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Abstract

In this paper we propose a tracking scheme specifically tai-

lored for tracking human body parts in cluttered scenes. We

model the background and the human skin using Gaussian

Mixture Models and we combine these estimates to localize

the features to be tracked. We further use these estimates

to determine the pixels which belong to the background and

those which belong to the subject’s skin and we incorpo-

rate this information in the observation model of the used

tracking scheme. For handling self-occlusion (i.e., when

one body part occludes another), we incorporate the infor-

mation about the direction of the observed motion into the

propagation model of the used tracking scheme. We demon-

strate that the proposed method outperforms the conven-

tional Condensation and Auxiliary Particle Filtering when

the hands and the head are the tracked body features. For

the purposes of human body gesture recognition, we use

a variant of the Longest Common Subsequence algorithm

(LCSS) in order to acquire a distance measure between the

acquired trajectories and we use this measure in order to

define new kernels for a Relevance Vector Machine (RVM)

classification scheme. We present results on real image se-

quences from a small database depicting people performing

15 aerobic exercises.

1. Introduction

Vision-based analysis of hand and body gestures is nowa-

days one of the most active fields of computer vision, due

to its practical importance for security (video surveillance,

monitoring), natural multimodal interfaces, augmented re-

ality, smart rooms, object-based video compression and

driver assistance.. Furthermore, it offers the key to ambient

intelligence, anticipatory interfaces, and human computing,

through the ability to unobtrusively sense certain behavioral

cues of the users and to adapt to their typical behavioral pat-

terns and the context in which they act. Tremendous amount

of work has been done in the field in recent years [1],[2].

In order to obtain a semantic description of the content

of a scene, we do not need to use all the available infor-

mation. What is happening in a scene can be determined

by monitoring the temporal transitions of the scene’s non-

static elements. The main objective of tracking is to esti-

mate the state xk (e.g. position, pose) given all the mea-

surements z1:k up to the current time instant k. In a proba-

bilistic framework, this translates in the construction of the

a posteriori probability p(xk|z1:k). Theoretically, the opti-

mal solution in case of Gaussian noise in the measurements

is given by the Kalman filter [3], which yields the poste-

rior being also Gaussian. However, in nonlinear and non-

Gaussian state estimation problems Kalman filters can be

significantly off. To overcome the limitations of Kalman fil-

tering, the so-called Condensation algorithm was proposed

[4], [5]. The main idea behind condensation is to maintain

a set of possible solutions called particles. By maintaining

a set of solutions instead of a single estimate as is done by

Kalman filtering, particle filters are more robust to miss-

ing and inaccurate data. The major drawback of the clas-

sic Condensation algorithm, however, is that a large amount

of particles might be wasted because they are propagated

into areas with small likelihood. In order to overcome this

problem, a number of variants to the original algorithm have

been proposed, having as a common characteristic the goal

of achieving a more optimal allocation of new particles,

through the use of kernels [6], [7], orientation histograms

[8] or special transformations like Mean Shift [9].

Despite the improvement in the tracking performance of

the previous methods, the inherent problem of the classic

condensation algorithm, that is, the propagation of particles

in areas of small likelihood is not sufficiently addressed. In

order to effectively deal with this issue, the Auxiliary Par-

ticle Filtering (APF) algorithm was proposed by Pitt and

Shephard [10]. The APF algorithm operates in two steps.

At first, particles are propagated and their likelihood is eval-

uated. Subsequently, the algorithm chooses again and prop-

agates the particles according to the likelihood of the pre-

vious step. Since the introduction of the APF algorithm, a

number of variants have been proposed in order to address

different issues. In [11] a modified APF tracking scheme

is proposed for the tracking of deformable facial features,
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like mouth and eye corners. The method uses an invariant

color distance that incorporates a shape deformation term

as an observation model to deal with the deformations of

the face. In order to take into account spatial constraints be-

tween tracked points, the particle filter with factorized like-

lihoods is proposed in [12], where the spatial constraints be-

tween different facial features are pre-learned and the pro-

posed scheme tracks constellations of points instead of a

single point, by taking into account these constraints.

The creation of trajectory-based representations of ac-

tions via feature tracking has been used in extend. In [13],

the spatiotemporal curvatures of the trajectories of mov-

ing objects, such as the hands, are used in order to rep-

resent human actions. The local maxima of these curva-

tures are view-invariant and are used for image sequence

alignment and matching of the actions. Trajectories that

represent human activities in moving camera environments

are matched in [14], by relaxing standard geometrical

constraints, like constant speed and constant acceleration.

