−Single

iPar−CLR−LFPW−Helen−Multiple

0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

RMS Error as the Fraction of Face Size

P
ro

p
o

rt
io

n
 o

f 
Im

a
g

e
s

 

 

Par−CLR−LFPW

Par−CLR−LFPW−Helen

iPar−CLR−LFPW−Helen−Single

iPar−CLR−LFPW−Helen−Multiple

(a) LFPW Test Set (b) Helen Test Set

Figure 4: Par-CLR vs. iPar-CLR Results.

matically tailor itself to the subject being tracked and be-

come person-specific over time. For this experiment, we

use the extremely challenging Youtube Celebrities database

[16] which contains videos of celebrities captured in the

wild. Since this database do not provide facial landmark an-

notations, we manually annotated nearly 1000 frames con-

taining 6 sequences (Sequence IDs 0292, 0293, 0294, 0502,

0504, 1198) for this experiment.

We use the Par-CLR-LFPW-Helen models (See Section

2.4) as the baseline for this experiment. Moreover, we also

use this model to initialize the cascade for iPar-CLR method

(Section 3.2) and the distribution DLFPW, for drawing the

perturbation from the incoming new images. All the track-

ing experiments are conducted under fully-automatic set-

tings, in that the initialization for the first frame is provided

by face detector while the subsequent frames are initialized

using the fitting from the previous frame.

Another crucial component in an incremental tracking

scenario is the tracking failure checker. Since the cascade

of regression functions for iPar-CLR-LFPW-Helen model

are updated automatically on-the-fly, the aim of this failure

checker is to ensure that the update occurs only if the fit-

ting score (that describes the goodness of fit) is higher than

the set threshold. For this purpose, we use two separate

failure checkers, one at global and another at local level,

and the fitting is considered good enough to update the cas-

cades only if the thresholds at both the levels are met. For

the global failure checker, we trained an SVM classifier to

differentiate between the aligned and misaligned images.

For this, we warp the texture from all the LFPW and He-

len training images to the canonical mean face using piece-

wise affine warping [10] to generate the positive samples

(i.e. aligned images) and then randomly samples the region

around the ground truth to generate the negative samples

(i.e. misaligned images). The score from this SVM is used

as the criteria to judge the goodness of fit at the global level.

For the local failure checker, the trained patch-experts for

each facial landmark point, as described in [2, 28], using

the LFPW and Helen training images and use the score ob-

tained from each of the patch-experts to judge the goodness



of fit at the local level. Notice in Figure 5(e) for the se-

quence 0502-0504, the failure checker did not allow for the

model to be updated until roughly the first 40 frames as the

fittings’ scores were below the set threshold.

Par−CLR−LFPW−Helen iPar−CLR−LFPW−Helen
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Figure 5: Empirical Results for Face Tracking. (a)-(c) Over-

all Tracking Results; (a) Sequence IDs 0292, 0293 and

0294 (Angelina Jolie); (b) Sequence IDs 0502 and 0504

(Bruce Willis); (c) Sequence ID 1198 (Julia Roberts). (d)-

(e) Frame-by-Frame Comparison of Tracking Results.

From the empirical results in Figure 5 and the qualitative

results in Figure 6, including the complete tracking videos3,

we can clearly infer that, in comparison to the generic Par-

CLR method, the incremental iPar-CLR method adapts well

to the face being tracked over time and shows robustness

against occlusion (sequence 0033), fast head movement (se-

quences 0292-0294), hard shadows (sequences 0502-0504)

3 See Supplement Videos for complete tracking results.

and head pose variation (sequence 1198). For example, in

a challenging sequence 0033 (Adam Sandler)3, the track-

ing using the model Par-CLR-LFPW-Helen initially fails

for first 88 frames and then it diverges again from frame

144 onwards. However, the iPar-CLR-LFPW-Helen shows

more robustness by virtue of its update procedure, as it is

able to utilize the frames 89–144 to tailor itself to the sub-

ject and the imaging conditions (i.e. occlusion in this case),

and do not diverge in the later half of this video. See last

two rows in Figure 6 for this sequence. Also, notice stabil-

ity of iPar-CLR method in the stationary frames of sequence

1198 (Julia Roberts)3 signifying the robustness of the pro-

posed methodology against over-fitting.

Figure 6: Qualitative Face Tracking Results. For each se-

quence, the top row contains Par-CLR-LFPW-Helen results,

and the bottom row contains the corresponding iPar-CLR-

LFPW-Helen results.

5. Conclusion

We have proposed an incremental formulation for the

discriminative deformable face alignment framework [32]

and presented multiple ways for incrementally updating a

cascade of regression functions in an efficient manner. Us-

ing our current MATALB implementation, the entire proce-

dure (face alignment and model update) takes less than 4

seconds per image, without any parallel processing, on an

Intel Xeon 3.80 GHz processor. In the future, we will im-

plement the incremental method in C/CUDA to make it real-

time. Also, we will investigate other discriminative meth-

ods that will allow the use of incremental updates at local

level, say via use of patch-experts [2].
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A. Incremental Linear Least-Squares Problem

Following from Section 3.1, the goal is to find W̃(T+R)
as a function of strictly W̃(T ), V(T ), X(R) and Y(R).

Let, X(T+R) =

[

X(T )
X(R)

]

and Y(T+R) =

[

Y(T )
Y(R)

]

.

From Eqn. 5,

V(T +R) =[X(T +R)TX(T +R) + λE]−1

=
[

X(T )TX(T ) +X(R)TX(R) + λE
]

−1 (12)

Using the Woodbury formula [31]:

(A+BDC)−1=A−1−A−1B(D−1+CA−1B)−1CA−1

where, A =
[

X(T )TX(T ) + λE
]

, B = X(R)T , C =
X(R) and D = E, the term V(T + R) (Eqn.12) can be

re-written as in Eqn 6.

Also, from Eqn. 5, 6, 8, 9:

W̃(T +R) =V(T +R)X(T +R)TY(T +R)

=V(T +R)
[

X(T )TY(T ) +X(R)TY(R)
]

=V(T )X(T )TY(T )

−V(T )X(R)TUX(R)V(T )X(T )TY(T )

+V(T +R)X(R)TY(R)

W̃(T +R) = W̃(T )−QW̃(T )

+V(T +R)X(R)TY(R)
(13)
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