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A B S T R A C T

Automated recognition of facial expressions of emotions, and detection of facial action units (AUs) from
videos depends critically on modeling of their dynamics. Some of these dynamics are characterized by
changes in temporal phases (onset-apex-offset) and intensity of emotion expressions and AUs. The appear-
ance of these changes may vary considerably among subjects, making the recognition/detection task very
challenging. The state-of-the-art Latent Conditional Random Fields (L-CRF) framework allows us to effi-
ciently encode these dynamics through the latent states accounting for the temporal consistency in emotion
expression and ordinal relationships between its intensity levels. These latent states are typically assumed to
be either unordered (nominal) or fully ordered (ordinal). Yet, while the video segments containing activation
of the target AU may better be described using ordinal latent states (corresponding to the AU intensity lev-
els), the segments where this AU does not occur, may better be described using unordered (nominal) latent
states. To address this, we propose the variable-state L-CRF (VSL-CRF) model that automatically selects the
optimal latent states for the target image sequence, based on the input data and underlying dynamics of the
sequence. To reduce the model overfitting, we propose a novel graph-Laplacian regularization of the latent
states. We evaluate the VSL-CRF on the tasks of facial expression recognition using the CK+ dataset, and
AU detection using the GEMEP-FERA and DISFA datasets, and show that the proposed model achieves better
generalization performance compared to traditional L-CRFs and other related state-of-the-art models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Facial behavior is believed to be the most important source
of information when it comes to affect, attitude, intentions, and
social signals interpretation. Machine understanding of facial expres-
sions could revolutionize user interfaces for artifacts such as robots,
mobile devices, cars, and conversational agents [1]. Other valuable
applications are in the domain of medicine and psychology, where it
can be used to improve medical assistance as well as develop auto-
mated tools for behavioral research [2]. Therefore, automated analy-
sis of facial expressions has attracted a significant research attention
[3, 4]. Facial expressions (FE) are typically described at two levels:
the facial affect (emotion) and facial muscle actions (AUs), which
stem directly from the message and sign judgment approaches for
facial expression measurement [5]. The message judgment approach
aims to directly decode the meaning conveyed by a facial display
(e.g., in terms of the six basic emotions). Instead, the sign judgment
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approach aims to study the physical signal used to transmit the mes-
sage (such as raised cheeks or depressed lips). To this end, the Facial
Action Coding System (FACS) [6] is used as a gold standard. It is the
most comprehensive, anatomically-based system for encoding facial
expressions by describing the facial activity based on the activations
of 33 AUs. These AUs, individually or in combinations, can describe
nearly all-possible facial movements [6, 7].

Early research on facial expression analysis focused mainly on
recognition of prototypic facial expressions of six basic emotions
(anger, happiness, fear, surprise, sadness, and disgust) and detec-
tion of AUs from static facial images [3]. However, recognizing facial
expressions from videos (i.e., image sequences) is more natural and
has proved to be more effective [1, 8]. This is due to the fact that
facial expressions can better be described as a dynamic process
that evolves over time. For instance, facial expressions of emotions
and AUs undergo a transition of their temporal phases (onset-apex-
offset) during the expression development. Similarly, the activation
of AUs spans different time intervals that reflect variation in their
intensity, as described by FACS. Several works in the field (e.g., [1–3])
have emphasized the importance of modeling these dynamics for
increasing the recognition performance in the target tasks compared
to the static methods (see also [8]).
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Most of the state-of-the-art approaches for modeling facial
expression dynamics are based on variants of Dynamic Bayesian
Networks (DBN) (e.g., Hidden Markov Models (HMM) [9]) and on
Conditional Random Fields (CRF) [10]). These methods are detailed
in Section 2.1. In what follows we focus on hierarchical extensions of
CRF [2, 11, 12, 13], as they are directly related to the model proposed
in this paper. These methods can be cast as variants of the CRF called
Latent CRF (L-CRF) [14], and they have also been successfully used
for other computer vision problems (e.g. gesture recognition [14] and
human motion estimation [15]). In the context of facial expressions,
L-CRF have been used to model temporal dynamics of facial expres-
sions as a sequence of latent states, relating the image features to
the class label (e.g., an emotion category). A typical representative
of these models is the Hidden CRF (H-CRF) [14, 16, 17, 18], used
for facial expression recognition of six basic emotions. Apart from
temporal constraints imposed on its latent states, this model fails
to account for the ordinal relationships between the latent states.
However, this may be important if the aim is to encode intensity of
target events as it is the case with encoding the intensity of facial
expressions. To this end, the recently proposed Hidden Conditional
Ordinal Random Field (H-CORF) model [11, 12] imposes additional
constraints on the latent states of modelled events by exploiting their
ordinal relationships. Specifically, this model implicitly enforces the
latent states (e.g. emotions) to correlate with their temporal phases
(or intensity) by representing them on an ordinal scale. This, in turn,
results in the model with fewer parameters, which is less prone to
overfitting, and, thus, able to discriminate better between events (e.g.
facial expressions of different emotions [11, 12]).

