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Abstract

Blind deblurring consists a long studied task, however
the outcomes of generic methods are not effective in real
world blurred images. Domain-specific methods for deblur-
ring targeted object categories, e.g. text or faces, frequently
outperform their generic counterparts, hence they are at-
tracting an increasing amount of attention. In this work, we
develop such a domain-specific method to tackle deblurring
of human faces, henceforth referred to as face deblurring.
Studying faces is of tremendous significance in computer vi-
sion, however face deblurring has yet to demonstrate some
convincing results. This can be partly attributed to the com-
bination of i) poor texture and ii) highly structure shape that
yield the contour/gradient priors (that are typically used)
sub-optimal. In our work instead of making assumptions
over the prior, we adopt a learning approach by inserting
weak supervision that exploits the well-documented struc-
ture of the face. Namely, we utilise a deep network to per-
form the deblurring and employ a face alignment technique
to pre-process each face. We additionally surpass the re-
quirement of the deep network for thousands training sam-
ples, by introducing an efficient framework that allows the
generation of a large dataset. We utilised this framework
to create 2MF 2, a dataset of over two million frames. We
conducted experiments with real world blurred facial im-
ages and report that our method returns a result close to
the sharp natural latent image.

1. Introduction
Blind deblurring is the task of acquiring an estimate of

the sharp latent image given a blurry image as input. No

single algorithm for deblurring all objects exists; the task

is notoriously ill-posed. To that end, methods that exploit

domains-specific knowledge have emerged for deblurring

targeted categories of objects, e.g. text or faces. Similarly,

the focus of this work is face deblurring; we argue that ex-

ploiting domain-specific knowledge can lead to superior de-

blurring results, especially for the human face that presents

a highly structured shape. Despite the fact that the human

face is among the most studied objects in computer vision

with significant applications in face recognition, computer

graphics and surveillance, face deblurring has not received

much attention yet.

Deblurring has long been studied ([42, 7, 28, 32, 34]),

however the results are far from satisfactory ([26]) when

it comes to real world blurred images. As illustrated in

Fig. 1 the result from state-of-the-art methods in real world

blurred images (row 2) is far worse than the synthetically

blurred images (row 1). The difficulty in real world blurred

images can be attributed to the non-linear functions in-

volved in the imaging process, like lens saturation, depth

variation, lossy compression. Nevertheless, optimisation-

based deblurring techniques ([33, 28, 17, 34]) have re-

ported some progress, credited to a meticulous choice of

priors along with some optimisation restrictions ([28, 35]).

Apart from the generic deblurring methods which are ap-

plied to all objects ([28, 17, 35]), there are also methods

that utilise domain-specific knowledge, e.g. text or face pri-

ors ([33, 32]). Domain-specific methods frequently outper-

form their generic counterparts due to their stronger form of

supervision.

The human face includes some characteristics, e.g. fairly

restricted shape, that allow a stronger form of supervision.

To the best of our knowledge, the method of [32] is cur-

rently the only method that explicitly models the blurring

for the human face. The authors’ motivation relies in cap-

italising on the restricted facial shape to guide their opti-

misation. Their method computes the external contour of

the face and matches it with an exemplar image; then the

contour of the exemplar match is used as a prior. The con-

tour matching restricts the usage of the method since a) it is

computationally demanding to compare each image against

a dataset, b) the matching is inaccurate for poses that do not

exist in the dataset. In contrast to [32], most of the generic

methods yield sub-optimal results in face deblurring, since

they include either a prior based on the gradient or a con-

tour/edge detection step. The highly structured facial shape

along with the poor texture constitute the reasons why those

generic methods are sub-optimal.

