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We present a novel method that tackles the problem of facial landmarking in unconstrained conditions within
the part-based framework. Part-based methods alternate the evaluation of local appearance models to produce
a per-point response map and a shape fitting step which finds a valid face shape that maximises the sum of the
per-point responses. Our approach focuses on obtaining better appearance models for the creation of the
response maps, and it can be used in combination with any shape fitting strategy. Local appearance models need
to tackle very heterogeneousdatawhendealingwith in-the-wild imagerydue to factors as varying headposes, facial
expressions, identity, lighting conditions, or image quality among others. Pose-wise experts are typically used in this
scenario so that each expert deals with more homogeneous data. However, the computation cost at test time is
significantly increased. Furthermore, choosing the right expert is not straightforward,which can lead to gross errors.
We propose to dynamically select at test time the training examples used for inference. We use a global similarity
measure to select themost adequate training examples for inference, and create a single test sample-specific expert
using a localised inference technique. To illustrate the validity of these ideas, we capitalise on the recently proposed
use of regression to generate local appearance models. In particular, we use Gaussian processes, as their non-
parametric nature easily allows for localised regression. This novel way of constructing the response maps is
combinedwith two state-of-the-art standard shape fitting algorithms, the popular Constrained LocalModels frame-
work and the Consensus of Exemplarsmethod.We validate ourmethod on twopublicly available datasets aswell as
on a cross-dataset experiment, showing a considerable performance improvement of the proposed approach.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Literature review

Most of the algorithms for accurate facial landmarking rely on
separated models capturing the image appearance and the face shape
information. The shape model encodes the possible constellations of
facial landmark locations (face shape) and restricts the estimation to
be anthropomorphically consistent. Facial landmark detection boils
down to finding the valid face shape that maximises an alignment
score, which is computed using the appearance model.

It is common to divide facial landmarking methods depending
on how the face appearance information is modelled, leading to a
distinction between holistic methods and part-based methods. Holistic
methods include Active Appearance Models (AAMs) [1,2], and are
typically generative methods that try to fully reconstruct the whole
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face appearance. This is done by using parametric models for the face
shape and for the face appearance. Efficient gradient descent can be
used to find the optimal parameters, from which facial landmarking
results [3]. Instead, part-based methods train a discriminative model
per landmark using the appearance of local patches centred at them.
Examples of part-based methods include Active Shape Models (ASM)
[4] and Constrained Local Models1 (CLM) [5] and the Consensus of
Exemplars [6]. In this work we present a part-based facial landmarking
algorithm and, therefore, in the following we focus on the works within
this category.

In the most common setting for part-based models, a classifier is
trained per facial landmark so that it yields a high scorewhen evaluated
at the true target location and low score otherwise. At test time, a region
of interest centred at the current landmark estimate is considered, and a
response map is built per landmark by evaluating the classifier at every
pixel location within the region of interest. This is followed by a shape
fitting step, which finds the shape parameters that optimise the sum
of individual responses. In most cases, fitting results from alternating
both steps. However, some exceptions exist within the part-based facial
landmark detection framework that follows variants of this procedure.
1 In [5] CLMs are presented as a generalisation of ASM, a criterion thatwemaintainhere.
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For example, [7] showed that it is possible to effectively use a tree-
structured shapemodel so that the global minimum is reached in a sin-
gle step. Due to this computationally efficient shape fitting procedure,
they are able to provide joint face detection, a rough head pose estima-
tion, and facial landmarking. However, the precision of the detection is
sometimes hindered by the excessive flexibility of the tree-based
model. Furthermore, [8,9] showed that it is possible to directly estimate
the shape parameters through regression. To this end, they do not use
per-point individual appearance models, and instead obtain a sequence
of shape increments by concatenating the per-point appearances and
performing regression.

Despite these exceptions, most part-based landmarking works typi-
cally aim at improving either the per-point appearance models, or the
shape fitting step. For example, the main methodological contribution
proposed by Saragih et al. in [5] with respect to previous ASM models
lies on the way the shape is fitted to the response maps. Previous ASM
methods used a parametric distribution to approximate each response
map, using for example a Gaussian or a GMM. Under this approxima-
tion, the shape fitting becomes easily tractable and computationally
cheap. The CLM uses instead a non-parametric approximation of the
response map, and then uses a mean shift algorithm to perform the
shape fitting. In practise, the use of a non-parametric representation of
the response map allows for capturing complex response maps as
those arising in subject-independent unconstrained scenarios. Another
improvement to the shape fitting step was proposed in [10], where
the authors noted that the mean shift shape fitting process of [5] is
prone to converging to local maxima. They proposed to improve the
shape fitting step by using a discriminative search of global maxima,
where regression models are trained to directly infer the shape param-
eters by using the responses to the appearance model as input. [6] pro-
posed instead to avoid using a gradient ascent/mean shift shape fitting
and use instead a model similar to RANSAC for the shape fitting. To
this end, randomly selected shapes are aligned with a subset of the
response map modes, computing then the score for the resulting align-
ment. The output results from combining the n shapes with the highest
scores. Other methods focus instead on improving the appearance
models so that better response maps can be obtained. Among them,
regression algorithms have been recently proposed as an alternative
to classifiers to construct the response maps [11–13]. To this end, a re-
gressor is trained per point so that, given an image patch, it predicts
its relative locationwith respect to the true target location. The response
map results from considering a probabilistic output of the prediction, for
example by using a Gaussian distribution of fixed covariance [13] or a
non-parametric pdf [12], and accumulating these predictions in an
additive manner. In particular, [12] recently proposed to use random
forest within the CLM framework, and directly compared the perfor-
mance when using regression against the performance when using a
classification method, showing the superior performance of the former.