Three-dimensional representations have also been exten-

sively studied for human action recognition. In [15] human

actions are treated as three-dimensional shapes in the space-

time volume. The method utilizes properties of the solution

to the Poisson equation to extract space-time features such

as local space-time saliency, action dynamics, shape struc-

ture and orientation, while spectral clustering is used in or-

der to group similar actions. In [16], long video sequences

are segmented in the time domain by detecting single events

in them. The detection is completely unsupervised, since it

is done without any prior knowledge of the types of events,

their models, or their temporal extent. The method can be

used for event-based indexing even when only one short

example-clip is available.

In this paper we automatically select body features by

combining background and skin color cues. We model the

background of the sequences using Gaussian Mixture Mod-

els (GMM). We learn the parameters of the mixture using

EM and the first 24 frames of the sequences as training data.

We obtain a skin color model in a similar way, using a set

of training images consisting of human faces. We use the

detected features to initialize an adapted Auxiliary Particle

Filtering tracking scheme. We incorporate skin and back-

ground cues to the observation model to ensure that only

skin patches belonging to the foreground are tracked. We

use an adapted motion model to predict the location of par-

ticles at the next time instant. We compare our results with

the ones acquired using Condensation and simple Auxiliary

Particle Filtering (APF). We examine the effectiveness of

our motion model by comparing our results with the ones

acquired by an APF that uses only the enhanced observa-

tion model. We use LCSS to acquire a distance measure

between trajectories and define kernels for an RVM clas-

sification scheme. Our results show the superiority of the

(a) (b)

Figure 1: (a) Estimated background for one of the sequences in

our database and (b) the segmented hands and head by combining.

representations acquired by the proposed tracker.

The remainder of this paper is organized as follows: in

section 2 we describe the automatic localization process that

we followed for the selection of body features. In section

3 we analyze the proposed observation and motion models

that we incorporated in the classic APF tracking scheme. In

section 4 we describe the recognition process that we fol-

lowed in order to compare the trajectories derived from sec-

tion 3. In section 5 our experimental results are given and

in section 6 our final conclusions are drawn.

2 Feature Localization

Similar to [17] we use a mixture of Gaussian distributions

in order to model the skin. The parameters of the Gaussians

are estimated using EM. The model is trained on approxi-

mately 700 frontal facial images from the FERET database

[18]. To construct the model, we convert our training im-

ages to the nRGB colorspace. We implement the back-

ground estimation algorithm of [19] in order to determine

background pixels. The recent history of each pixel posi-

tion is modeled by a mixture of K Gaussians. The covari-

ance matrix Σ is assumed to be diagonal, meaning that the

RGB values of the pixels are assumed to be uncorrelated.

We use the first 24 frames (i.e. 1 second) of our sequences

and EM in order to estimate the parameters of the mixture.

In Fig. 1(a), the estimated background model for a sequence

where the subject is raising both of its hands is given. The

final result of the segmentation for one of the sequences in

our dataset is illustrated in Fig. 1(b).

3 Feature Tracking

Recently, particle filtering tracking schemes [4], [10], have

been successfully used [11] to track the state of a temporal

event given a set of noisy observations. Its ability to main-

tain multiple solutions makes it particularly attractive when

the noise in the observations is not Gaussian and makes it
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robust to missing or inaccurate data.

Let us denote by c the template containing the color in-

formation in a rectangular window centered at each point

to be tracked, by α the unknown location of the feature

at the current time instant and by Y = {y1, . . . , y−, y}
the observations up to the current time instant. The main

idea of the particle filtering is to maintain a particle based

representation of the a posteriori probability p(α|Y ) of the

state α given all the observations Y up to the current time

instance. The distribution p(α|Y ) is represented by a set

of pairs (sk, πk) such that if sk is chosen with probability

equal to πk, then it is as if sk was drawn from p(α|Y ). Sup-

pose that we have a particle based representation of the den-

sity p(α−|Y −), that is we have a collection of K particles

and their corresponding weights (i.e. (s−
k , π−

k )). Then, the

Auxiliary Particle Filtering can be summarized as follows:

1. Propagate all particles s−k via the transition probability

p(α|α−) in order to arrive at a set of K particles µk.

2. Evaluate the likelihood associated with each particle

µk, that is let λk = p(y|µk; c).