However, in the L-CRF models such as H-CRF and H-CORF, and
their variants, the latent states are assumed to be either nominal
or ordinal for each and every class. This representation can be too
restrictive since for some classes modeling the latent states as ordi-
nal may help to better capture the structure of the states, i.e., their
ordinal relationships, allowing the model to better fit the data. By
contrast, it would be wrong to impose ordinal constraints on latent
states of the classes that do not exhibit ordinal structure. In this
case, the unconstrained nominal model provides a better fit to the
data. For example, in recognition of emotion-specific expressions, we
expect the latent states used to model the activation of facial expres-
sions of target emotion class (e.g., happiness) to be correlated with
its temporal phases defined on an ordinal scale (neutral < onset <
apex). Similarly, for an AU activation, the latent states should be cor-
related with its intensity levels, as defined on the Likert scale using
FACS (i.e., neutral < A < B < C < D < E). On the other hand, image
sequences of the negative class, i.e., containing a neutral face (with-
out facial activity) or a mix of other non-target facial expressions
(different emotions or AUs), are expected to model best using nom-
inal states. This is due to the lack of the ordinal structure as well as
high variability (activations of various non-target AUs) in such data.
We can even go a step further by assuming that the nature of the
latent states depends not only on the type of the emotion/AU class
(active vs inactive), but that it can also vary for each image sequence
of the target classes. For instance, in case of noisy image features
(due to the tracking errors in the case of facial landmarks) and due to
differences in facial expressiveness of different subjects, resulting in
subject-specific features.

In these cases, the ordinal relationships could be altered and, thus,
modeling of the ordinal latent states may not be flexible enough to
account for the increased levels of variation in the data. To mitigate
this, the model should automatically infer what type of the latent
states should be used for modeling the dynamics of the input/output
data. To this end, we generalize the L-CRF models by relaxing their
assumption that the latent states within the target sequence need
only be nominal or ordinal. Specifically, we introduce a novel latent
variable within the L-CRF framework, the state of which defines the
type of latent states that are best suited for target image sequences.

The learning in the proposed model is performed using two newly
defined approaches based on max-polling of the latent states and
the Expectation–Maximization (EM) algorithm. To reduce potential
redundancy in the modeling of the underlying dynamics of facial
expressions, we propose the graph-Laplacian regularization of the
model parameters that is defined directly on posterior distributions
of the latent states.

The contributions of the proposed work can be summarized as
follows:

1) We introduce a novel Variable-state L-CRF (VSL-CRF) model
for classification of image sequences that, in contrast to exist-
ing L-CRF models, has flexibility to use either nominal or
ordinal latent states for modeling the underlying dynamics of
target events. Also, the proposed model selects automatically
the optimal latent states for each target sequence.

2) We propose two novel learning algorithms based on max-
pooling and the EM-like learning of the latent states, as well
as graph-Laplacian regularization of the model parameters, for
efficient training of the proposed VSL-CRF model. This results
in a model that is less prone to overfitting than those based
on maximum-likelihood learning (ML) approach as in L-CRF
models (H-CRF and H-CORF).

3) We show on three publicly available datasets (CK+, GEMEP-
FERA and DISFA) that the VSL-CRF model achieves superior
performance in classification of facial expressions. This is due
to its ability to learn the well underlying dynamics of the
target facial expression.

The rest of the paper is organized as follows. Section 2 describes
the recent advances in the sequence- and frame-based classification
of facial expressions of emotions and AU detection. Section 3 intro-
duces the proposed methodology. Section 4 describes the conducted
experiments and presents the evaluation results, and Section 5 con-
cludes the paper.