In this work, we aim at improving the quality of the response maps
of part-based models. Therefore, our approach can be combined with
any responsemap-based shapefitting algorithm. Because of their recent
success, we use a regression methodology to construct the response
maps. We use two popular shape fitting algorithms such as [5,6]. It
is not in our scope to improve the shape fitting model and, in conse-
quence, any work aiming at improving this step (e.g. [10]) should be
seen as complementary to ours.

1.2. Method overview

In ourworkwe tackle the problemof in-the-wild facial landmarking,
i.e., facial landmarking of faces captured under uncontrolled conditions.
This includes variation factors as illumination conditions, head pose,
subject identity or facial expression. A successful in-the-wild facial
landmarking method should therefore train its models with examples
representative of such variability. However, it is well-known that the
increase of the intra-class variability degrades the performance of
machine learning algorithms. Therefore, variation factors other than
the one targeted (in this case facial landmark locations) are nuisance
factors that complicate the inference of the target one.

When it comes to facial landmark detection, it is possible to alleviate
this problem by breaking down the learning of the appearance models,
and employ a set of pose-wise experts. To this end, the total range of
head pose variation is divided into a set of pose ranges. An appearance
model is trained using the corresponding subset of the training data,
so that each model is trained with less heterogeneous patterns. At test
time, this approach requires the evaluation of all of the experts. Then,
a criterion to select the best-performing model has to be applied,
which typically consists of selecting the expert yielding the highest
combined response for the whole set of points. For example, [7] trained
head-pose specific models covering a range of −90 to 90° of yaw
rotation, each expert corresponding to one of the head poses within
the Multi-PIE dataset [14]. Similarly, works as [5,10] use 3 different ex-
perts to cover up to 45° of yaw rotation. However, evaluating different
models at test time is costly, and an error when selecting the best-
performing expert can result in gross landmark detection errors.
Furthermore, other nuisance factors, such as facial expression or subject
identity, are not accounted for. These factors can still have a significant
impact when considering face images captured under unconstrained
conditions.

The ideal inference would be achieved if we had an expert (and only
one) tailored to the test example at hand, so that all of the examples
used for inference present properties similar to the test face. Such
similar properties would not only include head pose, but also factors
as facial expressions and identity produce important variations on the
face aspect. An obvious limitation is that these labels are unknown,
both for the training and for the test images. Therefore, an unsupervised
method for selecting the examples used for inference is required. Such
an alternative would offer a significant potential gain, as unique and
more specialised experts can be used. However, the unsupervised
nature of the example selection would lead to a suboptimal selection
of the examples inference relies on.

In order to accommodate for such idea, we propose to use a local
inference method. Local inference methods select, at test time, a set of
training examples close to the test example, measured within the
(kernelised) feature space, and perform inference based only on the
selected examples. The idea is that the decision boundaries are then
specialised to the local topology instead of to the full feature space, re-
ducing the impact of intra-class variability [15]. However, as local
patches convey little information about head pose or facial expression,
we do not seek for a direct application of a local inference method. In
order to reason about these factors, it is necessary to consider broader
face regions or even the full face appearance. Therefore, we propose to
use a local inference technique inwhich the examples used for inference
are local to the test sample in terms of the global properties of the face
they belong to.

The advantages of this approach include considering factors of intra-
class variability other than head pose variations. Furthermore, the infer-
ence cost does not grow as running several experts at test time is
avoided. In fact, inference cost is sensibly reduced. As only a small set
of the training examples are used at test time, the inference models
are sensibly less complex. Finally, there is no risk of selecting the output
of the wrong expert. The counterparts are the need of an oracle for
selecting the most similar images, that performance depends on the
quality of the retrieved training examples, and the need to store the
full set of training examples. However, we experimentally show that
very simple oracles (even constructed in an unsupervised manner)
can effectively pick adequate training examples and boost the perfor-
mance of the inference attained by the appearance models.

In thework presented herewe propose to use Gaussianprocess (GP)
regression for inference, although other methods for local inference
exist (e.g. [16]). This is justified by the success of regression-based
facial landmarking methods, and because GP naturally allow localised



Fig. 1. Left: test locations for the left mouth corner (the red dot notes the current estimate). Centre: predicted locations (blue), maximum of the response map (red) and ground truth
(green). Right: the response map constructed from the regression predictions displayed in the centre image.

2 [20] noted that, when using a Gaussian kernel, applying the mean-shift algorithm is a
mode-seeking algorithm for the KDE obtained from the point distribution. Another inter-
esting equivalency was shown in [21], where the authors showed that Gaussian mean-
shift is an EM algorithm.
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inference. Their use for local inference is particularly simple as, due to
their non-parametric nature, it is possible to modify the set of training
examples used for inference without retraining the models. Works as
[17,18] have already used such property to train local GP regression
models. However, in their case the distance measure used for selecting
the examples was the same as for performing inference. From a more
general methodological perspective, we argue that the training
examples with a feature representation distinct from the one of the
test sample have already little influence on the output prediction. The
most harmful examples are instead those that look alike in the feature
space, but are associated to erroneous labels. We eliminate ambiguous
examples (in the kernelised feature space) by using two different dis-
tance measures (using potentially different feature representations)
that convey complementary information. While one distance measure
is used to select the examples for inference, the other is used as the
kernelised distance used to compute the predicted output.