In our work, instead of ‘intuitively’ adding priors or
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(a) Blurred image (b) Babacan et al. [2] (c) Zhang et al. [45] (d) Pan et al. [32] (e) Pan et al. [33] (f) Pan et al. [34] (g) Original image

Figure 1: (Preferably viewed in colour) Two sample facial images as deblurred by the existing methods. The one on the top

row was synthetically blurred with a uniform kernel, while the one on the bottom is a real world blurred image. Evidently,

the existing methods do not yield a sharp natural facial image as we would expect. The difference between deblurring results

depending on the type of blur as emphasized in [26] can be visually confirmed.

making other assumptions, we embrace a learning-based

approach (by capitalising on the recent developments on

Convolutional Neural Networks (CNN)), guided by a weak

supervision to express the restriction for the shape struc-

ture. The last few years the introduction of elaborate bench-

marks [36] allowed CNN methods to surpass the perfor-

mance of the hand-crafted linear optimisation techniques,

e.g. in detection [16, 4], model-free tracking [31], classi-

fication [20]. The core component of our architecture is

the state-of-the-art residual network (ResNet), which is dis-

criminatively trained from training samples of sharp/blurry

facial images. A form of weak supervision is introduced by

aligning predefined landmark points in the face. This pre-

processing step allows the network to encapsulate our re-

striction for a particular facial structure. We do not enforce

a strict alignment as often performed in the landmark lo-

calisation techniques ([23, 47]), since warping creates non-

linear artifacts. Additionally, the blurring process might

lead to an ambiguity in the exact positioning of the land-

marks, hence deblurring might not be as trivial in case of

strict alignment. However, in our experimentation the local-

isation works sufficiently well for our purpose of selecting

and pre-processing the region to be fed in the network.

A constraint of the (supervised) learning-based methods

is their dependency on massive amounts of training sam-

ples. Collecting and annotating such datasets ([36, 6, 46,

39]) is expensive and laborious, hence there is an increas-

ing effort to create datasets semi-automatically [39, 37] or

almost in an unsupervised manner [6]. We rectify that

for our task by devising an automatic framework that al-

lows the creation of a large dataset with human faces from

videos. The framework can select the appropriate frames

completely automatically, however in our case a user veri-

fied that a face is included in the last frame of each video.

We have utilised this framework to create 2MF 2, a dataset

with millions of facial frames. 2MF 2 consists of over a

thousand video clips with an accumulated number of 2,1

million frames, which constitutes 2MF 2 the largest dataset

of video frames for faces1.

Our contributions can be summarised as:

• We introduce a network architecture that performs face

deblurring. We validated the trained model in dif-

ferent experiments including synthetically blurred im-

ages, images with simulated motion blur as well as low

resolution real world blurred images.

• We introduce an automatic framework that allows the

collection of large datasets in a time-efficient manner.

We have utilised this framework to create the 2MF 2

dataset, which consists of more than 2 million frames.

In the following Sections we summarise the related

methods in Sec. 2; develop our method in Sec. 3; describe

the framework we have devised in Sec. 4 and finally exper-

imentally validate our method in Sec. 5.

2. Related Work
Blur is typically modelled as the convolution of a blur

kernel Kg with a (latent) sharp image I , i.e.

Ibl = ψ(I ∗Kg + ε) (1)

with I ∈ R
h1×w1 , Kg ∈ R

h2×w2 (h2 � h1, w2 � w1),

while Ibl ∈ R
a×b denotes the blurry image with a = h1 −

h2+dh, b = w1−w2+dw. The dh, dw depend on the type

1The alternatives of 300VW [39] and Youtube Faces [44] include 250

and 620 thousand frames respectively. Furthermore, the Youtube Faces

is not appropriate for discriminative learning, since many of the clips are

already blurred and of low resolution.
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of convolution (‘∗’) chosen. The symbol of ε represents

the noise term, ψ a function that models additional non-

linear artifacts, e.g. lossy compression, saturated regions,

non-linear sensor response. Retrieving the sharp image is

an ill-posed problem, thus some strong assumptions/priors

are required. A simple illustration of the ill-posed nature of

the task is that for any fixed solution Ĩ, K̃g of Eq. 1, the

family of Ĩ ·λ, K̃g

λ is also a valid solution, which is referred

to as the scaling ambiguity.

Blind deblurring methods can be divided into three cate-

gories, based on the approach for obtaining the sharp image

(estimation of the latent image in Eq. 1). Each category in-

cludes an extensive literature, hence only the most closely

related to our work are summarised below. For a more thor-

ough study, the interested reader is redirected to [26].

Synthesis-based: Instead of solving the optimisation,

these methods typically include a heuristic for ’guessing’

the blurry parts and then apply a synthesis-based replace-

ment in the blurry regions. The majority of those works

([8, 41]) implicitly assume that i) there are multiple frames

with approximately the same content and that ii) there ex-

ists a sharp patch that matches in content the respective

blurry one. These two strong assumptions combined with

the poor texture in a face (which weakens the heuristic to

detect sharp patches), result in not using synthesis-based

methods for face deblurring.