2. Related work

2.1. Facial expression recognition

Facial expression recognition methods can be categorized into the
static and dynamic approaches (see [8] for a detailed overview). The
static approach attempts the expression recognition from a single
image (typically, the apex of the expression) [19–21]. For example,
Zengetal. [22]proposedatwo-stagemulti-tasksparse learningframe-
work to efficiently locate the most discriminative facial patches for
the expression classification. The SVM classifier is then used to classify
the patches into the six basic emotion categories. The approach in [23]
exploits ensemble of features comprising of Hierarchical Gaussian-
ization (HG), Scale Invariant Feature Transform (SIFT) and Optic Flow,
followed by the SVM-based classification of emotion expressions.

However, a natural facial event such as facial expression of an emo-
tion is dynamic, i.e., it evolves over time by (typically) starting from
a neutral expression, followed by its onset, apex, and then the offset,
followedbytheneutralexpressionagain.Forthisreason, facialexpres-
sion recognition from videos is more common than from static images.
Although some of the static methods use the features extracted from
a window around the target frame, in order to encode dynamics of
facial expressions, models for dynamic classification provide a more
principled way of doing so. As we mentioned in Section 1, most of the
dynamic approaches to classification of facial expressions are based
on variants of DBNs such as HMMs and CRFs. For example, Shang et
al. [24] trained independent HMMs for each emotion category, and
then performed emotion classification by comparing the likelihoods
of the emotion-specific HMMs. However, discriminative models based
on CRFs [17, 18, 25] have been shown to be more effective for the facial
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expression classification. Furthermore, Wang et al. [26] have shown
that capturing more complex time-dependences in the data (beyond
the first order dependences as done in linear-chain CRFs) can enhance
the facial expression classification performance. Similarly, Jain et al.
and Sebe et al. [17, 25] used a generalization of the linear-chain CRF
model, a Hidden Conditional Random Field (H-CRF) [14], with addi-
tional layer of (hidden) variables used to model temporal dynamics
of facial expressions. The training of the model was performed using
image sequences, but classification of the expressions was done by
selecting the most likely class (i.e., emotion category) at each time
instance. The authors showed that: (i) having the additional layer of
hidden variables results in the model being more discriminative than
the standard linear-chain CRF, and (ii) that modeling of the temporal
unfoldingofthefacialshapesismoreimportantthantheirspatialvaria-
tionfordiscriminatingbetweenfacialexpressionsofdifferentemotion
categories(basedoncomparisonswithSVMs).Anothermodificationof
H-CRF, named partially-observed H-CRF, was proposed in [18], where
additional hidden variables are added to the model to encode the
occurrence of subsets of AU combinations in each image frame, and
which are assumed to be known during learning. This method outper-
formed the standard H-CRF, which does not use a prior information
about the AU co-occurrences. In contrast to these models, which still
perform per-frame classification of target expressions, [11, 12] pro-
posed the Hidden Conditional Ordinal Random Field (H-CORF) models
for the sequence-based classification of facial expressions of emotions
and their temporal phases (onset-apex-offset) simultaneously. These
models encode ordinal relationships between the temporal phases of
emotion expression using either supervised or unsupervised learning
ofthelatentstates(correspondingtothetemporalphases).Theauthors
showed that improved facial expression recognition can be achieved
due to the ordinal modeling of the latent states, with the supervised
modeling of the latent states (i.e., using the labels for the temporal
phases of emotion expression) outperforming the unsupervised mod-
eling, as expected in this task. Nevertheless, the main limitation of the
models listed here is that they restrict their latent states to be either
nominal (H-CRF) or ordinal (H-CORF), which may be suboptimal in
some cases, as discussed in Section 1.

2.2. Facial AU detection

As for facial expression recognition, two main approaches are typ-
ically adopted for AU detection: static and dynamic modeling. In the
former, image features are extracted from each frame and then fed
into a static classifiers such as SVM or AdaBoost [27] specifically
designed for detection of each AU independently. A more advanced
static AU detector, named The Selective Transfer Machine (STM) [28],
has shown great improvements over standard SVMs in the target task.
It personalizes the generic SVM classifier by learning the classifier and
re-weighting the training samples that are most relevant to the test
subject during inference. However, a limitation of this approach is
that the re-learning of the target AU detectors has to be performed for
each test subject. The modified correlation filter (MCF) [29] is also an
approach similar in spirit to SVMs and correlation filters, but with the
key difference of optimizing only a single hyperplane. This results in
morerobustAUdetectioncomparedtostandardSVMswhensequence-
level AU labels are used for the frame-based AU detection. The authors
of [30] proposed a multi-kernel-learning (MKL) approach to AU detec-
tion, where they investigate the fusion of different appearance-based
image features via the sum of histogram-based kernel functions. These
kernels are then used in the SVMs trained for each AU. To include the
temporal information, the authors extract features within AU-specific
windows around the image frames used for detection of target AUs.
Zhu et al. [31] proposed a multi-task feature learning (MTFL) method
for joint AU detection. The MTFL approach and Bayesian networks are
used to model AU dependences at both feature and label level, and,
thus, perform joint AU detection in a probabilistic fashion. Likewise,