The reminder of this paper is organised as follows. Section 2 is
devoted to describe how to apply regressors in a part-based facial
landmarking framework. Section 3 describes the proposed inference
method, including a brief introduction of Gaussian processes and their
localised version. Section 4 describes the setup of the experiments,
which are later described in Section 5. Section 6 concludes the paper
with the final remarks.

2. Regression-based facial landmark localization

Given a test location within a face image, the location of the target
facial landmark can be directly estimated by means of two regressors.
More specifically, given a test location l, a feature vector fl = f(l, I) is
computed using a small patch from image I centred at l. fl is then used
as the input of two regressors, trained to estimate the real-valued
variables Δx and Δy so that t = l + (Δx, Δy), where t represents the
true target location. In order to train such regressors, it is necessary to
construct a training set by randomly sampling locations at a distance
of up to a threshold (called sampling radius) to the true landmark
locations, and extracting feature vectors from these locations. Selecting
a small sampling radius yields precise predictionswhen the test location
is within the training set, while it yields very poor predictions other-
wise. When using a larger sampling radius, the effect is reversed, and
precision is traded for robustness. In order to solve this, two tactics
exist in the literature. Either a cascaded regression approach can be
followed (e.g. [19,8]), or the regressors can be used to construct a re-
sponse map, resulting in a part-based landmarking method (e.g. [13,
12]). When following this last approach, the regressors are evaluated
over a region of interest and their predictions are combined to construct
the response map. In this paper we follow the second approach.

More specifically, in order to obtain a responsemap for a given facial
landmark, a region of interest (ROI) is defined around the current
landmark location estimate. Then, a set of test locations are defined
over it, for example by using a grid layout, and an estimate is computed
for each of the test locations. A response map can be built from the
obtained set of estimates using Kernel Density Estimation (KDE). In
case of a Bayesian regressor, such as Gaussian process or Relevance
Vector Regression, the predicted variance can be used as the width of
the kernels. A fixed kernel width can be used otherwise. Through this
process, it is expected that only the correct estimates will correlate
and produce a peak on the response map, while erroneous estimates
will not correlate together. An illustration of this process is shown in
Fig. 1.

Each iteration of the algorithm combines the construction of the
responsemapswith a shape alignment step. This step can be considered
independent of how the response maps are constructed. The shape
alignment step consists of finding the valid shape (i.e., an anthropomor-
phically consistent shape) that maximises the combined individual
responses. This is however a challenging maximisation as it is prone
to converge to local maxima. As a consequence, many works focus
on how to perform shape alignment effectively. In here we outline
the shape fitting strategies of [5] and [6], which will be used in the
experiments.

2.1. Constrained local models [5]

The CLMparameterises the space of valid face shapes using the Point
Distribution Model (PDM). On it, any shape s can be parameterised as:

s ¼ fθ sþΦpð Þ ð1Þ

where s represents the training set mean shape, andΦ is a set of linear
shape basis that capture flexible movements, both variables being com-
puted at training time from the set of training examples. fθ represents an
affine transformation parameterised by θ, while p represents the coeffi-
cients of the test shape in the linear subspace spanned by Φ. Therefore,
any test shape is fully described under this model by (θ, p), where θ
encodes the rigid transformations of the face shape, and p encodes the
flexible ones (that is to say, anything that cannot be removed through
an affine transformation). The shape alignment step aims at finding
the shape parameters (θ, p) that maximise the sum of the individual
responses.

The optimal shape parameters are estimated by first finding individ-
ual increments on the landmark location estimate by applying a mean
shift algorithm over the response map.2 The individual location
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increments are then translated into shape parameter increments by
using the Jacobian of the shape parameters and solving a least squares
problem. This iterative parameter update process is typically applied
in a step-wise manner, alternating the estimation of θ and p. This
procedure is guaranteed to improve the prediction likelihood, although
convergence to local maxima often occurs, probably because of the high
parameter dimensionality. Empirical evidence of the convergence to
local maxima can be directly derived from the success of approaches
that do not follow a gradient ascent/mode seeking strategy to shape
fitting, such as [6,10].

2.2. Consensus of Exemplars [6]

This approach relies on the use of a set of shape exemplars, for
example the shapes within the training set. New shapes can however
be produced by instantiating the shape model within Eq. (1). There is
no explicit parameterisation of what a valid shape is. Instead, face
alignment is attained at test time as follows. The best k modes of each
response map are first computed. Then, the following process is repeat-
ed a fixed amount of times. First, a subset of the modes are randomly
selected, with the restriction that each mode must relate to a different
landmark. Then a random exemplar is aligned with these locations by
finding the affine transformation minimising the average point-to-
point distance. A score for the resulting alignment can be then comput-
ed in terms of the combined responses. Lastly, the final shape alignment
is computed as the mean of the best n shapes. The validity of the shape
output follows from the fact that it is computed as the average of shapes
seen in the training set.

3. Proposed inference method

3.1. Gaussian process

Gaussian process (GP) [22] is a Bayesian method capable of
performing regression using complex non-linear maps through the
use of kernels (called covariances in the GP context). It is a non-
parametric method, so that inference is performed by using the whole
training set. This is as opposed to the case of other regression methods
such as Support Vector Regression or Relevance Vector Machines,
where given the support vectors computed during training, inference
is independent of the rest of the training set. The only parameters
to be estimated during the GP training are the covariance hyper-
parameters, which can be optimised through an efficient gradient
descent procedure. One advantage of GP is that they provide a probabi-
listic output, parameterised through a Gaussian distribution. That is to
say, the output is a full pdf in the form of a normal distribution that
models the probability for a given output value of being the true label.
The equations for inference, derived and explained in detail in [22],
take the form of:

μ i ¼ kT� K þ σ2
n

� �−1
y ð2Þ

σ i ¼ k x�;x�ð Þ−kT� K þ σ2
n

� �−1
k� ð3Þ

where K represents the covariance between training points, k⁎
represents the covariance between the training examples and the test
samples, and k(x

⁎
, x

⁎
) is the covariance between test samples. It is

possible to see from these equations that the full set of training exam-
ples has to be kept, and that its inversion is necessary. Therefore, GPs
scale badly to the number of examples. Despite the efforts of many
works that attempt to reduce the impact of the number of examples
(e.g. [23]), this remains as a major drawback of GPs.

