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Abstract

We present Large Scale Facial Model (LSFM) — a 3D
Morphable Model (3DMM) automatically constructed from
9,663 distinct facial identities. To the best of our knowl-
edge LSFM is the largest-scale Morphable Model ever con-
structed, containing statistical information from a huge va-
riety of the human population. To build such a large model
we introduce a novel fully automated and robust Morphable
Model construction pipeline. The dataset that LSFM is
trained on includes rich demographic information about
each subject, allowing for the construction of not only a
global 3DMM but also models tailored for specific age,
gender or ethnicity groups. As an application example,
we utilise the proposed model to perform age classifica-
tion from 3D shape alone. Furthermore, we perform a sys-
tematic analysis of the constructed 3DMMs that showcases
their quality and descriptive power. The presented extensive
qualitative and quantitative evaluations reveal that the pro-
posed 3DMM achieves state-of-the-art results, outperform-
ing existing models by a large margin. Finally, for the ben-
efit of the research community, we make publicly available
the source code of the proposed automatic 3DMM construc-
tion pipeline. In addition, the constructed global 3DMM
and a variety of bespoke models tailored by age, gender
and ethnicity are available on application to researchers
involved in medically oriented research.

1. Introduction

3D Morphable Models (3DMMs) are powerful 3D statis-
tical models of human face shape and texture. In the origi-
nal formulation, as presented by the seminal work of Blanz
and Vetter [6], a 3DMM used in an analysis-by-synthesis
framework was shown to be capable of inferring a full 3D
facial surface from a single image of a person. 3DMMs
have since been widely applied in numerous areas, such
as computer vision, human behavioral analysis, computer

Figure 1: The sheer number of facial meshes used in train-
ing LSFM produces a 3D Morphable Model with an un-
precedented range of human identity in a compact model.

graphics and craniofacial surgery [7, 3, 2, 28].
A 3DMM is constructed by performing some form of

dimensionality reduction, typically Principal Component
Analysis (PCA), on a training set of facial meshes. This
is feasible if and only if each mesh is first re-parametrised
into a consistent form where the number of vertices, the
triangulation, and the anatomical meaning of each vertex
are made consistent across all meshes. Meshes satisfying
the above properties are said to be in dense correspondence
with one another. Whilst this correspondence problem is
easy to state, it is challenging to solve accurately and ro-
bustly between highly variable facial meshes.

Once built, 3DMMs provide two functions. Firstly,
3DMMs are powerful priors on 3D face shape that can be
leveraged in fitting algorithms to reconstruct accurate and
complete 3D representations of faces from data-deficient
sources like in-the-wild 2D images or noisy 3D depth scan
data. Secondly, 3DMMs provide a mechanism to encode
any 3D face in a low dimensional feature space, a compact

1



representation that makes tractable many 3D facial analysis
problems.

In this paper we revisit 3DMMs under a new context —
that we have access to a database of around 10,000 high-
quality 3D facial scans, and for each subject we have de-
tailed demographics including the subject’s age, gender, and
ethnic background. We show clear evidence that the mani-
fold of plausible faces is clustered by demographics like age
and ethnicity, and use this insight to devise new approaches
to 3DMM construction and fitting that advance on the state
of art. We further demonstrate for the first time that a large-
scale model coupled with accurate demographics enables
accurate age classification from 3D shape data alone.

2. Previous Work
The construction of a 3DMM usually consists of two

main steps — establishing group-wise dense correspon-
dence between a training set of facial meshes, and then per-
forming some kind of statistical analysis on the registered
data to produce a low-dimensional model.