Zhang et al. [32] introduces the lp-norm regularization to the MKL,
in order to fuse multiple features (using various kernels) and account
for the AU-dependencies. Bayesian graphical models were also used
to encode sparsity and statistical co-occurrence of AUs [33] for their
joint modeling.

While the methods listed above focus on finding the most dis-
criminative feature representations and/or on inference methods for
joint AU detection, they fail to account for temporal information,
i.e., AU dynamics. Methods that do so attempt using either tempo-
ral image features [34, 35] or DBN-based models such as HMMs [7]
and CRFs [36]. In general, these works perform either majority voting
using the static detection [27], or detection of the temporal phases
of AUs followed by the rule-based classification of the sequences (by
detecting the onset-apex-offset sequence of an AU) [7, 37]. Other
temporal models are based on Ordinal CRFs that have been proposed
for modeling of AU temporal phases [38], and their intensity [2],
however, they do not perform AU detection. Another approach,
termed Cascade of Tasks (CoT) [39], is trained on sequences and
applies segment-based detection of AUs. This approach is a combi-
nation of three algorithms for static-frame-level-detection, segment-
level-detection and transition-level detection. The Interval Temporal
Bayesian Networks [26] (ITBN) have also been proposed to capture
complex temporal relations among facial events, and for AU detec-
tion. The network also represents the spatial dependences among the
facial events with a larger variety of time-constrained relations.

Note that the above-mentioned approaches for facial expression
recognition and AU detection use either static/dynamic classifiers
which are designed for either nominal or ordinal data. While the for-
mer imposes no spatial constraints on target classes, the latter does
so for all classes (e.g., all emotions are modeled by imposing ordinal
constraints). In the context of the temporal models based on CRFs,
this results in the models that are either under-constrained (e.g.,
H-CRF[14]) or over-constrained (H-CORF[11]), which limits their
representational power. In relation to the state-of-the-art methods,
the proposed VSL-CRF model focuses on two key aspects of the facial
expression recogniton/ AU detection: (i) modeling of their temporal
dynamics (via novel latent states of the L-CRF models) to improve the
recognition/detection performance of existing graph-based dynamic
models for the target task. (ii) The application of the model to the
sequence-based classification and frame-based detection of facial
expressions of emotions and AUs. In the following, we introduce the
proposed methodology.

3. Methodology

In this section, we first give a short introduction to ordinal and
nominal CRFs, and their L-CRF extensions. We then introduce the
VSL-CRF method that generalizes these approaches. Lastly, we intro-
duce different methods for the model optimization, including the
posterior regularization of the latent states.

3.1. Notation

We consider a K-class classification problem, where we let y ∈
{1, . . . , K} be the class label (e.g., emotion category). Each class y is
further represented with a sequence of (latent) states denoted as
consecutive integers h ∈ {1, . . . , C}, where C is the number of possible
states (e.g., temporal phases such as neutral-onset-apex of emo-
tion). The sequence of the corresponding image features, denoted by
x = {x1 . . . xT } ∈ T × D, serves as input covariates for predicting y and
h = (h1, . . . , hT ). The length of sequences T can vary from instance
to instance, while the input feature dimension D is constant. If not
said otherwise, we assume a supervised setting where we are given
a training set of N data pairs D = {(yi, xi)}N

i=1, which are i.i.d. samples
from an underlying but unknown distribution.
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3.2. Conditional Random Fields (CRF)

CRFs [40] are a class of log-linear models that represent the
conditional distribution P(h|x) as the Gibbs form clamped on the
observation x:

P(h|x, h) =
1

Z(x; h)
es(x,h;h). (1)

Here, Z(x; h) =
∑

h∈Hes(x,h;h) is the normalizing partition func-
tion (H is a set of all possible output configurations), and h are the
parameters1 of the score function (or the negative energy) s(x, h; h).
Note that in this model, the states h are observed and they represent
the frame labels.