Optimisation-based: Based on Eq. 1 and assuming ψ
is the identity function, this class of methods formulates the

problem as the minimisation of a cost function of the format

Ĩ = argmin
I

(||Ibl − I ∗Kg||22 + f(Ibl)). (2)

with f(Ibl) a set of priors based on generic image statis-

tics or domain-specific priors. These methods are applied

in a coarse-to-fine manner, while they estimate the (dense)

kernel and then perform a non-blind deconvolution.

The estimation of the blur kernel Kg and the latent im-

age I occur in an alternating manner, which might lead to a

blurry Ĩ if a joint MAP (Maximum a posteriori) optimisa-

tion is followed ([28]). Levin et al. suggest instead to solve

a MAP on the kernel with a gradient-based prior based nat-

ural image statistics. More recently, Pan et al. in [33] apply

an �0 norm as a sparse prior on both the intensity values

and the image gradient for deblurring text. HaCohen et al.
in [17] support that the gradient prior alone is not sufficient,

and introduce a prior that locates dense correspondences of

the blurry image with a similar sharp image, while they it-

eratively optimise over the correspondence, the kernel and

the sharp image estimation. A strong requirement of their

algorithm is the similar reference image, which is not al-

ways available. A generalisation of [17] is the work of [32],

which also requires an exemplar dataset to locate an image

with a similar contour. However, in [32] the authors restrict

the task to face deblurring to profit from the shape structure.

A search in a dataset with exemplar images is performed

to locate an image with a similar contour as the test im-

age. The gradient of the exemplar image provides the initial

blind estimation iterations, which leads to an improved per-

formance. Unfortunately, the noisy contour matching pro-

cess along with the obligatory presence of a similar contour

in the dataset limit the applications of this work.

Even though the optimisation-based methods have

proven to work well with synthetic blurs, they do not gen-

eralise well in real world blurred images ([26]) due to the

strong assumptions of invariance and the simplified format

of ψ. Another common attribute of these methods is the it-

erative optimisation procedure; they are executed in a loop

hundreds or even thousands of times to return a deblurred

image, which classifies these methods as computationally

intensive; some of them require hours for deblurring a sin-

gle image ([5]).

Learning-based: With the resurrection of neural net-

works, few approaches for learning a network to perform

deblurring have emerged. The experimental superiority of

neural networks as function approximators consists a strong

motivation for relying on neural networks for deblurring.

The non-linear units allow us to model non-linear functions

ψ or spatially varying blur kernels. Obtaining a sharp image

in this case is defined as a function Ĩ = φ(Ibl,p), with p
denoting the hyper-parameters of the method.

Some methods ([21]) learn straight away the function φ
from the data, while others ([40, 5]) learn an estimate and

perform non-blind de-blurring/refinement of the sharp im-

age. In [21], the regularised �2 loss of an up to 15-layer

CNN is minimised for text deblurring. Even though they

report nice results, the text deblurring domain is a struc-

tured but limited class (the sharp text can be represented

as a sequence of binary intensity values). They argue that

the performance can be mainly attributed to the network

that modelled well the text prior, hence it is questionable

whether this would work in more complex object types. Sun

et al. in [40], learn a CNN to recognise few discretised mo-

tion kernels and then perform a non-blind deconvolution in

a dense motion field estimate.

Our method belongs in the learning-based category,

specifically the methods that learn φ from the data. The

combination of such a learning method with weak supervi-

sion through landmark localisation has not been performed

before for deblurring.

3. Method
In this Section, we portray our learning-based method for

face deblurring. We develop our way for providing the re-

quired input for the network (pairs of blurry/sharp images).

Sequentially we introduce the deep architecture that we em-

ployed, along with the pre-processing step to take advan-
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tage of the facial structure through landmark localisation.

Finally, we refer to the inference steps for an unseen image.

3.1. Notation

A sparse shape of n fiducial (landmark) points is denoted

as l for the image I with l = [[�1]
T , [�2]

T , ..., [�n]
T ]T , with

�j = [xj , yj ]
T , j ∈ [1, n], xj , yj ∈ R the Cartesian coor-

dinates of the jth point. When referring to a random image

I , we hypothesise that I contains a human face, of which

the facial sparse shape l is available.