In the original formulation [6], Blanz and Vetter solved
the dense correspondence problem by representing each fa-
cial mesh in a cylindrical ‘UV’ map, flattening each 3D sur-
face down into a 2D space. This reduced establishing cor-
respondence to a well-understood image registration prob-
lem, which was solved with a regularised form of optical
flow. Blanz and Vetter employed PCA to construct their
model, and showed that in their framework, model perfor-
mance was improved by segmenting the facial surface into
regions (eyes, nose, mouth, other), building individual mod-
els per-segment, before blending resulting segments back
together. Amberg et al. [3] extended this approach to emo-
tive facial shapes by adopting an additional PCA modeling
of the offsets from the neutral pose. This resulted to a single
linear model of both identity and expression variation of 3D
facial shape.

Blanz and Vetter’s correspondence technique was only
used to align the facial meshes of 200 subjects of a sim-
ilar ethnicity and age [6]. This approach was effective in
such a constrained setting, but it is fragile to large variance
in facial identity. To overcome this limitation, Patel and
Smith [23] proposed to manually annotate the cylindrical
face projections with a set of sparse annotations, employing
a Thin Plate Splines (TPS) warp [11] to register the UV im-
ages of the meshes into a common reference frame. Cosker
et al. [16] automated the procedure of landmark annotations
required for the TPS warp, for the special case of temporal
sequences of a single identity displaying emotions. Several
facial landmarks on a handful of meshes for a given tempo-
ral sequence were manually annotated and used to build a
person-specific Active Appearance Model (AAM) [15] that
was then used to automatically find sparse annotations for
each frame in the data set.

As an alternative to performing alignment in a UV space,
Paysan et al. [24] built the Basel Face Model (BFM) by us-
ing an optimal step Nonrigid Iterative Closest Point (NICP)
algorithm [4] to directly align scans of 200 subjects with a
template. This native 3D approach was guided by manually-
placed landmarks to ensure good convergence.

Brunton et al. [13] adopt wavelet bases to model inde-
pendent prior distributions at multiple scales for the 3D fa-
cial shape. This offers a natural way to represent and com-
bine localised shape variations in different facial areas.

Vlasic et al. [30] modeled the combined effect of iden-
tity and expression variation on the facial shape by using a
multilinear model. More recently, Bolkart and Wuhrer [10]
show how such a multilinear model can be estimated di-
rectly from the training 3D scans by a joint optimisation
over the model parameters and the groupwise registration
of the 3D scans.

For the case where a temporal sequence of meshes is
available, Bolkart and Wuhrer [9] fit a multilinear model
and estimate a 4D sequence parametrisation. This can be
used to animate a single 3D scan with a specific facial ex-
pression. Another alternative to modeling emotive faces is
the blendshape model, which was used by Salazar et al. [27]
to place into correspondence emotive faces in a fully auto-
mated way. For more details on 3D facial shape modeling,
we refer the interested reader to the recent extensive review
article of Brunton et al. [14].

Due to the costly manual effort currently required to
construct 3DMMs from 3D data, recent efforts in the field
have also focused on trying to build models from other data
sources. Kemelmacher recently presented a technique that
attempts to learn a full 3D facial model automatically from
thousands of images [21]. Whilst impressive given the in-
put data, such techniques cannot currently hope to produce
models comparable in resolution and detail to techniques
that natively process 3D input data.

All the aforementioned works do not use more than 300
training facial scans. In this paper we show that such a size
of training set is far from adequate to describe the full vari-
ability of human faces. On top of that, all existing works use
training sets with a very limited diversity in the ethnic origin
(mostly Caucasian) as well as in the age (mostly young and
middle adulthood) of the subjects. Due to this kind of limi-
tations of the training sets adopted, no existing work so far,
to the best of our knowledge, has developed models tailored
for specific age, gender or ethnicity groups. The above is-
sues pose severe limitations in the descriptive power of the
resultant morphable models.

Regarding public availability of 3DMMs of human
faces, there exist only two available resources: First, a
University of Basel website [25] that provides the BFM
model [24]. Second, a website of Bolkart, Brunton, Salazar
and Wuhrer [8] that provides the 3DMMs constructed by



their recent works, modeling 3D face shapes of different
subjects in neutral expression [14] as well as 3D shapes of
different subjects in different expressions [12, 9].