3. Draw K particles s−k from the probability density, rep-

resented by the collection (s−
k , λkπ−

k ). In this way, the

auxiliary particle filter favors particles with high λk.

4. Propagate each particle s−
k with the transition proba-

bility p(α|α−) in order to arrive at a collection of K

particles sk
′.

5. Assign a weight πk
′ to each particle as follows,

wk
′ =

p(y|sk
′; c)

λk

, πk
′ =

wk
′

∑

j

wj

(1)

In this work we use for the definition of p(y|µk; c) the ob-

servation model described in [11] along with background

and skin color information. Furthermore, we utilize an

adapted motion model in order estimate the most probable

position of the particles in the next state and deal with the

problem of self-occlusion.

3.1 Observation Model

Shadows and color variations affect the accuracy of the fea-

ture localization process of section 2. The tracker templates

may contain a considerable portion of background pixels,

misleading the tracking process. Furthermore, since we

want to track body parts consisting of skin pixels, we want

to ensure that our tracker will follow such regions. To deal

with these issues, we enhance the observation model of our

tracking scheme using background and skin color cues.
Let us denote by {N(Σb, µb)} the set of background

Gaussians with the largest prior weights per pixel and by

N(Σs, µs) the dominant Gaussian in the skin model mix-
ture. Then the observation model that we use is defined as:

p(y|sk; c, {N(Σb
, µ

b)}k
, N(Σs

, µ
s)) =

α · p(y|sk; c) · p(y|sk; {N(Σb
, µ

b)}k) · p(y|sk; N(Σs
, µ

s)), (2)

where α is a normalization term and {N(Σb, µb)}k denotes

the set of Gaussians that describe the image patch defined

by sk. For the first term of the product in eq. 2 we use the

invariant color distance of [11]. We use the inverse sigmoid

function in order to define p(y|sk; {N(Σb, µb)}k):

p(y|sk; {N(Σb
, µ

b)}k) = 1 −
1

1 + e−r(db
k
−q)

, (3)

where db
k is the average Mahalanobis distance of the M pix-

els in the patch defined by sk to their corresponding back-

ground Gaussians and r, q are parameters that define the

steepness and the middle point of the sigmoid respectively.

The likelihood p(y|sk; N(Σs, µs)) is defined in a similar

way:

p(y|sk; N(Σs
, µ

s)) =
1

1 + e−r(ds
k
−q)

, (4)

where ds
k is the average Mahalanobis distance of the pixels

in the patch from the skin distribution.

3.2 Motion Model

We incorporate an adapted motion model in order to predict

the location of the tracker particles in the next time instant.

Let us denote by φ the mean direction of motion obtained

by considering a window of previous tracked states and by g

the estimated displacement of the particles in the next time

instant, calculated as the difference in the average locations

of the tracked states in two previous time windows of N

frames. A schematic representation of the motion model

used is given in Fig. 2(a). As can be seen, our model assigns

a large weight if the particle is located inside the clear re-

gion, which defines the dominant direction of motion. The

reason for assigning a small weight q to the dashed region

in the figure is to give the model some tolerance in case the

motion changes direction abruptly.

4 Recognition

4.1 Longest Common Subsequence (LCSS)

Algorithm

Using the analysis of the previous sections, we represent a

given image sequence by a set of trajectories, where each

trajectory is initialized at the points automatically selected

using the procedures of section 2. Formally, an image se-

quence is represented by a set of trajectories {Ai}, i =
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(a) (b)

Figure 2: (a) Schematic representation of the proposed motion

model and (b) the notion of the LCSS matching.

1 . . .K , where K is the number of trajectories that consist

the set. In this work, K = 3, since we only track the hands

and head of the subjects performing the actions. Each tra-

jectory is defined as Ai = ((xi,n, yi,n), . . . ), n = 1 . . .N ,

where xi,n, yi,n are spatiotemporal coordinates and N is the

number of samples that consist Ai. Let us define another

trajectory set {Bi}, i = 1 . . .K representing a different im-

age sequence. Similar to {Ai}, the trajectories in {Bi} are

defined as Bi = ((xi,m, yi,m), . . . ), m = 1 . . .M , where

M is the number of samples that consist {Bj}. We use a

variant of the LCSS algorithm presented at [21], in order to

compare the two sets. Before we proceed with the compar-

ison, we transform the x and y coordinates of the consist-

ing trajectories so that they have zero mean and we align

the two sets in time using Dynamic Time Warping [20].