3.2. Training pair creation

The dominant way to discriminatively train a network is

by feeding pairs of input and label samples; the labels are

used to compute the error and improve the network perfor-

mance. In our case the input is the blurry image, the la-

bel is the corresponding sharp image. Obtaining real world

blurred images with a dense correspondence with a similar

sharp image is not trivial, especially if thousands such pairs

are required to train a deep network. Hence, following sim-

ilar methods ([40, 5]) we resort to simulating the blur from

sharp images.

A synthetically blurred image Ibl is generated by con-

volving the original sharp image I with a blur kernel (simu-

lating Eq. 1). A unique blur kernel is created for every input

image to allow for the maximum variation in the number of

blur kernels that have emerged during the training. The blur

kernel is chosen arbitrarily in each step between a Gaus-

sian blur kernel and a motion blur kernel, both with varying

deviation and spatial support.

3.3. Network

Following the reasoning of [21] that demonstrated the

success of a 15-layer CNN for the simpler task of text de-

blurring, we employ a network with several convolutional

layers to allow a richer representation to be learnt. A

modified version of the residual network (ResNet) archi-

tecture of [20] is used as the learning component in our

method. ResNet consists of a number of ‘blocks’; each

‘block’ is a sequence of convolutional layers, followed by

Rectified Linear Units, with identity connections connect-

ing the blocks. This simple architecture has demonstrated

state-of-the-art performance in several tasks, while there is

an effort to establish their dominance from a theoretical per-

spective ([18]).

We modify the original ResNet by disabling all the max

pooling operations, while skip connections ([19]) are added

in the 2nd and 3rd ResNet blocks. A batch normalisation is

added in every skip connection to ensure a common scale; a

linear mapping is learnt from the high-dimensional space of

the connections to the low dimensional space of the output

image shape. The huber loss of [22] is utilised for our loss

function. This is a continuous and differentiable function

with

Lh(x) =

{
||x||1 − 0.5 ||x||1 > 1

0.5||x||22 otherwise
(3)

Namely, the loss function of our network is:

L = Lh(φ(Ibl)− I) (4)

3.4. Inference

The single input during inference is the blurry image Ibl,
i.e. no latent image as ground-truth is required. The blurry

image is pre-processed to obtain the appropriate region of

the image to be fed into the network. Concretely, an off-

the-shelf face detector is employed to acquire the bounding

box; the landmarks are localised through a localisation tech-

nique. The image is rescaled based on the size of the land-

marks, while a rectangular area around the face (landmarks)

is cropped, which is the area that is fed into the network

(only the feed-forward part of which is required).

Among the most successful face detectors is the de-

formable part models (DPM) detector [15, 30]. DPM learn

a mixture of models which aim to detect faces in different

poses. Each model implicitly considers some parts which

are allowed to deform with a quadratic cost. The cost func-

tion of DPM contains an appearance (unary) term along

with a pairwise (deformation) term plus a bias, all of which

are learned with a discriminative training procedure. The

crude bounding box of the DPM consists the initialisation

of a landmark localisation technique [47, 23, 9]. Both tech-

niques [47, 23] belong to the regression based discrimi-

native methods for landmark localisation. These methods

learn to regress from the pixel intensities (with the former

extracting hand-crafted SIFT features, while the latter of

Kazemi et al. rely on data driven learned features) to the

sparse shape coordinates. Both methods have proven very

accurate in a number of benchmarks [37, 9], hence we adopt

the method of Kazemi et al. due to a publicly available fast

implementation [24].

4. Data mining
In this Section, we describe our method for mining

frames from videos in a semi-supervised manner. A number

of videos are crawled using the API’s of web sources, e.g.

Youtube; each video consists of few thousand frames and is

analysed independently to determine the frames, if any, that

are appropriate for the task. In our case, we aim at utilising

the videos with dynamically moving faces. We defined the

following three requirements for a video to be included in

the training:

1. a face is present in each frame,

2. the face is not completely static throughout the video,
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Figure 2: Sample frames from the 2MF 2 dataset along with the sparse shape denoted with white dots.

