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Abstract—Automatic affect recognition is a challenging task due
to the various modalities emotions can be expressed with. Applica-
tions can be found in many domains including multimedia retrieval
and human–computer interaction. In recent years, deep neural net-
works have been used with great success in determining emotional
states. Inspired by this success, we propose an emotion recognition
system using auditory and visual modalities. To capture the emo-
tional content for various styles of speaking, robust features need
to be extracted. To this purpose, we utilize a convolutional neural
network (CNN) to extract features from the speech, while for the
visual modality a deep residual network of 50 layers is used. In ad-
dition to the importance of feature extraction, a machine learning
algorithm needs also to be insensitive to outliers while being able to
model the context. To tackle this problem, long short-term mem-
ory networks are utilized. The system is then trained in an end-to-
end fashion where—by also taking advantage of the correlations
of each of the streams—we manage to significantly outperform,
in terms of concordance correlation coefficient, traditional ap-
proaches based on auditory and visual handcrafted features for the
prediction of spontaneous and natural emotions on the RECOLA
database of the AVEC 2016 research challenge on emotion
recognition.

Index Terms—End-to-end learning, emotion recognition, deep
learning, affective computing.
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I. INTRODUCTION

EMOTION recognition is an essential component towards
complete interaction between human and machine, as af-

fective information is fundamental to human communication.
Applications of emotion recognition can be found in different
domains. For instance, emotion states can be used to monitor
and predict fatigue state [1]. In speech recognition, emotion
recognition can be used in call centers, where the goal is to
detect the emotional state of the caller and provide feedback for
the quality of the service [2].

The task of recognizing emotions is challenging because hu-
man emotions lack of temporal boundaries and different indi-
viduals express and perceive emotions in different ways [3].
Although current work around emotion recognition was mostly
concentrated around inferring the emotion of a subject out of
its speech, other modalities such as visual information (facial
gestures) have also been used.

With the advent of deep neural networks in the last decade, a
number of groundbreaking improvements have been observed
in several established pattern recognition areas such as object,
speech and speaker recognition, as well as in combined problem
solving approaches, e.g., in audio-visual recognition, and in the
rather recent field of paralinguistics.

Numerous studies have shown the favorable property of these
network variants to model inherent structure contained in the
speech signal [4], with more recent research attempting end-to-
end optimization utilizing as little human a-priori knowledge as
possible [5]. Nevertheless, the majority of these works make use
of commonly hand-engineered features such as Mel-Frequency
Cepstral Coefficients (MFCC), Perceptual Linear Prediction
(PLP) coefficients, and supra-segmental features such as those
used in the series of the ComParE [6] and the AVEC chal-
lenges [7], which build upon knowledge gained in decades of
auditory research and have shown to be robust for many speech
domains.

Recently, however, a trend in the machine learning commu-
nity has emerged towards deriving a representation of the in-
put signal directly from raw, unprocessed data. The motivation
behind this idea is that, ultimately, the network learns an in-
termediate representation of the raw input signal automatically
that better suits the task at hand and hence leads to improved
performance.

In this paper, we study automatic affect sensing using both
speech and visual information in an end-to-end manner. Features

1932-4553 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9449-5339
https://orcid.org/0000-0002-6739-9322
https://orcid.org/0000-0002-5222-1740


1302 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 8, DECEMBER 2017

are extracted from the speech signal using a CNN architecture
designed for the audio channel and from the visual information
using a ResNet-50 network architecture [8]. The output of these
networks are fused together and fed to an LSTM to find the
affective state of individuals. Contrary to the current practices,
where each network is trained individually and the results are
simply fed to a subsequent classifier, our system is trained in an
end-to-end manner. To our knowledge this is the first work in
literature that applies such an end-to-end model for an audio-
visual emotion recognition task. Furthermore, we suggest using
explicit maximization of the concordance correlation coefficient
(ρc ) [9] in our model and show that this improves performance
in terms of emotion prediction compared to optimizing the mean
square error objective, which is traditionally used. Finally, by
further studying the activations of different cells in the recurrent
layers, we find the existence of interpretable cells, which are
highly correlated with several prosodic and acoustic features
that were always assumed to convey affective information in
speech, such as the loudness and the fundamental frequency. A
preliminary version of this work was presented in [10], where
only the raw speech waveform was used. We extend this work by
considering also the visual modality in an end-to-end manner.