Let us define the function Head(Ai) = ((xi,n, yi,n)), n =
1 . . .N − 1, that is, the individual trajectory Ai reduced by

one sample. Then, according to the LCSS algorithm, the

distance between individual trajectories Ai and Bj is given

by:

dL(Ai, Bj) =











































0, if Ai or Bi is empty

de((xi,n, yi,n), (xi,m, yi,m))
+dL(Head(Ai), Head(Bi)),
if |xi,n − xi,m| < ε and |yi,n − yi,m| < ε

max(dL(Head(Ai), Bi), dL(Ai, Head(Bi))) + p,
otherwise

,

(5)

where de is the Euclidean distance, ǫ is the matching thresh-

old and p is a penalty cost in case of mismatch. The notion

of the LCSS distance of eq. 5 is depicted in Fig. 2(b).

Subsequently, the distance between sets {Ai} and {Bj}
is defined as follows:

DL({Ai}, {Bj}) =
1

K

∑

i

dL(Ai, Bi) (6)

that is, the average LCSS distance between the trajectories

of sets {Ai} and {Bi}.

4.2 Relevance Vector Machine Classifier

We propose a classification scheme based on Relevance

Vector Machines [22] in order to classify given examples

of human actions. A Relevance Vector Machine (RVM) is

a probabilistic sparse kernel model identical in functional

form to the Support Vector Machines (SVM). In their sim-

plest form, Relevance Vector Machines attempt to find a hy-

perplane defined as a weighted combination of a few Rele-

vance Vectors that separate samples of two different classes.

In contrast to SVM, predictions in RVM are probabilistic.

Given a dataset of N input-target pairs {(Fn, ln), 1 ≤ n ≤
N}, an RVM learns functional mappings of the form:

y(F ) =

N
∑

n=1

wnK(F, Fn) + w0 , (7)

where {wn} are the model weights and K(., .) is a Kernel

function. Gaussian or Radial Basis Functions have been ex-

tensively used as kernels in RVM. In our case, we use as

a kernel a Gaussian Radial Basis Function defined by the

distance measure of eq. 6. That is,

K(F, Fn) = e
−

DL(F,Fn)2

2η , (8)

where η is the Kernel width. RVM performs classification

by predicting the posterior probability of class membership

given the input F . The posterior is given by wrapping eq. 7

in a sigmoid function, that is:

p(l|F ) =
1

1 + e−y(F )
(9)

In the two class problem, a sample F is classified to the

class l ∈ [0, 1], that maximizes the conditional probability

p(l|F ). For L different classes, L different classifiers are

trained and a given example F is classified to the class for

which the conditional distribution pi(l|F ),1 ≤ i ≤ L is

maximized, that is:

Class(F ) = arg max
i

(pi(l|F )) . (10)

5 Experimental Results

For the evaluation of the proposed method, we use aero-

bic exercises as a test domain. Our dataset consists of 15

different aerobic exercises, performed twice by five differ-

ent subjects, leading to a set of 150 sequences. To provide

ground truth for our experiments, every 5 th frame is man-

ually labeled by a human operator. We use the following

distance metric as a criterion for success:

me =

n
∑

i=1

hi, (11)

where hi = 1 if the euclidean distance of the computed

point exceeds a predefined threshold and 0 otherwise. We
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Figure 3: Cumulative distribution of measure me.

set the threshold equal to the size of the template used for

the tracking of the point. In other words, we consider that

an error has been performed if the automatically selected

point is sufficiently far from the ground truth.

To illustrate the effectiveness of the proposed observa-

tion and motion models, we present in Fig. 3 the compara-

tive results of our proposed tracking scheme with 3 different

trackers, including Condensation, a simple APF and an APF

that just utilizes the proposed observation model. As can be

seen from the figure, the probability of successful searches

achieved by the trackers incorporating the proposed obser-

vation model is always higher than the one achieved by

Condensation and simple APF. In particular, the probabil-

ity that the error will be less than 20% is almost 0.79 for

the proposed trackers, almost 0.65 for Condensation and

falls to almost 0.5 for the APF. This result highlights the

performance improvement provided by the adapted obser-

vation model. Another interesting observation from Fig. 3

is that the Condensation algorithm outperforms the simple

APF, even though the latter was designed in order to over-

come one of the major drawbacks of Condensation, that is,

a large number of particles being propagated in areas with

small likelihood. This is due to the fact that, contrary to

condensation, the simple APF does not utilize any motion

model, and the particles are thrown with equal probability

around the point at the current time instant.