3.2.1. Linear chain Conditional Random Fields (CRF)
We further assume the linear-chain graph structure G = (V, E) in

the model, described by the node (r ∈ V) and edge (e = (r, s) ∈ E)
potentials. We denote the node features by X

(V)
r (x, hr) and the edge

features by X
(E)
e (x, hr , hs). By letting h = {v, u} be the parameters

of the node and edge potentials, respectively, s(x, h; h) can then be
written as the sum:

∑
r∈V

v�X(V)
r (x, hr) +

∑
e=(r,s)∈E

u�X(E)
e (x, hr , hs) . (2)

Although the representation in Eq. (2) is so general that it can sub-
sume nearly arbitrary forms of features, the node/edge features are
often defined depending on target task. We limit our consideration
to two commonly used types of the node features (nominal/ordinal),
which can be represented using a general probabilistic model for
static modeling of nominal/ordinal classes. This is achieved by setting
the potential at node r as v�X(V)

r (x, hr) → C
(V)
r (x, hr), where

C
(V)
r (x, hr) =

C∑
c=1

I(hr = c) • log P (hr = c|f (x)) . (3)

The nominal node potential is then obtained by using the multi-
nomial logistic regression (MLR) model [14]:

P (hn
r = c| f n(x, c)) =

exp ( f n(x, c))∑C
l=1 exp ( f n(x, l))

, (4)

where fn(x, c) = bT
c

• [1, x], for c = 1, . . . , C, and bc is the separating
hyperplane for the c-th nominal state of the target class. By plugging
the likelihood function in Eq. (4) into the node potential in Eq. (3), we
obtain the node features of the standard CRF model.

Recently, several authors proposed using the ranking likelihood
to define the ordinal node potentials. This likelihood is derived from
the threshold model for (static) ordinal regression [41], and has the
form:

P (ho
r = c| f o(x, c)) = V

(
bc − f o(x)

s

)
− V

(
bc−1 − f o(x)

s

)
, (5)

where V( • ) is the standard normal cumulative density function
(c.d.f.), and f o(x) = aTx. The parameter vector a is used to project the
input features onto an ordinal line divided by the model thresholds or
cut-off points b0 = −∞ ≤ · · · ≤ bC = ∞, with each bin correspond-
ing to one of the ordinal states c = 1, . . . , C in the model. The ranking
likelihood in Eq. (5) is constructed by contaminating the ideal model
(see [42] for details) with Gaussian noise with standard deviation s .

1 For simplicity, we often drop the dependency on h in notations.

Again, by plugging the likelihood function in Eq. (5) into the node
potential in Eq. (3), we obtain the node features of the Ordinal CRF
(CORF) model [42].

In both models defined above (the standard CRF and CORF), the
edge potentials X

(E)
e (x, hr , hs) are defined in the same way and have

the form:

[I(hr = c ∧ hs = l)]C×C × |xr − xs| , (6)

where I( • ) is the indicator function that returns 1 (0) if the argument
is true (false). The role of the edge potentials is to assure the temporal
consistency of the nominal/ordinal states within a sequence.

3.2.2. Latent Conditional Random Fields (L-CRFs)
While the CRFs introduced in the previous section aim at model-

ing/decoding of the state-sequence within a single class, the frame-
work of L-CRFs [14, 43] aims at the sequence level multi-class
classification. This is attained by introducing additional node in the
graph structure of CRF/CORFs (see Fig. 1) representing the class label,
where the latent states h are now treated as unknown. Formally,
L-CRFs combine the score functions of K CRFs, one for each class
y = {1, . . . , K}, within the following score function:

s( y, x, h; Y) =
K∑

k=1

I(k = y) • s(x, h; hy), (7)

where s(x, h; hy) is the y-th CRF score function, defined as in Eq. (2),
and Y = {hk}K

k=1 denotes the model parameters. With such score
function, the joint conditional distribution of the class and state-
sequence is defined as:

P (y, h|x) =
exp(s( y, x, h))

Z(x)
. (8)

The sequence of the states h = (h1, . . . , hT ) is unknown, and
they are integrated out by directly modeling the class conditional
distribution:

P (y|x) =
∑

h

P( y, h|x) =
∑

h exp(s( y, x, h))
Z(x)

. (9)

Fig. 1. The graph structure of the (a) traditional Latent CRF models H-CRF/H-CORF,
and (b) proposed VSL-CRF model. In H-CRF/H-CORF, the latent states h, relating the
observation sequence x = {x1, . . . , xT } to the target label y (e.g., emotion or AU activa-
tion), are allowed to be either nominal or ordinal, while in VSL-CRF the latent variable
m = {nominal, ordinal} performs automatic selection of the optimal latent states for
each sequence.
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Evaluation of the class-conditional P(y|x) depends on the partition
function Z(x) =

∑
k

Zk(x) =
∑
k

∑
h

exp(s(k, x, h)), and the class-latent

joint posteriors P(k, hr, hs|x) = P(hr, hs|x, k) • P(k|x). Both can be com-
puted from independent consideration of K individual CRFs. The
model with the nominal node potentials in the score function in
Eq. (9) is termed Hidden CRF (H-CRF) [14]. Likewise, the model with
the ordinal node potentials is termed Hidden CORF (H-CORF) [11].