To show the benefit of our proposed multimodal model,
we evaluated it in the REmote COLlaborative and Affective
(RECOLA) database. A part of this database was used for the
Audio/Visual Emotion Challenge and Workshop (AVEC) 2016.
Our model is trained and tested using the whole database. Re-
sults show that the multimodal model benefits from the two
modalities by producing better results for arousal and valence
as the speech and visual networks, respectively. We compare the
unimodal and the multimodal models using results obtained in
the AVEC 2016 challenge. Only the papers that used the audio,
visual or audiovisual modalities are considered. In order to per-
form a fair comparison we apply the proposed method on the test
set of the AVEC challenge. As shown by our experiments, our
unimodal models produce the best results for both the speech
and visual modalities.

The remainder of the paper is organized as follows. Section II
reports related studies on emotion recognition using multiple
modalities with DNNs. Section III introduces the multimodal
model architecture. Section IV describes the dataset used for
the experiments. Section V presents the experiments performed
and reports the results. Finally, Section VI concludes this paper.

II. RELATED WORK

The performance of pattern recognition models has been
greatly improved with DNNs. Recently, a series of new neural
network architectures have been revitalized, such as autoencoder
networks [11], Convolutional Neural Networks (CNNs) [12],
Deep Belief Networks (DBNs) [13] or memory enhanced neural
network models such as Long Short-Term Memory (LSTM) [14]
models.

These models have been used in various ways for multi-
modal recognition tasks such as in speech recognition. For in-
stance, Ngiam et al. [15] proposed a Multimodal Deep Autoen-
coder (MDAE) network to extract features from audio and video

modalities. First, a bimodal DBN was trained to initialize the
deep autoencoder and then the MDAE was fine-tuned to min-
imize the reconstruction error of both modalities. In another
study, Hu et al. [16] proposed a temporal multimodal network
named Recurrent Temporal Multimodal Restricted Boltzmann
Machine (RTMRBM) to model audiovisual sequences of data.
Another task that DNNs have also been used for is gesture
recognition. In [17], the authors use skeletal information and
RGB-D images to recognize gestures. More particularly, they
use DBNs to process skeleton features and a 3D CNN for the
RGB-D data. Temporal information is considered by stacking a
Hidden Markov Model (HMM) on top.

The emotion recognition domain has highly benefited with
the advent of DNNs. Some works explore deep learning ap-
proaches for speech emotion recognition. For instance, Han
et al. [18] uses hand-crafted features to feed a DNN that pro-
duces a probability distribution over categorical emotion states.
From these probabilities they compute statistics from the whole
utterance and finally, they perform classification by training an
extreme learning machine. Lim et al. [19] after transforming
the data using short time Fourier transform, they used CNNs
to extract high-level features. In order to capture the tempo-
ral structure LSTMs were used. In a similar work, Trigeorgis
et al. [10] proposed an end-to-end model that uses a CNN to
extract features from the raw signal and then an LSTM network
to capture the contextual information in the data.

Other works try to solve the emotion recognition task by using
facial information with DNNs. For example, Huang et al. [20]
proposed a transductive learning framework for image-based
emotion recognition by combining DNNs and hypergraphs.
More particularly, after the DNN was trained for the emotion
classification task, each node in the last fully connected layer
was considered as an attribute and used to form a hyperedge in
a hypergraph. In another study, Ebrahimi et al. [21] combined
CNNs and RNNs to recognize categorical emotions in videos.
A CNN was first trained to classify static images containing
emotion. Then, the extracted features from the CNN were used
to train an RNN to produce an emotion for the whole video.