3. the video includes real world images, not synthetically

generated ones.

To that end, we have devised an efficient, automatic frame-

work to perform this task; the steps are summarised in

Alg. 1.

The face detector of [15, 30] is applied to the first frame

of the video. If there is no detection, the video is dis-

carded, otherwise the bounding box obtained initialises a

model-free tracker. Given the state of the first frame, a

model-free tracker determines the state of the subsequent

frames, while no prior information about the object is pro-

vided. The tracker should adapt to any appearance, defor-

mation changes, which constitutes a very challenging task,

thus an immense amount of diverse techniques has been

proposed. In our work, we utilise the SRDCF tracker [11],

which provides a decent trade-off of accurate deformable

tracking quality and computation complexity [9].

Even though SRDCF is robust to a wide range of varia-

tions, an additional criterion of overlap per frame with the

bounding box of the DPM detector is performed. Specifi-

cally, we require the bounding boxes of the tracker and the

detector to have at least a 50% overlap (intersection over

union overlap) in half of the frames, otherwise the clip is

discarded. Subsequently, the landmark localisation tech-

nique of [47] is employed to obtain the sparse shape for each

face. Due to the object-agnostic nature of the model-free

tracker, we eliminate the few erroneous fittings by learn-

ing a statistical function fcl. We utilise a linear patch-based

SVM [10] as the classifier fcl(I, l) which accepts a frame

I along with the respective fitting l and returns a binary de-

cision on whether this is an acceptable fitting. The classifier

fulfils the first requirement for every frame, i.e. that a face

is present.

The requirement of non-static faces is fulfilled by com-

puting the optical flow [14] in the accepted frames and re-

quiring that there is at least a pixel movement from frame to

frame. If the average movement per pixel is above a thresh-

old, the video is discarded.

This framework can be adapted for different type of ob-

jects with two minor modifications. The modifications are:

(i) the face detection module, which can be trivially re-

placed by a generic detector like [16], (ii) the classifier mod-

ule for the removal of erroneous fittings, which should be

trained for the task, e.g. to accept the whole bounding box

instead of the patch-based SVM utilising the landmarks.

Algorithm 1: The automatic framework as introduced

in Sec. 4 to create the 2MF 2 dataset.

Input : Video frames V = [I(1), I(2), . . . , I(M)]
Output : Accepted frames F , Landmarks L
Initialize: F = [],L = [], cnt over = 0
/* detection in the first frame. */

1 faces = face-detection(I(1))

2 if length(faces) == 0 then
3 return F ,L
4 end
/* bb: tracker’s bounding box. */

5 bb = faces[0]
/* main tracking loop. */

6 for idx = 1 to M do
7 faces = face-detection(I(idx))

8 bb = track(I(idx), bb)

9 if length(faces) > 0 and
compute overlap(faces[0], bb) > 0.5 then

10 cnt over+ = 1
11 end
12 l(idx) = landmark localisation(I(idx), bb)

/* fcl: classifier to reject the
erroneous fittings. */

13 accept fitting = fcl(I
(idx), l(idx))

14 if accept fitting then
15 append(F , I(idx))

16 append(L, l(idx))

17 end
18 end
19 if cnt over < M/2 then
20 return [], []
21 end
22 return F ,L

The aforementioned framework was utilised to create

2MF 2 (2 million frames of faces). 2MF 2 consists of 1150

videos, with 2,1 million accepted frames that contain a hu-

man face. Exemplar frames of few videos are visualised
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in Fig. 2, while an accompanying video depicting accepted

frames along with the derived sparse shape can be found in

https://youtu.be/Mz0918XdDew.

5. Experiments
In this Section we develop few implementation details,

summarise a validation experiment for our method with

a simple Gaussian blur, compare with the state-of-the-art

methods for deblurring in two different scenarios, which in-

clude motion blur and real world blurred images.

5.1. Implementation details

The network was implemented in Tensorflow [12] using

the Python API; the pre-trained weights of the network were

obtained from the original ResNet paper [20], while the ma-

jority of the rest functionality was provided by the Menpo

project [1].

Figure 3: (Preferably viewed in colour) Visual results for

the self evaluation experiment. On the first row is the orig-

inal image, on the middle the blurred image and the last

consists of the outputs of our network.