3. Contributions
In this paper, we introduce a robust pipeline for 3DMM

construction that is completely automated. More precisely,
we develop a novel and robust approach to 3D landmark
localisation, followed by dense correspondence estimation
using the NICP algorithm. Then, we propose an approach
to automatically detect and exclude the relatively few cases
of failures of dense correspondence, followed by PCA to
construct the deformation basis. We pay particular attention
to the efficiency and scalability of all the aforementioned
steps. We make the source code of this pipeline publicly
available, for the benefit of the community1.

We then use our pipeline on a 3D facial database of
9,663 subjects to construct LSFM, the largest and most
information-rich 3DMM of face shapes in neutral expres-
sion produced to date. LSFM is built from two orders of
magnitude more identity variation than current state-of-the-
art models. We conduct extensive experimental evaluations
that show that this additional training data leads to signifi-
cant improvements in the characteristics of our 3DMM, and
demonstrate that LSFM outperforms existing models by a
wide margin. We also present experiments that study the
effect of using larger datasets in model construction. These
experiments provide for the first time a comprehensive an-
swer to the question of how much training data is needed
for 3DMMs before effects of diminishing returns set in.

Apart from building LSFM using the commonly-used
global PCA, we also build a collection of PCA models tai-
lored by age, gender and ethnicity, capitalising on the rich
demographic information of the used database. We present
quantitative experimental evidence of why and when such
tailored models should be preferred over the global PCA.

Using the demographic information, we are also able to
analyse for the first time the distribution of faces on the low-
dimensional manifold produced by the global PCA. We vi-
sualise the manifold of faces using t-distributed stochastic
neighbor embedding (t-SNE) [29], and report on clear age
and ethnic clustering that can be observed. As an applica-
tion example, we utilise the proposed model to perform age
classification, achieving particularly accurate results.

Finally, a selection of models is made available from this
work, including a global statistical model, and models bro-
ken down by demographics1. These models were built us-
ing data collected for medical research applications, and the
models are provided under a similar license.

It is worth mentioning that current progress in computer
vision would not be possible without the collection of large

1http://www.ibug.doc.ic.ac.uk/resources/lsfm

and comprehensive datasets e.g. [19, 26, 20, 18], and we be-
lieve that our publicly available models contributes towards
this effort.

4. Background
The geometry of a 3D facial mesh is defined by the vec-

tor X = [xT
1 ,x

T
2 , . . . ,x

T
n ]

T ∈ R3n, where n is the number
of vertices and xi = [xix, x

i
y, x

i
z]

T ∈ R3 describes the X,Y
and Z coordinates of the i-th vertex.

4.1. 3DMM construction

The construction of a 3DMM happens in two main
stages:

Dense correspondence: A collection of meshes are re-
parametrised into a form where each mesh has the same
number of vertices joined into a triangulation that is shared
across all meshes. Furthermore, the semantic or anatomical
meaning of each vertex is shared across the collection.

Similarity alignment & statistical modelling: The col-
lection of meshes in dense correspondence are subjected
to Procrustes Analysis to remove similarity effects, leaving
only shape information. The processed meshes are statis-
tically analysed, typically with PCA [17], generating a 3D
deformable model as a linear basis of shapes. This allows
for the generation of novel shape instances:

X∗ =M +

d∑
i=1

αiU i =M +Uα (1)

whereM ∈ R3n is the mean shape and U = [U1 · · ·Ud] ∈
R3n×d is the orthonormal basis matrix whose columns con-
tain the shape eigenvectors U i. Also, α = [α1, . . . , αd] ∈
Rd is the shape vector that contains the parameters (coeffi-
cients) that define a specific shape instance under the given
deformable model. The degrees of freedom of this model
are given by the number of principal components d, which
is much smaller than the dimensionality 3n of the original
space of 3D shapes.