Combining audio and visual modalities has great success for
recognizing emotions. Some studies exploited the beneficial
features DNNs can extract [22]–[24]. Kim et al. [23] proposed
four different DBN architectures with one of them being a basic
2-layer DBN, and the others as a variation of it. The basic archi-
tecture first learns the features of the audio and video separately;
after which it concatenates these features from the two modal-
ities, it uses them to learn the second layer. The features were
evaluated using a Support Vector Machine (SVM). In another
study, Kahou et al. [24] proposed to combine modality-specific
DNNs to recognize categorical emotions in video. A CNN was
used to analyze the video frames, a DBN to capture audio infor-
mation, a deep autoencoder to model human actions depicted
within the entire scene, and finally a CNN network to extract
features from the mouth of the human. To output a final predic-
tion they used two techniques that gave similar results. The first
is to take the average of modality-specific predictions and in the
second they learned an SVM with an RBF kernel using the con-
catenation features. Another study [25] compared hand-crafted
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features extracted from faces using multi-scale Dense SIFT fea-
tures (MSDF), and features extracted from CNNs to train linear
Support Vector Regression (SVR). The extracted audio features
were the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS). The combination of the features were used to learn
a SVR.

Zhang et al. [26] used a multimodal CNN for classifying emo-
tions with audio and visual modalities. The model is trained in
two phases. In the first phase, the two CNNs are pretrained on
large image datasets and fine-tuned to perform emotion recog-
nition. The audio CNN takes as input the mel-spectrogram seg-
ment of the audio signal and the video CNN takes the face. In
the second phase, a DNN was trained that comprised of a num-
ber of fully-connected layers. The concatenation of the features
extracted by the two CNNs was the input. In another study,
Ringeval et al. [27] use a BLSTM-RNN to capture the contex-
tual information that exists in the multimodal features (audio,
video, physiological) extracted from the data. In a more recent
work, Han et al. [28] propose a strength modeling framework,
which can be implemented as feature-level and decision-level
fusion strategy and comprises of two regression models. The
first model’s predictions are concatenated with the original fea-
ture vector and fed to the second regression model for the final
prediction.

The importance of recognizing emotions motivated the cre-
ation of the Audio/Visual Emotion Challenge and Workshop
(AVEC) [29]. In the 2016 challenge, audio, video and physi-
ological modalities were considered. In one of the submitted
models for the challenge, Huang et al. [30] proposed to use
variants of a Relevance Vector Machine (RVM) for modeling
audio, video and audiovisual data. In another work, a model by
Weber et al. [31] used high-level geometry features for predict-
ing dimensional features. Brady et al. [32] also used low- and
high-level features for modeling emotions. In a different study,
Povolny et al. [33] complemented original baseline features for
both audio and video to perform emotion recognition. Soman-
depalli et al. [34] also used additional features, but only for the
audio modality.

All of the works in the literature make use of commonly
hand-crafted features in the audio or visual modality or in some
cases in both of them. Moreover, they do not always consider
temporal information in the data. In this study, we propose a
multimodal model trained end-to-end that also considers the
contextual temporal information.

III. PROPOSED METHOD

One of the first steps in a traditional machine learning algo-
rithms is to extract features from the data. To extract features
in audio, finite impulse response filters can be used which per-
form time-frequency decomposition to reduce the influence of
background noise [35]. More complicated hand-engineered ker-
nels, such as gammatone filters [36], which were formulated by
studying the frequency responses of the receptive fields of au-
ditory neurons of grass-frogs, can be used as well.

A key component of our model is the convolution operation.
For the audio and visual signals, 1-d and 2-d convolution is used,

TABLE I
THE REPLICATION OF EACH BOTTLENECK ARCHITECTURE OF THE RESNET-50

ALONG WITH THE SIZE OF THE FEATURES MAPS OF THE CONVOLUTIONS

Bottleneck
layer

Replication Number of feature maps
(1 × 1, 3 × 3, and 1 × 1)

1st 3 64, 64, 256
2nd 4 128, 128, 512
3rd 6 256, 256, 1024
4th 3 512, 512, 2048

respectively.