We refer to [22] for an in-depth discussion of GP, including how
to find the optimal covariance parameters. However, some properties
are particularly relevant to our approach, which we summarise in the
following. In the first place, GP provide a measure of confidence on
the prediction. Samples at test time unseen in the training set, as for
example those corresponding to partial occlusions, yield a higher
prediction variance. Secondly, inference is performed using only the
covariance hyperparameters and the set of training examples. In the
third place, GP scale badly in terms of the number of examples, so it is
important to carefully select the examples used for inference and ensure
that they are meaningful.

3.2. Local GP

Local GP (LGP) aims at performing inference using a subset among
the training examples closest to the test sample, either in Euclidean or
kernelised distance. The benefits of local inference are the use of locally
optimal decision boundaries instead of the globally (on average)
optimal ones, the use of less data, potentially reducing the computation
time during inference, and the use of more meaningful examples
for inference. GPs are particularly suited for localised learning due
to its non-parametric nature. That is to say, as only the covariance
hyperparameters and the training examples are necessary to perform
inference, no re-training is necessary when the training set is altered.

More formally, if we note the GP regressor as r, the training set as
{Xtr, Ytr} = {(xtri , ytri )}i = 1:N, and the covariance hyperparameters as θ,
then we can write:

μ�;σ�ð Þ ¼ r x� θj ;Xtr ;Ytrð Þ ð4Þ

where x⁎ is the test feature vector.
We can compute the k nearest neighbours of x⁎ within Xtr using a

(kernelised) distance

di ¼ K x�;x
i
tr

� �
: ð5Þ

Then the vicinity of the test feature vector used for inference is:

Xtr x�ð Þ;Ytr x�ð Þð Þ ¼ xi
tr; y

i
tr

� �
s:t: i∈ Ik x�ð Þ

n o
ð6Þ

where Ik(x⁎) represents the indexes corresponding to the k lowest
values of {di}i = 1:N.

For LGP, both the training examples and the hyperparameters used
for inference are conditioned to the test feature vector:

μ�;σ�ð Þ ¼ r x� θj x�ð Þ;Xtr x�ð Þ; Ytr x�ð Þð Þ: ð7Þ

The local hyperparameters θ(x
⁎
) depend now on the test feature.

The locally optimal hyperparameters can be approximated without
resorting to re-training for each new test sample [18]. In practise,
this training process is time consuming and we found a very small im-
provement with respect to using globally optimal hyperparameters.
Therefore, we use globally optimal hyperparameters throughout our
experiments.

3.3. Local GP based on global face appearance

Our method proposes to substitute the distance used to define the
neighbourhood of the test example (Eq. (5)) for a distance measure
that takes into account the whole face appearance. The region of the
image used to extract the face appearance depends on the ground
truth shape for the training examples, and on the current shape
estimate for the test example. More specifically, given the current
shape estimate ŝ⁎, we need to construct a similarity measure depending
on it, noted S(Ii, si, I⁎, ŝ⁎), capable of measuring the similarity of the test
image with respect to the images within the training set. The similarity
should be high whenever the properties of I and I⁎ are similar, but
without requiring the estimation of any variable such as the head pose
explicitly.
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The process to obtain an appearance feature representation hi for
image i from a shape si is as follows. First we register the manually
annotated face shape (or estimated shape) of image i to the mean
shape of the training set using an affine transformation, yielding the
registered shape sireg. The same affine transformation can be readily
applied to the training (test) image, yielding the registered image Ii

reg.
Then we define Pi = P(Iireg, sireg) as a subpatch of Iireg defined by the
bounding box tightly containing the points sireg. Finally, a feature repre-
sentation hi = f(Pi) is extracted from it.

The similarity between images is then computed as a (kernelised)
distance over such features:

S Ii; si; I�; ŝ�ð Þ ¼ K hi;h�ð Þ: ð8Þ

Since we want to consider variations on the head pose and facial
expressions we compute, for each image, appearance descriptors for
the whole face, the eye and eyebrows region, the mouth region and
the nose region. In practise, we use the whole face similarity for all the
points, while the appearance of the facial components is used only if
the target landmark lies within them.

We then define the locality in terms of the global image similarity as:

Xtr x�; ŝ�ð Þ ¼ x js:t: v jð Þ∈ Ik h�ð Þ
n o

ð9Þ

where v(j) is a pointer vector that indicates the training image from
which feature vector j was extracted. Then inference is performed
according to Eq. (7).

A visual depiction of the inference process is shown in Fig. 2. This
figure shows that a feature representation representing the global face
appearance is extracted from the test image and the set of training
images (note that the shape used to extract the feature representation
of the test image is approximated). Then the nearest images in the
feature space are selected (marked in red), and examples drawn from
these images are used to perform inference.