The shapes of the public datasets with 68 facial

points mark-up annotation, i.e. IBUG [38], HELEN [27],

LFPW [3] and the 300W [37] were utilised a) for training

the classifier of Sec.4, b) as additional input to the network

for training. Few images with severe distortions were ex-

cluded from the training set; the frames of 2MF 2 were sub-

sampled and one every 2nd frame was used for the training.

The training steps of the classifier were the follow-

ing: (a) The positive training samples were extracted from

the 300W trainset; perturbed versions of the annotations

of those images along with selected images of Pascal

dataset [13] were used for mining the negative samples. (b)

A fixed size patch was extracted from each positive sample

around each of the n landmark points; SIFT [29] were com-

Image type/Quality metric PSNR SSIM

Blurred 21.84 0.52

Deblurred 22.42 0.57

Table 1: Image quality metrics for the validation of the net-

work’s outputs.

puted per patch. For each negative sample a random pertur-

bation of the ground truth points was performed to create an

erroneous fitting prior to extracting the patches. (c) A linear

SVM was trained, with its hyper-parameters cross-validated

in withheld validation frames.

For training our network, we used a mini-batch size of

16; SGD with an exponentially decreasing learning rate

(initial value of 0.0003), and decreasing by a factor of 0.5

every 15k iterations. The final training consisted of 70k it-

erations and was completed in a single-core GPU machine.

It should be noted that each frame was loaded only once

in the network, to avoid over-fitting the training data. Our

method functions at 6 fps in a GPU Titan X machine.

5.2. Self evaluation

Seventy images of AFLW [25] were used to validate the

outcome of the network. The images were synthetically

blurred with Gaussian noise, while the standard visual qual-

ity metrics of PSNR and SSIM [43] were employed to com-

pare the blurred images with the outputs of our network.

The quality metrics are reported in Tab. 1 and few indica-

tive images are visualised in Fig. 3. Both the qualitative and

quantiative metrics indicate that the method indeed works

well under Gaussian blur.

5.3. Simulated motion blur

To extend the simple Gaussian blur, an experiment that

simulates motion blur observed in real world blurred im-

ages was conducted (this process of simulating the motion

blur was only performed during testing). A set of sequential

frames of a high frame rate video are averaged and simu-

late the movement of the person. The averaging creates the

effect of a dynamic movement, while the middle frame of

the averaging can be considered as the ground-truth frame.

The edge cases of this simulation consist of (a) no move-

ment case, (b) extreme movement case. The former case

was avoided by considering the optical flow of each two

sequential frames and ensuring there is at least some move-

ment in the scene from frame to frame. For the latter case,

the PSNR of the averaged frame was compared against the

middle frame (ground-truth) and the frames below a thresh-

old were discarded as too noisy.

In our experiment, four videos of the 300VW

dataset [39] were utilised. All the videos of 300VW include

a single person per video, while they are all over 25 fps.
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(a) GT (b) Blurred (c) [2] (d) [45] (e) [32] (f) [33] (g) [34] (h) [5] (i) Proposed

Figure 4: (Preferably viewed in colour) Qualitative results for the simulated blur experiment.

(a) Blurred image (b) [2] (c) [45] (d) [33] (e) [32] (f) [34] (g) [5] (h) Proposed

Figure 5: (Preferably viewed in colour) Some images from the dataset of Lai et al. [26]. Notice that our method avoids the

over-smoothing of other methods, e.g. [34]. Even though it deblurs the texture of the skin in a decent way, it sometimes

suffers in localising the iris of the eye.

For each one of the videos employed, a different number

of frames were averaged, ranging from 7 to 11 sequential

frames. Also, the recent deblurring methods of Babacan et
al. [2], Zhang et al. [45], Pan et al. [32], Pan et al. [33],

Pan et al. [34] and Chakrabarti [5] were also included in the

experiment. In Fig. 4, the qualitative results of frames with

simulated blur are visualised, while in Tab. 2 the quantita-

tive metrics are reported.