(f � h)(i, j) =
T∑

k=−T

T∑

m=−T
f(k,m) · h(i− k, j −m), (1)

where f(x) is a kernel function whose parameters are learnt
from the data of the task in hand. After the spatial-modeling
of the signals, which removes background noise and enhances
specific parts of the signals for the task in hand, we model the
temporal structure of both speech and video by using a recur-
rent network with LSTM cells. We use LSTM for (i) simplicity,
and (ii) to fairly compare against existing approaches which
concentrated in the combination of hand-engineered features
and LSTM networks. Finally, our model is subsequently trained
with backpropagation by maximizing the concordance correla-
tion loss (3).

A. Visual Network

One of the first steps in the traditional face recognition
pipeline is feature extraction utilizing hand-crafted represen-
tations such as Scale Invariant Feature Transform (SIFT) and
Histogram of Oriented Gradients (HOG). Recently, deep con-
volutional networks have been used to extract features from
faces [26].

In this study, we use a deep residual network (ResNet) of 50
layers [8]. As input to the network we used the pixel intensities
from the cropped faces of the subject’s video. Deep residual
networks adopt residual learning by stacking building blocks of
the form:

yk = F(xk , {Wk}) + h(xk ), (2)

where x and y are the input and output of the layer k,
F(xk , {Wk}) is the residual function to be learned and h(xk )
can be either an identity mapping or a linear projection to match
the dimensions of the function F and the input x.

The first layer of ResNet-50 is a 7 × 7 convolutional layer
with 64 feature maps, followed by a max pooling layer of size
3 × 3. The rest of the network comprises of 4 bottleneck archi-
tectures, where after these architectures a shortcut connection
is added. These architectures contain 3 convolutional layers of
sizes 1 × 1, 3 × 3, and 1 × 1, for each residual function. Tabel I
shows the replication and the sizes of the feature maps for each
bottleneck architecture. After the last bottleneck architecture,
an average pooling layer is inserted.
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B. Speech Network

In contrast to previous work done in the field of paralinguis-
tics, where acoustic features are first extracted and then passed
to a machine learning algorithm, we aim at learning the feature
extraction and regression steps in one jointly trained model for
predicting the emotion.

Input. We segment the raw waveform to 6 s long sequences
after we preprocess the time-sequences to have zero mean and
unit variance to account for variations in different levels of
loudness between the speakers. At 16 kHz sampling rate, this
corresponds to a 96000-dimensional vector, which is the input
to the speech network.

Temporal Convolution. We use F = 40 space time finite im-
pulse filters with a 5 ms window (size of 80) in order to extract
finer-scale spectral information from the high sampling rate sig-
nal (16 kHz).

Max Pooling Across Time. The impulse response of each filter
is passed through a half-wave rectifier (analogous to the cochlear
transduction step in the human ear) and then downsampled to
8 kHz by pooling each impulse response with a pool size = 2.

Temporal Convolution. We use M = 40 space time finite
impulse filters of 500 ms window (size of 4000). These are used
to extract more long-term characteristics of the speech and the
roughness (i.e., irregularities) of the speech signal.

Max Pooling Across Channels. We perform max-pooling
across the channel domain with a pool size of 10. This reduces
the dimensionality of the signal while preserving the necessary
statistics of the convolved signal.

Dropout. Due to the large number of parameters compared
to the number of training examples, we need to perform some
regularization in order for the model not to overfit on the training
data. We opt to use dropout with a probability of 0.5.

C. Objective Function

To evaluate the agreement level between the predictions of
the network and the gold-standard derived from the annotations,
the concordance correlation coefficient (ρc ) [9] has recently
been proposed [7], [37]. Nonetheless, previous work minimized
the MSE during the training of the networks, but evaluated
the models with respect to ρc [7], [37]. Instead, we propose
to include the metric used to evaluate the performance in the
objective function (Lc ) used to train the networks. Since the
objective function is a cost function, we define Lc as follows:

Lc = 1 − ρc = 1 − 2σ2
xy

σ2
x + σ2

y + (μx − μy )2 ,

= 1 − 2σ2
xyψ

−1 (3)

where ψ = σ2
x + σ2

y + (μx − μy )2 and μx = E(x), μy = E
(y), σ2

x = var(x), σ2
y = var(y) and σ2

xy = cov(x,y). Thus, to
minimize Lc (or maximize ρc ), we backpropagate the gradient
of the last layer weights with respect to Lc ,

∂Lc
∂x

∝ 2
σ2
xy (x − μy )

ψ2 +
μy − y
ψ

, (4)

where all vector operations are done element-wise.