Throughout our experiments, we use a simple LBP feature represen-
tation of the face, which has been applied successfully to problems as
facial expression recognition [24] and face recognition [25]. We use
the intersection kernel in Eq. (8), as it is adequate for histogram-based
feature representations as LBP, and no hyperparameters have to be
estimated. More complex learning-based algorithms could be applied
Fig. 2. Depiction of the inference process: the training set (red and black) and test (green) fac
(closest are marked in red). Only the training examples from the “nearest faces” are used for i
instead or in combination with this descriptor. For example, supervised
learning would likely boost the performance of head pose estimation.
However, it is not easy to training head poses in in-the-wild conditions,
as there is no reliable ground truth in these cases. We show however
that a simple unsupervised measure is enough to boost the results.
4. Experimental setup

4.1. Initialisation

A Viola and Jones (V&J) face detector was used to initialise the
algorithm. In case that the face was not correctly detected, a face
bound was inferred by finding the closest shape among the training
examples with successful face detection. Then, the translation and
scaling best aligning both manually annotated shapes was computed
and applied to transfer the face bound to the undetected face. Through
this process we avoid introducing a bias in the results by excluding
the most non-frontal and non-standard faces, and the initial fitting
error compares to that of similar images. The face region is then resized
to 100 × 100 pixels. It is important to note that normalising to a larger
face size typically increases the accuracy of the method, but also
increases the computation cost. Different methods report results using
different normalisation sizes, and 100 × 100 is a small and conservative
one. Finally, the mean shape was used to initialise the search algorithm.
Themean shapewas computed through generalised Procrustes Analysis
from the manually annotated shapes on the training set.
4.2. Feature representation

We use HOG features [26] as the local appearance descriptor
throughout our experiments. HOG features are widely used for facial
landmark detection (e.g. [7,10]), so using them improves the signifi-
cance of the comparisons. The patch sizes used are of 16 × 16 pixels,
yielding a feature vector dimensionality of 81. Applying PCA over the
descriptor and keeping around 30 dimensions yields a small improve-
ment, and reduces the computational and storage cost at test time.
However, we keep the full dimensionality of the HOG descriptors
in our experiments so that the comparison with other state of the art
experiments is more meaningful.
e images are mapped into the feature or kernel space. Nearest neighbours are performed
nference (there are 66 inference processes, one per facial point).



Table 1
Inference performance over the MultiPIE dataset, measured in average Euclidean distance
of the predicted landmark location (mean/standard deviation). Ideal expert refers to
inference only using examples with the same head pose and facial expression labels as
those of the test image (test image labels need to be used at test time).

GP Our method Ideal expert

3.43/2.02 3.06/1.81 2.95/1.79

Table 2
Quantitative results over the LFPW (Inlayers/all points).

Method Mean Std. Median

Prop + ConsEx 0.058/0.072 0.022/0.031 0.052/0.064
GP + ConsEx 0.066/0.084 0.035/0.047 0.057/0.071
Prop + CLM 0.063/0.075 0.024/0.034 0.059/0.066
GP + CLM 0.073/0.086 0.034/0.044 0.063/0.072
CLM-ITW [5] 0.080/0.091 0.026/0.033 0.073/0.084
DRMF [10] 0.070/0.081 0.022/0.025 0.066/0.076
SDM [9] 0.051/0.069 0.019/0.027 0.047/0.063
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The global appearance is represented using a uniform-pattern LBP
descriptor [27]. LBP descriptors are popular for face analysis, and they
have been successfully applied to face identification [25] and facial
expression recognition [28]. The LBP descriptor has interesting proper-
ties for our problem. An LBP descriptor results from histogramming
over a region, so all of the spatial information within the region is
discarded. This provides some in-built robustness to misalignment.
In our algorithm, the extracted global appearance depends, at test
time, on the estimated shape, which is only approximate. Therefore,
invariance to misalignment is of particular importance. Furthermore,
LBP descriptors are insensitive to global uniform illumination changes,
and they are robust to general illumination changes. This is also
important for our purpose, as we deal with imagery obtained with un-
constrained illumination conditions. Specifically, we use a block-based
representation where each patch is divided into sub-patches in a grid
manner. An LBP descriptor is computed for each sub-patch, and the
patterns are concatenated into a single feature vector. The use of a
block-based representation significantly improved performance in
some preliminary experiments.

4.3. Training set creation

We start by registering every face in the training set to the mean
shape using a Procrustes transformation. That is to say, we register the
training faces as much as possible using rigid transformations. The
mean shape is computed in face-size-normalised coordinates so the
resulting registered face is about 100 × 100 pixels. Then, for each
landmark, we sample a number (15 in our case) of random locations
around at up to 10 pixels displacement horizontally and vertically in
the coordinate system of the registered faces. A HOG descriptor is then
computed at each sampled location using a 16 × 16 patch. The training
labels result from subtracting the sampled locations from the location of
the ground truth.

4.4. Evaluation criterion

In order to normalise the error with respect to the differences in face
sizes, we divide the point-to-point L2 error by the inter-ocular distance
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Fig. 3. Cumulative iod-normalised error distribution on the LFPW dataset. Left: error for inlay
(IOD), leading to the IOD-normalised error. This is the most standard
way of presenting the fitting error [13,29,12] and although it penalises
non-frontal head poses, it facilitates comparison. It is important to
note that some works (e.g. [7]) use a different error-normalisation
criterion. Some works (e.g. [13]) further distinguish between the facial
landmarks lying on the contour of the face and those within the facial
components. Contour landmarks are hard to define objectively forman-
ual annotation, and they are also hard to distinguish during automated
detection. Fittings that look correct to the naked eye might still present
high errors for the facial landmarks within the face contour. We there-
fore report separate errors for both the whole set of landmarks (66 in
our case) and for only the landmarks lyingwithin the facial components
(49 in our case).
5. Experimental results