The parameter optimization in the H-CRF/H-CORF models is car-
ried out by maximizing the (regularized) negative log-likelihood of
the class conditional distribution in Eq. (9). Furthermore, to avoid
the constrained optimization in H-CORF (due to the order constraints
in parameters b of the ordinal node potentials), the displacement
variables cc, where bj = b1 +

∑j−1
k=1 c

2
k for j = 2, . . . , C − 1

are introduced. So, b is replaced by the unconstrained parameters
{b1,c1, . . . ,cC−2}. Similarly, the positivity of the ordinal scale param-
eter is ensured by setting s = s2

0 . Although both the objectives of
H-CRF/H-CORF are non-convex because of the log-partition function
(log-sum-exp of nonlinear concave functions), their log-likelihood
objective is bounded below by 0 and are both smooth functions.
For this, the standard quasi-Newton (such as Limited-memory BFGS)
gradient descent algorithms are typically used to estimate the model
parameters (we use the former). The model parameters for H-CRF
are given by h

(n)
y = b1, . . . ,bC , where C is the number of nominal

latent states for class y = {1, . . . , K}. Likewise, for H-CORF we have
h

(o)
y = {b1,c1, . . . ,cC−2,s} for each class in y.

3.3. Variable-state Latent Conditional Random Fields (VSL-CRF)

In this section, we generalize the H-CRF/H-CORF models by allow-
ing their latent states to be modeled using either nominal or ordinal
potentials (latent states) within each sequence. In this way, we allow
the model to select in an unsupervised manner the optimal fea-
ture functions for representing the target sequences. In what follows,
we provide a formal definition of the model, and then explain its
learning and inference.

3.3.1. VSL-CRF: model

Definition 1 (Variable-state Latent CRF). Let m = (m1, . . . ,mK ) be a
vector of symbolic states or labels encoding the nature of the latent
states hm of the i-th sequence, i = 1, . . . , Ny from class y = (1, . . . , K),
either as nominal (my = 0) or ordinal (my = 1). The score function
for class y in the VSL-CRF model is then defined as:

s( y, x, h,m; Y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K∑
k=1

I(k = y) • s(x, h; hn
y), if my = 0

K∑
k=1

I(k = y) • s(x, h; ho
y), if my = 1

(10)

where the nominal (s(x, h; hn
y)) and ordinal (s(x, h; ho

y)) score func-
tions represent the sum of the node and edge potentials, as given by
Eqs. (3) and (6), respectively. Then, the full conditional probability of
the VSL-CRF model is given by:

P( y|x) =
∑
h,m

P( y, h,m|x) =

∑
h,m exp(s( y, x, h,m))

Z(x)
(11)

Z(x) =
∑
k,h,m

exp(s(k, x, h,m)) (12)

Note that, in contrast to L-CRF models introduced in Section 3.2,
the VSL-CRF performs also integration over the latent variable m, the
state of which (ordinal or nominal) defines the type of the latent
states for each sequence of facial expressions. The definition of the
VSL-CRF in Eq. (11) allows it to simultaneously fit both ordinal and

nominal latent states to each sequence, which may result in the
model overfitting. In the following, we introduce two novel learning
strategies in order to avoid over-parametrization of the model, i.e.,
to prevent the model from using redundant nominal and/or ordinal
latent states during inference of target sequences.