D. Network Training

Before training the multimodal network, each modality-
specific network is trained separately to speed up the training
procedure.

Visual Network. For the visual network, we chose to fine-tune
the pretrained ResNet-50 on the database used in this work. This
model was trained on the ImageNet 2012 [38] classification
dataset that consists of 1000 classes. The pretrained model was
preferred over training the network from scratch in order to be
benefited by the features already learned by the model. To train
the network, a 2-layer LSTM with 256 cells each is stack on top
of it to capture temporal information.

Speech Network. The CNN network operates on the raw signal
to extract features from it. In order to consider the temporal
structure of speech, we use two LSTM layers with 256 cells
each on top of the CNN.

Multimodal Network. After training the visual and speech
networks, the LSTM layers are discarded, and only the ex-
tracted features are considered. The speech network extracts
1280-dimensional features while the visual network extracts
2048-dimensional features. These are concatenated to form a
3328-dimensional feature vector and fed to a 2-layer LSTM
with 256 cells each. The weights of the LSTM layers are initial-
ized following Glorot based initialization [39], and the visual
and speech networks are initialized utilizing the weights of the
unimodal models. Finally, the whole network is trained end-to-
end. Fig. 1 shows the multimodal network.

The goal for each unimodal and the multimodal network is to
minimize:

Lc =
Lac + Lvc

2
, (5)

whereLac andLvc are the concordance of the arousal and valence,
respectively.

For the recurrent layers of the speech, visual and multimodal
networks, we segment the 6 s sequences to 150 smaller sub-
sequences to match the granularity of the annotation frequency
of 40 ms.

IV. DATASET

A time-continuous prediction of spontaneous and natural
emotions (arousal and valence) is investigated on speech and
visual data by using the REmote COLlaborative and Affective
(RECOLA) database introduced by Ringeval et al. [40]; the
full dataset is used for the purpose of this study. Four modali-
ties are included in the corpus: audio, video, electro-cardiogram
(ECG) and electro-dermal activity (EDA). In total, 9.5 h of mul-
timodal recordings from 46 French-speaking participants were
recorded and annotated for 5 minutes each, performing a col-
laboration task in dyads during a video conference. Among the
participants, 17 were French, three German and three Italian.
The dataset is split into three partitions – train (16 subjects),
validation (15 subjects) and test (15 subjects) – by stratifying
(i.e., balancing) the gender and the age of the speakers. Finally,
6 French-speaking annotators (three male, three female) anno-
tated all the recordings.
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Fig. 1. The network comprises of two parts: the multimodal feature extraction part and the RNN part. The multimodal part extracts features from raw speech
and visual signals. The extracted features are concatenated and used to feed 2 LSTM layers. These are used to capture the contextual information in the data.

V. EXPERIMENTS AND RESULTS

For training the models, we utilized the Adam optimization
method [41], and a fixed learning rate of 10−4 throughout all
experiments. For the audio model, we used a mini-batch of
25 samples. Also, for regularization of the network, we used
dropout [42] with p = 0.5 for all layers except the recurrent
ones. This step is important, as our models have a large amount
of parameters (≈ 1.5M ) and not regularizing the network makes
it prone on overfitting on the training data.

For the video model, the image size used was 96 × 96 with a
mini-batch of size 2. A small mini-batch is selected because of
hardware limitations. The data were augmented by resizing the
image to size 110 × 110 and randomly cropping it to equal its
original size. This produces a scale invariant model. In addition,
color augmentation is used by introducing random brightness
and saturation to the image.