Any input 3D mesh X can be projected on the model
subspace by finding the shape vector α that generates a
shape instance (1) that is as close as possible to X. The op-
timum shape vector and the corresponding projection P (X)
on the model subspace are given by [17]:

α = UT (X−M) , P (X) =M +UUT (X−M) (2)

4.2. MeIn3D face database overview

The collected MeIn3D database contains approximately
12,000 3D facial scans captured during a special exhibition
in the Science Museum, London, over a period of 4 months.
The data was collected with the goal of constructing large-
scale statistical models that could ultimately advance facial

http://www.ibug.doc.ic.ac.uk/resources/lsfm
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Figure 2: Age distribution of subjects in MeIn3D dataset.

reconstruction and craniofacial surgery. A 3dMDTM face
capture system was utilised, creating a 3D triangular sur-
face for each subject composed of approximately 60,000
vertices joined into approximately 120,000 triangles, along
with a high-resolution texture map. Furthermore, 9,663
subjects also provided metadata about themselves, includ-
ing their gender, age and ethnicity. This information allows
for the construction of models for targeted populations, such
as within a defined age range or from a particular ethnic
background. The dataset covers a wide variety of age (see
Figure 2), gender (48% male, 52% female), and ethnicity
(82% White, 9% Asian, 5% Mixed Heritage, 3% Black and
1% other).

5. Methodology

Let us consider the scenario that, as with MeIn3D
database, one has a large-scale database of 3D facial scans
and wants to apply a technique to construct a high-quality
3DMM. Such a large database raises some unique scala-
bility challenges. We believe that it is highly beneficial to
have a fully automated technique that would not require any
kind of manual annotation. It is also very important that this
technique is efficient in terms of both runtimes and memory
requirements.

We introduce a 3DMM construction pipeline that meets
all the aforementioned specifications, see Fig. 3. It starts
with a novel and robust approach to 3D landmark locali-
sation. The 3D landmarks are then employed as soft con-
straints in NICP to place all meshes in correspondence with
a template facial surface. With such a large cohort of data,
there will be some convergence failures from either land-
marking error or NICP. We propose a refinement post-
processing step that weeds out problematic subjects auto-
matically, guaranteeing that the LFM models are only con-
structed from training data for which we have a high confi-
dence of successful processing.

5.1. Automatic annotation

Our proposed technique allows us to bring to bear the
huge expertise developed in image landmark localisation to
3D landmark localisation, allowing us to leverage the ex-
tensive datasets and state-of-the-art techniques that are now
readily available in this domain [1]. This approach is simi-

lar to the work of [16] which was shown to be successful for
temporal person-specific sequences, but here we pay partic-
ular attention to mesh sets with highly variable identity.

We do this by rendering each mesh from one or several
virtual cameras positioned around the subject, Fig. 3a. Us-
ing the texture information of the 3D mesh, each virtual
camera, which has a known perspective projection matrix,
records a realistic synthetic face image with a fixed pose.
Therefore, we are able to apply an AAM-based state-of-the-
art image landmark localisation technique [5], trained for
this specific pose and initialised from a state-of-the-art face
detector [22, 1]. In this way, a set of 68 sparse annotations
in the corresponding synthetic view is robustly located and
then back-projected on the 3D facial mesh. In the experi-
ments reported here, we found that a single frontal virtual
camera was adequate for accurate results. However, addi-
tional virtual cameras can be supported by our pipeline.

5.2. Automatic correspondences & error pruning

After automatic annotation, each mesh is individually
placed in correspondence with a template mesh, Fig. 3b.
Firstly, the automatic landmarks are used to perform an op-
timal similarity alignment between the mesh in question and
the (annotated) template. NICP is then used to deform the
template so that it takes the shape of the input mesh, with
the landmarks acting as a soft constraint. The resulting de-
formed templates are re-parameterised versions of each sub-
ject that are in correspondence with one another.