5.4. Real world blurred images

Providing a method that works for real world blurred im-

ages consists a strong motivation for our work. Unfortu-

nately, comparing with real world blurred images comes at

the cost of not having any ground-truth image2. Therefore,

2Capturing a real world blurred image and a sharp one with a dense cor-

respondence requires an elaborate hardware/software setup. An approxi-

mation can be considered by capturing videos with a high frame rate cam-

era (the middle frame can be used as the ground-truth), however this still

does not guarantee the simulation to real world blurred image.
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Figure 6: (Preferably viewed in colour) Qualitative results in real world blurred images from arbitrary videos. On the top

row, the original frame (there is no ground-truth available); on the second row the output of our method.

Image type/Quality metric PSNR SSIM

Babacan et al. [2] 25.127 0.580

Zhang et al. [45] 23.303 0.521

Pan et al. [32] 21.304 0.476

Pan et al. [33] 22.492 0.473

Pan et al. [34] 23.972 0.512

Chakrabarti [5] 23.388 0.420

Proposed 23.950 0.558

Table 2: Image quality metrics for the simulated motion

blur experiment of Sec. 5.3.

we opted to report the visual comparisons here.

In Fig. 5, the comparisons among different methods are

provided for the facial images of Lai et al. [26]. Addi-

tionally, to further emphasise the merits of the proposed

method, we have gathered few images from internet sources

in both indoors and outdoors scenes. The faces in those

frames are of quite low-resolution, while there is rapid

movement in the scne. The qualitative results are visualised

in Fig. 6.

6. Discussion and conclusions
In this work, we introduced a new method for deblurring

facial images through inserting a weak supervision in the

system, but not explicitly enforcing a strict alignment. The

architecture that we have implemented is a modified ver-

sion of the strong performing ResNet. We have also devel-

oped an automatic framework for large dataset creation with

off-the-shelf tools from the literature. Moreover, we have

created 2MF 2, a dataset that includes more than one thou-

sand clips containing over two million frames of faces. The

dataset was utilised to perform the training of our network.

A number of experiments are conducted to validate the per-

formance of our method and compare against the state-of-

the-art deblurring methods.

7. Acknowledgements

G. Chrysos was supported by EPSRC DTA award at Im-

perial College London. S. Zafeiriou was partially funded by

the EPSRC Project EP/N007743/1 (FACER2VM).

References
[1] J. Alabort-i-Medina, E. Antonakos, J. Booth, P. Snape,

and S. Zafeiriou. Menpo: A comprehensive platform for

parametric image alignment and visual deformable mod-

els. In Proceedings of ACM International Conference
on Multimedia (ACM’MM), pages 679–682. ACM, 2014.

[Code: http://www.menpo.org/, Status: Online; ac-

cessed 9-November-2016]. 6

[2] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsaggelos.

Bayesian blind deconvolution with general sparse image pri-

ors. In Proceedings of European Conference on Computer
Vision (ECCV), pages 341–355. Springer, 2012. 2, 7, 8

[3] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-

mar. Localizing parts of faces using a consensus of exem-

plars. IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 35(12):2930–2940, 2013. 6

[4] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-

outside net: Detecting objects in context with skip

2022



pooling and recurrent neural networks. arXiv preprint
arXiv:1512.04143, 2015. 2

[5] A. Chakrabarti. A neural approach to blind motion deblur-

ring. In Proceedings of European Conference on Computer
Vision (ECCV), pages 221–235. Springer, 2016. 3, 4, 7, 8

[6] J. Charles, T. Pfister, M. Everingham, and A. Zisserman.

Automatic and efficient human pose estimation for sign

language videos. International Journal of Computer Vi-
sion (IJCV), 110(1):70–90, 2014. [Data: https://www.
robots.ox.ac.uk/˜vgg/data/pose/, Status: On-

line; accessed 9-November-2016]. 2

[7] C.-M. Cho and H.-S. Don. Blur identification and image

restoration using a multilayer neural network. In Neural Net-
works, 1991. 1991 IEEE International Joint Conference on,

pages 2558–2563. IEEE, 1991. 1

[8] S. Cho, J. Wang, and S. Lee. Video deblurring for hand-

held cameras using patch-based synthesis. ACM Trans. Gr.,
31(4):64, 2012. 3

[9] G. G. Chrysos, E. Antonakos, P. Snape, A. Asthana, and

S. Zafeiriou. A comprehensive performance evaluation of

deformable face tracking “in-the-wild”. International Jour-
nal of Computer Vision (IJCV), 2017. 4, 5

[10] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995. 5
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