Finally, for all investigated methods, a chain of post-
processing is applied to the predictions obtained on the develop-
ment set: (i) median filtering (with the size of the window rang-
ing from 0.4 s to 20 s) [7], (ii) centering (by computing the bias
between the gold-standard and the prediction) [43], (iii) scaling
(using the ratio of standard-deviation of the gold-standard and
the prediction as scaling factor) [43] and (iv) time-shifting (by
shifting the prediction forward in time with values ranging from
0.04 s to 10 s), to compensate for delays in the ratings [44]. Any
of these post-processing steps is kept when an improvement is
observed on the ρc of the validation set, and applied then with
the same configuration on the test partition.

A. Ablation Study

Due to memory and training instability concerns [45] it is
not always optimal to use very large sequences in recurrent net-
works. The justification for this can be either the over-blowing of

TABLE II
RESULTS (IN TERMS OF ρc ) ON AROUSAL AND VALENCE AFTER

60 EPOCHS WHEN VARYING THE SEQUENCE LENGTH FOR THE

SPEECH AND VISUAL NETWORKS

Sequence length Arousal Valence

Visual Network

75 0.293 0.276
150 0.363 0.488
300 0.193 0.496

Speech Network

75 0.727 0.345
150 0.744 0.369
300 0.685 0.130

gradients or the very deep unrolled graph which makes training
of such big networks harder.

In order to choose the best sequence length to feed our LSTM
layers, we conducted experiments using sequence lengths of 75,
150, and 300 for both the speech and the visual models. Tabel II
shows the results on the development set. The training for all
models lasted 60 epochs.

For the visual network we expect to get the highest value in
the valence dimension, while for the speech model in the arousal
dimension. Results indicate that the best value for the speech
model is 150 while for the visual model it is 300. Due to the
fact that the difference in performance for the visual network is
small when a sequence length of 150 or 300 is used, we chose
to train the multimodal network with a 150 sequence length.

B. Speech Modality

Results obtained for each method, using all 46 participants,
are shown in Tabel III. In all of the experiments, our model
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TABLE III
RECOLA DATASET RESULTS (IN TERMS OF ρc ) FOR PREDICTION

OF AROUSAL AND VALENCE

Predictor Features Arousal Valence

a. Mean Squared Error Objective

SVR eGeMAPS 0.318 (0.489) 0.169 (0.210)
SVR ComParE 0.366 (0.491) 0.180 (0.178)
BLSTM eGeMAPS 0.300 (0.404) 0.192 (0.187)
BLSTM ComParE 0.132 (0.221) 0.117 (0.152)
Proposed raw signal 0.684 (0.728) 0.249 (0.312)

b. Concordance Correlation Coefficient Objective

BLSTM eGeMAPS 0.316 (0.445) 0.195 (0.190)
BLSTM ComParE 0.382 (0.478) 0.187 (0.246)

Proposed raw signal 0.699 (0.752) 0.311 (0.406)

In parenthesis are the performances obtained on the development set. In a) we optimized
the models w.r.t. MSE whereas in b) w.r.t. ρc.

TABLE IV
RECOLA DATASET RESULTS (IN TERMS OF ρc ) FOR THE PREDICTION OF

AROUSAL AND VALENCE USING THE SPEECH NETWORK

Predictor Features Arousal Valence

Baseline [29] eGeMAPS 0.648 (0.796) 0.375 (0.455)
RVM [30] eGeMAPS −(0.750) −(0.396)
Povolny et al. [33] Mixed −(0.833) −(0.503)
Brady et al. [32] MFCC −(0.846) −(0.450)
Weber et al. [31] eGeMAPS −(0.793) −(0.456)
Somandepalli et al. [34] Mixed −(0.800) −(0.448)
Han et al. [28] 13 LLDs 0.666 (0.755) 0.364 (0.476)

Proposed raw signal 0.715 (0.786) 0.369 (0.428)

In parenthesis are the performances obtained on the development set. A dash is inserted if
the results were not reported in the original papers.

outperforms the designed features in terms of ρc . One may note,
however, that the eGeMAPS [46] feature set provides close
performance on valence, which is much more difficult to predict
from speech compared to arousal. Furthermore, we show that
by incorporating ρc directly in the optimization function of all
networks allows us to optimize the models on the metric (ρc) on
which we evaluate the models. This provides us with i) a more
elegant way to optimize models, and ii) gives consistently better
results across all test-runs as seen in Tabel III.