In this section we include the following set of experiments. Firstly,
we conduct an experiment on a dataset with controlled conditions in
which labels as the facial expression and the head pose are provided.
We use this setting to perform preliminary experiments showing how
our inference method performs against a golden standard where
information such as the head pose or the facial expressions are known
in advance at test time. That is to say, we compare against an algorithm
in which the example selection method performs perfectly. We then
show the performance of our algorithm on imagery captured under
uncontrolled conditions using two standard in-the-wild datasets.
These experiments can be divided into dataset-dependent experiments
and cross-dataset experiments. In the former, each dataset is divided
into training and testing partitions as specified by the dataset protocol.
The training partition is then used to train the models, and the perfor-
mance is computed over the test partition. Instead, in the cross-
dataset experiments we train on the training partition of one dataset
and evaluate on the testing partition of the other. These experiments
are designed to show the generalisation capabilities of the proposed
algorithms. All experiments are subject-independent, so that the any
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ing points. Right: all 66 landmarks (including contour points). See text for the acronyms.



3 Large errors have a large impact on themean error,while themedian ismore robust to
gross errors. This is interesting as the error associated to grossmisdetections can be some-
what arbitrary.
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Fig. 4. Cumulative error distribution on the Helen dataset. Error for inlaying points (left) and for all 66 landmarks (right).
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subject present in the testing set cannot be included on the training
partition.

5.1. Experiments on data under controlled conditions

The proposed method relies on the performance gain obtained by
the proposed localised inference method. Therefore, the first experi-
ment consists on studying the performance gain of such approach
with respect to standard inference methods. That is to say, with respect
to methods where all the training set is used for training the regressors
that are later applied irrespective of the test image properties. Further-
more,wewant to evaluate the inference performancewhen the training
examples used for inference are known to have the same head pose and
facial expression as the ones in the test example. That represents a
golden standard in which the right head pose and expression-specific
expert is used. We therefore refer to it as an ideal expert. In this case,
the labels for head pose and facial expression need to be known in ad-
vance for both the training set and the test example, which is obviously
an unrealistic setting. We compare these two approaches to our ap-
proach, where the examples used for inference are chosen depending
on the appearance of the test sample in a data-driven manner.

In order to carry out these experiments we need a datasetwhere the
head pose and facial expression labels per image are given. To this end,
we use the MultiPIE dataset [14]. It contains a large set of images
captured under controlled conditions. Each image on the dataset
has an associated label indicating the head pose, taken from a discrete
set of possible head poses, and the facial expressions displayed,
taken again from a discrete set of predefined posed facial expressions
(e.g. smile, neutral, scream, etc.).

For this experiment, we used a large set of annotated images from
the MultiPIE dataset with head poses ranging from −30 to 30° and of
varied facial expression. Thenwe constructed a training set as previous-
ly explained (see Section 4). Subsequent training and testing partition
are then constructed using a subject-independent cross-validation
strategy. Therefore, a different set of regressors are constructed for
each of the subjects considered in the experiment. The error in this
case is measured as the average Euclidean distance between the pre-
dicted location and the true landmark location of the test examples.
The results for this experiment are shown in Table 1. It is possible to
see that ourmethod attains very close performance compared to choos-
ing the ideal expert, despite not making explicit use of the head pose
and facial expression labels of the test sample.

5.2. Dataset-dependent experiments

In this section, we provide a quantitative evaluation of the proposed
method. We consider that our baseline method is the one building the
response maps through standard GP regression. This results in two
methods when combined with the CLM and the Consensus of Exem-
plars shape alignment strategies, which we note here as GP + CLM
and GP + ConsEx. These baseline methods are compared against the
combination of the proposed response map construction strategy and
the same shape alignment strategies, resulting in the methods referred
as proposed + CLM and proposed + ConsEx. However, we also include
another baseline in which the CLM shape alignment strategy is com-
bined with classification-based response maps. In order to provide a
fair comparison, these classifiers have been trained for in the wild
conditions. This last baseline is in fact a replication of the experiments
presented in [12], and serve as a confirmation of their findings; that
regression-based response maps are more precise than classification-
based ones. This method is noted here as CLM-ITW. Furthermore, we
provide a performance comparison with two state of the art methods.
We compare against the method proposed in [10], noted as DRMF,
and the method presented in [9], noted as SDM. The former is included
as it reports the best performance for response map-based methods.
The latter is a direct method and as such it does not use response
maps. It is however included here as it is the current overall state of
the art. In order to obtain a fair comparison, we have trained this
method with the same dataset and number of training samples as our
method, and used the same face detector so that the initial shape is
the same.

Our tests are performed on two datasets, the LFPW [6] and theHelen
[29] datasets. The authors of the LFPWdataset specified a partitioning of
the images into a training and a testing partition, a division that we
follow in our experiments. However, only the URLs of the images are
provided. Out of the total of 1100 training and 300 test images, we
were only able to retrieve around 700 images for training and 224
images for testing. The images within this dataset have a large range
of variation, including non-frontal head poses, lower resolution images,
varying expressions (although a significant portion of them are polite
smiles), ethnic background and illumination conditions. Fig. 3 shows
the performance comparison with and without the proposed example
selection strategies. It is possible to observe a significant improvement
irrespective of which shape alignment strategy is used. Furthermore, it
is clear that its combination with the Consensus of Exemplars provides
the best performance overall. Finally, this figure highlights the large
performance improvement when using regression-based response
maps with respect to the use of classifier-based ones. Table 2 provides
quantitative results in terms of the mean, standard deviation and
median3 errors, both for points lying inside the face and for all the points



Table 3
Quantitative results over the Helen dataset of different methods for both the landmarks
lying within the face and all the landmarks (including those lying on the face contour).