With such a large number of subjects there will be some
failure cases at this stage. This is an unavoidable byprod-
uct of the fact that both landmark localisation and NICP
are non-convex optimisation problems that are sensitive to
initialisation. Our approach embraces this, seeking to weed
out the small number of failure cases given the huge amount
of data available for processing.

To remove outliers we construct an initial global PCA
from all fittings, and then project each subject onto the sub-
space of this model to derive the corresponding shape vec-
tor α (see Eq.(2)). The weighted squared norm of α (us-
ing the inverse of the corresponding PCA eigenvalues as
weightings) yields an inverse measure of the likelihood of
the fitted mesh, under the given PCA model. Therefore,
inaccurate fittings exhibit a particularly high value of this
norm, with a separation from the values that correspond to
the accurate fittings. We thus classify as outliers the meshes
whose weighted norm of α belongs at the top 1.5% of the
dataset. For more details, please refer to the Supplementary
Material.

6. Experiments
In this section, we present and analyse the morphable

face models that we constructed. We also perform detailed
evaluations and comparisons with other publicly available



2D

0° +90°-90°

3D

3D GLOBAL PCA MODEL 
(INITIAL ESTIMATION)

NICP dense correspondence

Automatic pruning

Auto landmarking LSFM-BESPOKE PCALSFM-GLOBAL PCA

Figure 3: Our fully automated pipeline for constructing large scale 3DMMs. From left to right and top to bottom: (a)
Automatic landmarking based on synthetically rendered views. (b) Guided by the automatic landmarks, the 3D template is
iteratively deformed to exactly match every 3D facial mesh of the dataset. (c) An initial global PCA is constructed, and (d)
erroneous correspondences are automatically removed. (e) LSFM models are constructed from the remaining clean data.
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Figure 4: Visualisations of the first five principal components of shape for LSFM, each visualised as additions and subtrac-
tions away from the mean (also shown, left).

models. For additional results, please see the Supplemen-
tary Material.

6.1. Global LSFM model

We derive our global LSFM model (hereafter referred
to as LSFM-global) by applying the proposed construction
pipeline on the MeIn3D dataset. Figure 4 visualises LSFM-
global by showing the mean shape along with the top five
principal components of shape variation. We observe that
the principal modes of variation capture trends of facial
shape deformation due to gender, age, ethnicity and other
variability in a particularly plausible way, yielding high-
quality 3D facial shapes.

An additional visualisation of LSFM-global is provided
by Figure 1, which shows synthetic facial shapes generated
by the model. It can be seen that all synthetic faces exhibit
a high degree of realism, including fine details in the facial
structures. Furthermore, we observe that the statistical dis-
tribution of LSFM-global succeeds in capturing a plethora
of demographic characteristics (age, gender and ethnicity).

Age Ethnicity

Black

Chinese

White

8

16

24

32

40

48

56

64

Figure 5: t-SNE embedding of the high dimensional face
manifold in two dimensions. Left: a clear trend of increas-
ing age can be seen. Right: the two smaller structures are
explained largely as ethnic variations.

6.2. Facial manifold visualisation

Here, we explore the properties of the LSFM manifold.
After establishing dense correspondences with our pipeline
and excluding the outliers, every retained training sample



X is projected on the LSFM-global model and represented
by the vector of shape parameters α that yields the clos-
est shape within the model subspace, see Eq. (2). We then
apply t-SNE [29] to the shape vectors from all training sam-
ples to visualise the manifold of training shapes, as repre-
sented in the d-dimensional model subspace.

Leveraging the per-subject demographic data we have,
we are able to label samples in this space by their age, see
Fig. 5 (left). Interestingly, a clear trend of increasing age
across the bulk of the manifold can be seen, suggesting that
the facial manifold has age-related structure.