In addition, we compare the performance on the results ob-
tained for methods that exist in the literature. Most of them have
been submitted to the AVEC 2016 challenge, with 27 partici-
pants Tabel IV. For fair comparison, we test our model on the
same test set. In case performance on the test or validation set
was not reported in the paper, a dash is inserted on. Results show
that our model outperforms the other models in the test set when
predicting the arousal dimension. It is important to notice that
although our model gets a lower ρc on the arousal dimension
for the validation set compared to the baseline of the challenge,
its performance is better on the test set.

1) Relation to Existing Acoustic and Prosodic Features: The
speech signals convey information about the affective state ei-
ther explicitly, i.e., by linguistic means, or implicitly, i.e., by
acoustic or prosodic cues. It is well accepted amongst the

Fig. 2. A visualization of three different gate activations vs. different acoustic
and prosodic features that are known to affect arousal for an unseen record-
ing to the network. From top to bottom: range of RMS energy (ρ = 0.83),
loudness (ρ = 0.73), mean of fundamental frequency (ρ = 0.72).

TABLE V
RECOLA DATASET RESULTS (IN TERMS OF ρc ) FOR PREDICTION OF AROUSAL

AND VALENCE USING THE VISUAL NETWORK

Predictor Features Arousal Valence

Baseline [29] Appearance 0.343 (0.483) 0.486 (0.474)
Baseline [29] Geometric 0.272 (0.379) 0.507 (0.612)
RVM [30] Geometric −(0.467) −(0.571)
RVM [30] Appearance −(0.615) −(0.530)
Video CNN-L4 [33] Mixed −(0.595) −(0.497)
Brady et al, [32] Appearance −(0.346) −(0.511)
Weber et al. [31] Geometric −(0.476) −(0.683)
Weber et al. [31] Appearance −(0.594) −(0.506)
Somandepalli et al. [34] Geometric −(0.297) −(0.612)
Somandepalli et al. [34] Appearance −(0.481) −(0.474)
Han et al. [28] Mixed 0.265 (0.292) 0.394 (0.592)

Proposed raw signal 0.435 (0.371) 0.620 (0.637)

In parenthesis are the performances obtained on the development set. A dash is inserted if
the results were not reported in the original papers.

research community that certain acoustic and prosodic features
play an important role in recognizing the affective state [47].
Some of these features, such as the mean of the fundamen-
tal frequency (F0), mean speech intensity, loudness, as well as
pitch range [46], should thus be captured by our model.

To gain a better understanding of what our speech model
learns, and how this relates to existing literature, we study the
statistics of gate activations in the network applied on an unseen
speech recording. This was accomplished by first finding the
three most correlated features from the 256-dimensional hidden
state vector of the second layer of the recurrent model and the
ground truth. Then, we computed the correlation between each
of these features with hand-crafted features extracted using the
OpenSmile [48] toolkit. We found that our features have a high
correlation with the RMS energy, loudness, and mean of funda-
mental frequency features. A visualization of this correlation is
given in Fig. 2.

C. Visual Modality

The visual modality has been shown to more easily predict the
valence dimension rather than the arousal. Tabel V presents the
best results on the RECOLA dataset for the valence dimension.
Only the work from Han et al. [28] was not submitted to the
AVEC 2016 challenge. The features used for all of the models
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Fig. 3. The predicted and the gold standard for the arousal (a) and valence (b) for the subject with video ID 32, from the test set.

are appearance and geometric. For appearance, Local Gabor Bi-
nary Patterns from Three Orthogonal Planes (LGBP-TOP) fea-
tures were extracted, whereas facial landmarks were extracted
for the geometric features. The input to our network are the raw
pixel intensities from the face extracted from the frames of the
videos using the Multi-Domain Convolutional Neural Network
Tracker (MDNet) [49] tracking algorithm. This algorithm takes
the bounding box of the face in the first frame of the video and
tracks it in all frames.