Method Mean Std. dev. Median

Prop + ConsEx 0.062/0.078 0.024/0.029 0.058/0.070
GP + ConsEx 0.074/0.092 0.035/0.042 0.067/0.081
Prop + CLM 0.067/0.083 0.028/0.035 0.062/0.073
GP + CLM 0.079/0.095 0.035/0.044 0.069/0.082
DRMF [10] 0.067/0.081 0.026/0.034 0.062/0.074
CLM-ITW [5] 0.085/0.097 0.035/0.041 0.074/0.085
CompASM [29] 0.091 – 0.073
SDM [9] 0.058/0.075 0.021/0.026 0.053/0.067
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(including landmarks that lay in the face contour). It is possible to
observe from these numbers that the proposed method yields the best
performance for response map-based methods, while it trails behind
the SDM method.

The Helen dataset is pre-divided into 330 images for testing and
1158 images for training. It contains images of higher resolution than
the LFPW dataset, but with a larger variation in the facial expressions
and head poses. It is important to note that a shape model based on
the PDM can have trouble fitting the examples in the Helen dataset, as
for example some subjects are pulling faces to the camera or can present
asymmetric facial expressions aswinking only one eye. This comes as no
surprise as this dataset was introduced in [29], where the authors
proposed a more flexible shape model, and the Helen dataset was
designed to show the benefits of their approach. Fig. 4 shows the perfor-
mance comparison with and without the proposed example selection
strategies, both for landmarks that lay within the face and for all
landmarks. It is possible to observe that the relative improvement
when using the proposed method is even larger than for the LFPW
dataset. This might be due to the relatively larger range of facial expres-
sions. The same observations can bemade again in terms of the superior
performance of the Consensus of Exemplars and regression-based
response maps. Similar quantitative results are shown in Table 3.
Again, the relative performances are very similar to those on the LFPW
dataset. However, we include here the reported performance obtained
by method presented in [29], noted as CompASM.

5.2.1. Per-landmark average error
Fig. 5 shows the per-landmark error for the Helen dataset. The error

statistics on the left hand side figure are computed using the proposed
method in combination with the Consensus of Exemplars. The radii of
the circles are proportional to the landmark error. The face image
depicted only serves illustrative purposes. It is possible to see that,
unsurprisingly, the contour points and the outer part of the eyebrows
are the ones resulting in the largest errors. The right hand side graph
Fig. 5. Left: per-landmark error of the proposed method on the Helen dataset. The radius of eac
used to illustrate the location of each point. Right: relative improvement, measured as the ratio
labels of the face component they belong to.
shows instead the relative improvement attained per landmark by the
proposed method with respect to the GP + ConsEx baseline. The x
axis indicates the landmark index, and labels are given as to relate
each index to a specific facial component. It is possible to see that the
largest improvement is attained for the nose and the mouth regions.
The results for the LFPW dataset are not included in this document as
they yield almost identical per-landmark error graphics.

5.2.2. Influence of the number of examples used
We now analyse the performance of the inference algorithm as a

function of the number of examples used for inference. Specifically,
the number of examples depends on two variables: the number of
(globally similar) images selected at test time, and the number of train-
ing examples extracted from each of them. Our aim here is to show two
properties. 1)When fixing the number of images selected, performance
saturates at a relatively low number of training examples. This means
that the matrix inversion at test time is still computationally cheap
(see Section 5.5); and 2) selecting a small subset of images at test
time (20 in our case) yields the best performance, highlighting the
efficacy of the image selection strategy.

In order to show 1), we constructed a training set following the
procedure specified in Section 4 using the dataset training partitions.
The same procedure was followed on the test partitions to create a
test set on which to evaluate the performance of the inference method.
Therefore, we measured the inference error rather than the over-
all landmarking performance. Fig. 6 (left) shows the result of this
experiment for both the Helen and LFPW datasets. Throughout the
experiments presented in this work, we used a total of 300 training
examples (20 images, 15 examples per image), as it offers a good
trade-off when considering the computation cost.

Conversely, Fig. 6 (right) shows the overall performance over the
LFPW dataset as a function of the number of images selected (leaving
the total number of training examples used for inference fixed). This
graph clearly shows how performance is minimised when using a
small number of images, with performance increasing monotonically
thereafter. When the number of training examples is the full training
dataset, then the method is reduced to performing standard GP, which
is our baseline.

5.2.3. Initial iterations
Inference, as proposed in here, depends on the current estimate of

the facial landmarks. These estimates are typically poor for the first
iteration of the algorithm, as they are initialised based on the Viola
and Jones face detection. Thus, it is reasonable to wonder 1) whether
performance is still better for the proposed inference method for early
iterations, and 2)whether a poor first estimate is particularly damaging
for our method.
h circle is proportional to the average error for the corresponding landmark. The image is
of per-landmark error, between the proposed + ConsEx and GP+ ConsEx, together with
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Even if 1) was the case, it would still be feasible to perform a small
number of iteration using standard inference methods, and resort to
the proposed inference method on the later stages. However, we have
experimentally found that our method yields a consistently better
estimate after the first iteration, although sometimes only marginally
better. Specifically, relative performance after the first iteration shows
a relative improvement when using the proposed inference algorithm
within the range of 1% to 5%. This includes the LFPW, Helen and cross-
dataset experiments, and is the case both for the subset of inlaying
landmarks and for all landmarks.