Another interesting observation from Fig. 3 is that the

condensation algorithm outperforms the simple auxiliary

particle filter, even though the latter was designed in order

to overcome one of the major drawbacks of condensation,

that is, a large number of particles being propagated in areas

with small likelihood. This is due to the fact that, contrary

to condensation, the simple auxiliary filter does not utilize

any motion model, and the particles are thrown with equal

probability around the point at the current time instant.

In order to further illustrate the effect of our proposed

motion model, we present in Fig. 4 two tracking instances

(a) (b)

Figure 4: Tracking instances acquired using (a) both the proposed

observation and motion models and (b) only the proposed obser-

vation model.

acquired using both of the proposed observation and motion

models (Fig. 4(a)) and just the proposed observation model

(Fig. 4(b)). As can be seen from the figure, the tracker using

both models effectively distinguishes the two hands. On the

contrary, tracking of the left hand is lost in the case where

only the observation model is used, since the new configu-

ration also fits the utilized observation model.

In order to classify a test example using the Relevance

Vector Machines, we constructed 15 different classifiers,

one for each class, and we calculated for each test exam-

ple F the conditional probability pi(l|F ), 1 ≤ i ≤ 15. Each

example was assigned to the class for which the correspond-

ing classifier provided the maximum conditional probabil-

ity, as depicted in eq. 10. We followed a leave-one-out sub-

ject cross validation scheme, that is, for estimating each of

the pi(l|F ), an RVM is trained by leaving out the example

F as well as all other instances of the same exercise that

were performed by the subject from F . We performed this

experiment for all of the trackers under comparison. Our

classification results are depicted in Table. 5. As can be

seen from the table, incorporating our proposed observation

model lead to an increase of almost 5% in classification

performance comparing to condensation and classic APF,

while the additional incorporation of the proposed motion

model resulted in an increase of almost 10%, leading us to

the conclusion that the motion model plays a far more im-

portant role than the observation model.

6 Conclusions

In this work we introduced an adapted Auxiliary Particle

Filter in order to track a number of selected body features.

We combined background and skin color models to auto-

matically select the features in the first frames of our se-

quences and we initialized a tracking scheme at the selected

locations. We used the same models to enhance the observa-

tion model of the tracker. In this way, we favored particles

located on foreground skin regions in the scene. In addition,
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Class Labels COND. APF APF+Obs. APF+Obs.+Motion

R/P R/P. R/P R/P

1 0.9 / 1 0.9 / 0.75 1/1 1/1

2 0.2 / 0.14 0 / 0 0.6 / 0.5 0.6 / 0.86

3 0.9 / 0.81 1 / 1 1 / 0.76 1 / 0.83

4 0.5 / 0.71 0.6 / 0.75 0.7 / 0.7 0.8 / 0.89

5 0.6 / 0.85 0.9 / 0.81 0.7 / 1 0.3 / 0.5

6 0.9 / 0.81 0.8 / 0.72 0.7 / 0.58 0.8 / 0.67

7 0.4 / 0.33 0.4 / 0.23 0.6 / 0.5 0.9 / 0.82

8 1 / 0.9 1 / 0.9 1 / 0.9 1 / 0.77

9 1 / 0.9 1 / 0.77 1 / 0.9 1 / 1

10 0.6 / 0.35 0.2 / 0.2 0.4 / 0.4 0.6 / 0.43

11 0.5 / 1 0.3 / 0.6 0.4 / 0.8 0.5 / 0.83

12 0.8 / 0.72 0.7 / 0.78 0.7 / 0.78 0.8 / 0.72

13 0.5 / 0.83 0.8 / 1 0.5 / 1 0.7 / 0.87

14 1 / 0.83 1 / 1 1 / 0.83 1 / 0.9

15 0.4 / 0.67 0.6 / 0.5 0.7 / 0.64 0.6 / 0.6

Total 0.68 0.68 0.73 0.77

Table 1: Recall and Precision rates for the compared trackers.

we proposed an adapted motion model to predict the loca-

tion of new particles at the next time instant. We showed

that our proposed tracking scheme outperforms the Con-

densation and Auxiliary Particle Filtering algorithms when

the hands and the head are the tracked body features. We

used a variant of the LCSS algorithm to acquire a distance

measure for our trajectory representations and we used this

measure in order to define a kernel for the RVM classifier

that was used for recognition. Finally, we presented classi-

fication results on real image sequences that illustrated the

superiority of the representations acquired by the proposed

tracking scheme.
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