As expected, the visual modality benefits the models in the va-
lence dimension. The only exception is the Video CNN-L4 [33]
model which performs better in the arousal dimension when ap-
pearance features are used. Our model outperforms all the other
models in the valence dimension for the test set.

D. Multimodal Analysis

Only two other models found in the literature to use both
speech and visual modalities on the RECOLA database. These
are the Output-Associative Relevance Vector Machine Staircase
Regression (OA RVM-SR) [30] and the strength modeling sys-
tem proposed by Han et al. [28]. To have a fair comparison with
the other methods, we utilized both training and validation sets
in the training process. We stopped the training of our model
when we reached twice the number of epochs required to train
the model when only the training set was used. We did this,
as the number of both validation and training examples is twice
the number of training examples.

Results are shown in Tabel VI. Our model outperforms the
other two models in both the arousal and valence dimensions;
especially for the valence dimension with high magnitude. We

TABLE VI
RECOLA DATASET RESULTS (IN TERMS OF ρc ) FOR PREDICTION OF

AROUSAL AND VALENCE USING THE MULTIMODAL NETWORK

Predictor Audio
Features

Visual Features Arousal Valence

OA RVM-SR eGeMAPS
ComParE

Geometric
Appearance

0.770 (0.855) 0.545 (0.642)

Han et al. 13 LLDs Mixed 0.610 (0.728) 0.463 (0.544)

Proposed raw signal raw signal 0.789 (.731) 0.691 (0.502)
Proposed raw signal raw + geometric 0.788 (.731) 0.732 (0.502)

In parenthesis are the performance obtained on the development set.

should also mention here that our system operates directly on
the raw pixel domain, while the other two systems made use of
a number of geometric features (e.g., 2D/3D facial landmarks
etc.) which require the presence of an accurate facial landmark
tracking methodology (ours was applied on the results of a
conventional face detector only).

To show, however, that our model can also benefit from these
features, we incorporate them into our model. In particular, we
first extract facial landmarks using the face alignment method by
Deng et al. [50], and perform Procrustes alignment (i.e., remov-
ing scale, rotation, translation). Then, we concatenate these fea-
tures to the feature vector that is input to the recurrent model and
we train only the recurrent network while keeping the speech
and visual network parameters fixed. Results are depicted in
Table VI. As expected, these features benefit our model to pre-
dict the valence dimension while the arousal is unchanged.

Finally, to further demonstrate the benefits of our model for
automatic prediction of arousal and valence, Fig. 3 illustrates
results for a single test subject from RECOLA.



1308 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 8, DECEMBER 2017

VI. CONCLUSION

In this paper, we propose a multimodal system that operates
on the raw signal, to perform an end-to-end spontaneous emo-
tion prediction task from speech and visual data. To consider the
contextual information, a recurrent network (LSTM) was used.
To speed up the training of the model, we pretrained the speech
and visual networks, separately. In addition, we study the gate
activations of the recurrent layers in the speech modality and
find cells that are highly correlated with prosodic features that
were always assumed to cause arousal. Our experiments on the
unimodal modality show that our models achieve significantly
better performance on the test set in comparison to other mod-
els using the RECOLA database including those submitted to
the AVEC2016 challenge, thus demonstrating the efficacy of
learning features that better suit the task-at-hand. In addition,
our multimodal model greatly outperforms in both the valence
and arousal dimensions the other models. Further research on
the topic is application of similar architectures for behaviour
analysis in the wild.

In future work we aim at incorporating more modalities in
our model like physio in order to increase its performance for
emotion recognition tasks. In addition, we intend at experiment-
ing with more emotion databases, including ones that provide
discrete labels. It would be also interesting to experiment with
tasks other than emotion recognition.
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