Furthermore, we visualise the space by ethnicity, Fig. 5
(right). Note that we chose three ethnic groups for which the
number of samples in the used dataset was sufficient for our
analysis. We observe that t-SNE has produced a nonlinear
2D embedding that dedicates the largest area for the White
ethnic group, which is not surprising, given the fact that this
ethnic group is over-represented in the MeIn3D database
(82% of the samples). What is particularly interesting is the
fact that the clusters that are clearly separable from the main
manifold are actually specific ethnic groups.

These visualisations provide insight into how different
regions of the high-dimensional space of human face shapes
are naturally related to different demographic characteris-
tics. We use this insight to define specific bespoke models
that are trained on dedicated subsets of the full MeIn3D
training population. Taking also into account the demo-
graphics of the training data available (see Section 4.2), we
define the following groups: Black (all ages), Chinese (all
ages) and White ethnic group, which due to large avail-
ability of training samples, is further clustered into four
age groups: under 7 years old (White-under7), 7 to 18
years old (White-7to18), 18 to 50 years old (White-18-
50) and over 50 years old (White-over50). We combine
these bespoke models in a large mixture model, which we
call LSFM-bespoke. The intrinsic characteristics of both
LSFM-global and LSFM-bespoke will be evaluated in the
next section.

6.3. Training and Test Sets

For all the subsequent experiments, MeIn3D dataset was
split into a training set and a test set. In more detail, a set
of 400 meshes of MeIn3D was excluded from the original
training set to form a test set. This test set was randomly
chosen within demographic constraints to ensure a gender,
ethnic and age diversity. In particular, it contains the fol-
lowing number of samples from each one of the considered
groups: Black: 40, Chinese: 40, White-under7: 80, White-
7-to-18: 80, White-18-to-50: 80, and White-over-50: 80. In
addition, each of the above amounts was drawn from 50%
males and 50% females. Despite the fact that this test set
does not capture the full range of diversity present in the
demographics of humans, its diversity is still a huge step up
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Figure 6: Compactness of the LSFM models.

from existing datasets used in testing 3DMMs.

6.4. Intrinsic Evaluation of LSFM models

Following common practice in the literature of statistical
shape models, we evaluate the intrinsic characteristics of
LSFM-global and LSFM-bespoke using compactness, gen-
eralisation and specificity, see e.g. [17, 14, 10]. We consider
the 3D shapes of MeIn3D dataset after establishing dense
correspondences, using our pipeline.

Figure 6 shows the compactness plots for the LSFM
models. Compactness measures the percentage of variance
of the training data that is explained by a model when cer-
tain number of principal components are retained. Note that
in the case of the bespoke models, the training samples of
the corresponding demographic group are only considered,
which means that the total variance is different for every
model. We observe that all trained models exhibit simi-
lar traits in the variance captured, although this naturally
varies with the size of the training set in each case of the
tailored models. Both global and bespoke LSFM models
can be considered sufficiently compact; for example for all
the models, as few as 40 principal components are able to
explain more than 90% of the variance in the training set.

Figure 7 presents plots of model generalisation, which
measures the ability of a model to represent novel instances
of face shapes that are unseen during training. To compute
the generalisation error of a model for a given number of
principal components retained, we compute the per-vertex
Euclidean distance between every sample of the test set X
and its corresponding model projection P (X), Eq. (2), and
then take the average value over all vertices and all test sam-
ples. In order to derive an overall generalisation measure
for LSFM-bespoke, for every test sample we use its de-
mographic information and project on the subspace of the
corresponding bespoke model and then compute an over-
all average error. We plot the generalisation errors with re-
spect to both the number of principal components (Fig. 7a)
and percentage of total variance retained (Fig. 7b). We ob-
serve that both LSFM-global and LSFM-bespoke are able
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Figure 7: Generalisation of the LSFM models, with respect
to: (a) the number of principal components retained and (b)
the portion of variance explained.