3.3.2. VSL-CRF: learning and inference

3.3.2.1. Max-pooling of latent states. The first learning strategy that
we propose constraints the latent states to take either nominal or
ordinal sequence of latent states per target sequence. This is dif-
ferent from H-CRF/H-CORF where the latent states can be either
nominal/ordinal for each and every target class and the sequence.
Formally, the conditional probability in Eq. (11) is now given by:

P( y|x) =

max
m

(∑
h

exp(s( y, x, h,m))

)

Z(x)
(13)

Z(x) =
∑

k

max
m

(∑
h

exp(s(k, x, h,m))

)
(14)

The key aspect of this approach is that now the type of the latent
states is explicitly constrained to either nominal or ordinal. This, in
turn, leads to the following (regularized) loss function of the VSL-CRF
model (further in the text, we denote this model as VSLm):

RLL(Y) = −
N∑

i=1

log P(yi|xi; Y) + kn(o)||hn(o)
k=1..K ||2, (15)

where Y =
{
hn

k , ho
k

}K
k=1. We introduce L-2 regularization over the

parameters of the nominal/ordinal score functions, the effect of
which is controlled by kn/ko, which are found using a validation
procedure.

Unfortunately, the objective function of the VSLm model is both
non-convex and non-smooth because of the max function in its con-
ditional distribution. Therefore, the gradients of the objective in
Eq. (15) w.r.t. the parameters Y cannot be directly computed. Yet, the
nominal/ordinal score functions are both sub-differentiable. We use
this property to construct the sub-gradient [44] of the VSLm objec-
tive at Y. Essentially, this boils down to computing the following
sub-gradients

∂Y = ∇ max
m

(∑
h

exp(s(k, x, h,m))

)
, k = 1, . . . , K,

which are further given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Y = ∇ ∑
h

exp(s(x, h, hn
k)),

if
∑
h

exp(s(x, h, hn
k)) >

∑
h

exp(s(x, h, ho
k))

∂Y = ∇ ∑
h

exp(s(x, h, h0
k)), otherwise.

Thus, at a point Y∗ where one of the score functions, say nom-
inal, gives a higher score than the ordinal for the given sequence,

max
m

(∑
h

exp(s(k, x, h,m))

)
is differentiable and has the gradient

∂hn
k = ∇ ∑

h
exp(s(x, h; hn

k)), while ∂ho
k = 0. In other words, to find a

subgradient of the maximum of the score functions, we choose the
score functions that achieves the maximum for the target sequence
at the current parameters, and compute the gradient of that score
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function only. Once this is performed, the gradient derivation is the
same as in the H-CRF/H-CORF models (see [11] for more details).

3.3.2.2. Fully integrated out latent states. The benefits of the VSLm
approach are that it prevents the VSL-CRF model from redundant
parametrization of the VSL-CRF model that can easily lead to the
model overfitting. However, the sub-gradient optimization approach
can easily get trapped in local minimum when searching for the
model parameters due to the gradient ‘switching’ caused by the max
function in the objective. To this end, we also employ a learning strat-
egy where both types of the latent states (ordinal and nominal) are
fully integrated out, which can be solved using the standard gradient
descent optimization as in the existing L-CRF models. Of course, the
downside is that we may end up with over-parametrization of the
target sequences. To remedy this, in addition to direct optimization
of the conditional probability, we also introduce an EM approach to
the parameter learning.

P( y|x) =

∑
m

(∑
h

exp(s( y, x, h,m))

)

Z(x)
(16)

In the proposed EM learning strategy, we exploit the hierarchy
in the VSL-CRF model, which allows us to integrate out the latent
states h and the indicator variable m in an alternating fashion. Note
that no empirical studies that investigate the performance of EM vs.
the direct optimization in the context of L-CRFs have been reported
so far. Furthermore, we introduce novel posterior regularization (see
Section 3.4) in the objective function of these approaches, with the
aim of implicitly enforcing the model to select either nominal or ordi-
nal latent states for each target sequence during learning2 . Formally,
the objective function is given by:

RLL(Y) = −
N∑

i=1

log P(yi|xi; Y) + kn(o)||hn(o)
k=1..K ||2 + kp

∑
m

′
Rm

′ (17)

where P(yi|xi; Y) is defined by Eq. (16), and kp controls the strength
of the posterior regularization defined in Section 3.4. We detail below
the two learning approaches.

1. Direct optimization. Direct optimization of the objective
function is performed by minimizing the objective function in
Eq. (17) directly w.r.t. all parameters Y of the model. We denote this
approach as VSLd. The gradients of the log-likelihood function in the
first term on the right side of Eq. (17) are given by:

∂ log(P( y,m|x))
∂Y

=EP(m,h|x,y)

[
∂s( y, x, h,m)

∂Y

]
− EP( y,m,h|x)

[
∂s( y, x, h,m)

∂Y

]

The sum of gradient derivations for H-CRF (for m = 0) and H-CORF
(for m = 1) can be used to obtain these gradients. The computation
of the gradients for the model parameters w.r.t. the regularizers in
Eq. (17) is then straightforward. In all our experiments, we used the
Limited-memory BFGS method for optimization.