Regarding question 2), Fig. 7 shows the initial error (x axis) vs. the
final error (y axis) for every image in the LFPW dataset. The left-hand
side graph shows performance for the proposed inference method,
while the right hand side shows performance for the baseline inference
method. Furthermore, linear regression has been performed as to high-
light the underlying relation between initial and final error. The dashed
line corresponds to the linear regression for standard inference for the
ease of comparison. It is possible to see in this figure that our method
does behave comparatively better for cases of poor initialisation.

5.3. Cross-dataset experiments

In order to assess the generality of the proposedmethod, we include
a cross-dataset evaluation using the LFPW and the Helen datasets. In
this experiment, we train on the training partition of one of the datasets,
and we compute performance over the testing partition of the other
dataset. Fig. 8 shows the performance of the cross-dataset experiment,
Fig. 7. Initial (x-axis) vs. final error (y-axis) on the LFPWwhen using the proposed inference ap
trend.
and compares it with respect to the dataset-dependent one, i.e., when
the training and test sets are constructed from the same dataset. We
employ here the Consensus of Exemplars shape alignment strategy, as
it is the one yielding the best overall performance. It is possible to see
how training on the Helen dataset and testing on the LFPW dataset
yields a comparable performance than training and testing on the
LFPW dataset, while this is not true when inverting the roles of both
datasets. This might be an indication that, as hypothesised in [30],
training with cleaner data (as the one in Helen dataset) yields better-
performing models than training with more noisy data, even when ap-
plied to a similarly noisy test image. The wider range of expressions
displayed on the Helen dataset might be another factor explaining this
performance difference, while it is also important to note that the
number of training images is significantly larger on the Helen dataset
(717 vs. 1147 in our case).

5.4. Qualitative results

Finally, we provide some qualitative fitting results in Fig. 9. This is
useful for understanding the nature of the images included in the
datasets, and for illustrating the visual meaning of the fitting errors. To
avoid cherry picking, we show the two best and worst fits (leftmost
and rightmost columns) and the tertiles of the error. That is to say, we
show the images with lower error than 2/3 of the test images (centre
left column) and error lower than 1/3 of the test images (centre right
column). This is shown for the LFPW dataset (2 upper rows) and the
Helen dataset (lower 2 rows) for results obtained with the proposed
proach (left) and standard GP (right). Linear regression was performed as to highlight the
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algorithm in combinationwith the Consensus of Exemplars (1st and 3rd
rows), and for the GP + ConsEx method (2nd and 4th rows).

It is interesting to see where the algorithm produces the worst re-
sults, i.e., the images in the fourth column. In particular, failures might
happen when the initial shape is far from the true shape (for example
because of poor face detection, as in the top right image). Furthermore,
partial occlusions are not directly handled in this algorithm, and can
produce poor results (see the third column). It is worth noting that
the failures shown for the GP + ConsEx method are mostly due to
non-frontal head poses, while the failures for the proposed algorithm
are related to either a poor initialisation or a partial occlusion. This
Fig. 9. Examples of fitting outputs. Errors measured in IOD-normalised distance. Rows (top to b
Proposed + ConsEx on Helen. Columns (left to right): best fit, first tertile, second tertile and w
than the remaining 1/3, conversely for the second tertile). Error (top to bottom, left to right): 0
0.344, and 0.209.
might be due to the use of more pose-specific examples for inference
on our algorithm.
5.5. Computational cost

A typical way of speeding up inference with GP is to pre-invert the
covariance matrix. The cost of the matrix inversion is dominated by
the Cholesky decomposition, which isO n3

� �
, where n is the dimension-

ality of thematrix. This pre-computation of the inverse is not possible in
our case. Furthermore, it is necessary to perform a vector comparison
ottom): GP+ ConsEx on LFPW, Proposed+ ConsEx on LFPW, GP+ ConsEx on Helen, and
orst fit (the first tertile is the image with an error better than 2/3 of the images and worse
.031, 0.031, 0.039, 0.028, 0.062, 0.056, 0.060, 0.056, 0.085, 0.075, 0.100, 0.084, 0.475, 0.295,
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per example in the training set. This is however a relatively low number
(approx. 700 in LFPW and 1100 in Helen). This is done once for all
the points and, furthermore, it is possible to use algorithms for ef-
ficient nearest neighbours. In contrast, once the examples used
for inference are selected, our method needs less vector compari-
sons. Specifically, the covariance between two examples is O dð Þ,
where d is the feature dimensionality. Therefore, inference has (approxi-
mately) complexityO dnþ n2

� �
. The bottleneck (the Cholesky decompo-

sition) depends on n.When applying the proposed inferencemethod, n is
much lower (as low as 300) than when performing inference with stan-
dard GP, compensating to a large degree for the need of matrix inversion.

6. Conclusions

Wehave proposed newmethod for facial landmarking that is partic-
ularly suited for dealing with the highly varying nature of in-the-wild
images. In particular, our work lies within the part-based models, and
focuses on improving the quality of the response maps obtained from
local appearance. In thefirst place,we have corroborated that regressors
are suitable for constructing precise response maps and, at the same
time, we have identified one problem downgrading performance for
such approaches. Our solution combines a local regression framework
with ameasure that captures global image similarity, and has the ability
to perform inference with models specific to the test sample at hand.
Several experiments confirm the improvement attained by such
approach when combined with two state of the art shape alignment
strategies. Furthermore, we provide extensive comparisons with the
state-of-the-art methods. Finally, we also provide cross-dataset experi-
ments that show that our results generalise well to unseen data.
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