to generalise well, since for even low number of compo-
nents and total variance retained, they yield particularly low
generalisation errors. Interestingly, we see in Fig. 7a that
LSFM-bespoke achieves superior generalisation measures
when compared to LSFM-global for an equivalent num-
ber of components for fewer than 60 components. After
this stage the global model starts to outperform the spe-
cific models, which might attributed to the fact that many of
the specific models are built from smaller cohorts of train-
ing data, and so run out of interesting statistical variance
at an earlier stage. When changing the visualisation to one
based on retained variance (Fig. 7b), we observe that the
demographic-specific LSFM-bespoke model achieves bet-
ter generalisation performance for the vast majority of val-
ues of retained variance.

Figure 8 presents the specificity of the introduced mod-
els, which evaluate the validity of synthetic faces gener-
ated by a model. To measure this, we randomly synthesise
10,000 faces from each model for a fixed number of com-
ponents and measure how close they are to the real faces
of the test set. More precisely, for every random synthetic
face, we find its nearest neighbor in the test set, in terms
of minimum (over all samples of the test set) of the aver-
age (over all vertices) per-vertex distance. We record the
mean of this distance over all samples as the specificity er-
ror. Figure 8a contains the specificity plot for LSFM-global
(mean value as well as standard deviation bars), whereas
Figure 8b contains the specificity plots for all models of
LSFM-bespoke (mean values only; the standard deviation
bars have been omitted for the sake of visualisation clarity).
We observe that in all the cases, the specificity errors attain
particularly low values, in the range of 1 to 1.6 mm, even for
a relatively large number of principal components. This is
a quantitative evidence that the synthetic faces generated by
both global and bespoke LSFM models are realistic, which
complements the qualitative observations of Section 6.1. In-
terestingly, Figure 8b suggests that specificity error is larger
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Figure 8: Specificity of the LSFM models.

for models trained from smaller populations, as e.g. in the
case of Black model. Apart from the lack of sufficient rep-
resentative training data, this might also be attributed to the
fact that the space of such models is more sparsely pop-
ulated by training samples, so the nearest neighbor error
tends to be larger, as compared to other models with more
training data. Furthermore, it can be seen that the lowest
specificity error comes from the White-7-18 model, which
is trained on a large number of samples that lie on a smaller
cluster of the space, leading to a highly specific model.

6.5. Fitting Application

In order to gauge the quality of the LSFM-global model
in comparison with the state-of-the-art, we evaluate the per-
formance of the models in a real-world fitting scenario.
We compare with two publicly available morphable mod-
els of human faces in neutral expression, namely the BFM
model [24, 25] and the PCA model of [14, 8], which will
be hereafter referred to as Brunton et al. model. Note that
for the sake of fairness towards the existing models, we do
not consider the bespoke LSFM models in the fitting experi-
ment, since these models use additional information related
to demographics.

Note that for all versions of LSFM-global evaluated
hereafter, we choose the number of principal components,
so as to explain 99.5% of the training set variance. For BFM
and Brunton et al. models, we use all the principal compo-
nents, as given by the publicly available versions of these
models.

To evaluate the fitting performance of every tested
model, every mesh in the adopted test set is automatically
annotated with facial landmarks using our technique out-
lined in Section 5.1. The same set of landmarks is manually
placed on the mean faces of every model, and subsequently
used to similarity-align them with every mesh of the test set.
Similarly to [14, 32], a simple model fitting is employed,
which consists of (1) searching for the nearest vertex in the
test mesh to establish correspondences between that mesh
and the model, (2) projecting the test mesh onto the model
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Figure 9: Cumulative error distributions of the per-vertex
fitting error (a) between publicly available models (b) for
LSFM models built from varied amounts of training data.

using Eq. (2). The per-vertex fitting error is then computed
as the distance between every vertex of the test mesh and the
nearest-neighbor vertex of the corresponding model-based
fitting. Note that we use a simple fitting strategy to provide
an appropriate framework to benchmark models against one
another fairly.

Figure 9a compares the fitting performance of LSFM-
global against BFM and Brunton et al. models, in terms of
cumulative error distribution (CED) curves of per-vertex fit-
ting errors. We observe that LSFM-global achieves excep-
tionally improved accuracy and robustness, as compared to
the other two models. This is attributed to the larger train-
ing sample used. We also note that this is the first time that
existing models are evaluated against a dataset containing a
large variation in ethnicity and age. The significantly larger
variability in the training set of LSFM-global allows it to
generalise well to a much wider variety of faces than the
more narrowly-focused existing models.

It is natural to question the effect of varying the size of
the training set on 3DMM construction. To explore this,
we repeat the above fitting experiment for different versions
of the LSFM-global model, trained from varying numbers
of samples. The results are visualised in the plots of Fig-
ure 9b. Clear improvements can be seen in model fitting
performance for around one order of magnitude more data
than is currently used, albeit with diminishing returns be-
yond a few thousand samples. We also note that even with
only 100 samples, LSFM-global matches the performance
of the BFM, which was trained on 200 samples. This can
be attributed to the larger variability of the LSFM training
set, demonstrating how crucial this is for building effective
3DMMs.

6.6. Age Classification from 3D shape

As a final evaluation, we use the unique traits of
the MeIn3D dataset to compare the descriptive power of
LSFM-global, BFM and Brunton et al. models in an age

Precision Recall F-Score
LSFM-global 0.80 0.81 0.80
BFM 0.78 0.79 0.78
Brunton et al. 0.74 0.74 0.74

Table 1: Mean age classification scores.

classification experiment. Following [31], we use the fol-
lowing age groups as classes for this experiment: 0-11,
12-21, 22-60, and over 60 years old. In more detail, we
project all the face meshes of the training set onto each of
the three models and use the corresponding shape vectors,
α, to represent them, see Eq. (2). Using the demographic
information of MeIn3D dataset, we train a Support Vector
Machine classifier for each model, which maps the corre-
sponding shape vectors to the four age groups.

To measure the classification accuracy, we project all
samples from the test set onto the models and then use the
classifier to predict the age bracket for the test subjects. This
provides an application-oriented evaluation of the quality of
the low-dimensional representation that each 3DMM pro-
vides for the large variety of faces present in LSFM. As can
be seen in Table 1, the LSFM-global model outperformed
existing models in precision and recall and f-score, correctly
classifying the age of 80% of the subjects in the challenging
test set.

7. Conclusions & future work
We have presented LSFM, the most powerful and sta-

tistically descriptive 3DMM ever constructed. By mak-
ing both the LSFM software pipeline and models avail-
able, we help to usher in an exciting new era of large scale
3DMMs. We have demonstrated that our automatically con-
structed model comfortably outperforms existing state-of-
the-art 3DMMs thanks to the sheer variety of facial appear-
ance it was trained on, and further reported on how the
size of 3D datasets impacts model performance. We have
explored for the very first time the structure of the high-
dimensional facial manifold, revealing how it is clustered
by age and ethnicity variations, and demonstrated accurate
age prediction from 3D shape alone. In future work, we will
analyse in detail the qualities of the LSFM model, explor-
ing what it can tell us about human face variation on the
large scale, as well as exploring novel statistical methods
for large-scale 3DMM construction.
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with multilinear models. In ACM Transactions on Graphics
(TOG), volume 24, pages 426–433. ACM, 2005. 2



[31] J.-G. Wang, E. Sung, and W.-Y. Yau. Active Learning for
Solving the Incomplete Data Problem in Facial Age Classi-
fication by the Furthest Nearest-Neighbor Criterion. IEEE
Trans. Image Processing (TIP), 20(7):2049–2062, 2011. 8

[32] S. Zulqarnain Gilani, F. Shafait, and A. Mian. Shape-based
automatic detection of a large number of 3d facial landmarks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4639–4648, 2015. 7