2. Expectation–Maximization (EM) optimization. Alternatively, the
model parameter can be obtained using the EM algorithm. The
EM algorithm [9] is an iterative optimization approach that can be
employed to find the latent state parameters Y that maximize the
VSL-CRF objective (Eq. (17)) in two steps. In the E-step, the posterior
probability of the binary latent variable m is computed as P(m|x, y), i.e.,
by integrating out the latent states h, for each target sequence. Then,

2 Note that this regularization does not apply to the VSLm approach as the ‘hard’
selection of the latent states is achieved using the max function.

the maximum-likelihood parameter estimates of the model param-
eters Y are computed in the M-step. This process is repeated until
the convergence of the objective in Eq. (17). More specifically, in the
E-step, we compute the posterior probabilities for each target
sequence using the auxiliary function:

q(mi) = p(mi|yi, xi,Y
j) (18)

This is followed by the M-step, where a new parameter vector
Y j+1 is obtained by maximizing the likelihood function using the
current posterior for m:

Y j+1 = argmax
Y

∑
i=1,...,N

∑
mi

q(mi) log P(yi,mi|xi,Y
j) (19)

− kn(o)||Y j||2 − kp

∑
m

′
Rm

′ .

In our experiments, we initialized the model with a uniform dis-
tribution q(mi = o) = 0.5, q(mi = n) = 0.5 for all classes, and
ran the EM-algorithm until it converged. We denote this learning
approach as VSLem. It is important to mention that the most impor-
tant aspect of the VSLem approach, compared to the VSLd, is that
in the latter, the importance of both nominal and ordinal states is
equal and does not change during learning. By contrast, through the
E-step, the VSLem dynamically adapts the weight of each model
(nominal vs ordinal) for each sequence. Together with the proposed
posterior regularization, this is expected to drive the type of latent
states for each sequence to either nominal or ordinal, and thus, avoid
over-parametrization of the target data.

3.3.2.3. Prediction. Once the model parameters Y are learned using
either of the proposed approaches (VSLm, VSLd or VSLem), the infer-
ence of test data can be performed in two ways, depending on the
target task. The first task is sequence-based classification of facial
expressions. The goal here is to classify the pre-segmented sequences
of facial expressions (e.g., emotions) into one of target classes. In the
case of AUs, the goal is to perform detection of the target AU from
pre-segmented sequences classified into active (containing activa-
tions of the target AU), and ‘all other’ (containing neutral facial
expressions and/or facial expressions of non-target AUs). The assign-
ment of a test sequence to the particular class is accomplished by
the MAP rule y∗ = arg max

y
P( y|x∗). In the case of frame-based clas-

sification of target facial expressions, the learned models are used
to compute the likelihood of each time-window in the input test
sequence. Then, the central frame in the window is assigned the
target class, as given by the MAP rule mentioned above.

3.4. Posterior regularization

In this section, we show how geometric knowledge of the poste-
rior probability distribution can be used in our optimization frame-
work. This is motivated by recent works [48–50] on posterior regu-
larization in the conditional models, used to improve the parameter
learning by incorporating prior knowledge. Formally, let H denote
model parameters and H denote hidden variables. Given a set of
observed data D, posterior regularization is generally defined as solv-
ing a regularized maximum likelihood estimation (MLE) problem:

P( y|x) = max
H

L(H; D) + V(p(H|D,H)) (20)

where L(H; D) is the marginal likelihood of D, and V( • ) is a regu-
larization function of the model posteriors over latent variables. A
common definition for V( • ) is the KL-divergence between a desired
distribution with certain properties over latent variables and the
model posterior distribution. In this paper, H corresponds to the
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sequence latent state m. This parameter is not known and no assump-
tions can be made in order to construct the KL-divergence. However,
we make use of the prior knowledge that sequences, which are
sampled from the same class should have the same latent states.
For instance, we assume that if two sequences {y1, x1} and {y2, x2}
are from the same target class k, then the conditional probabilities
P(m|y1 = k, x1) and P(m|y2 = k, x2) should be similar. Suppose that
there are K classes and let fm,k(x) = P(m|y = k, x) be the condi-
tional posterior probability density function for each class defined as
P(m|x , y) =

∑
h

P(h,m|x , y). Then, the regularization is performed by

minimizing the distance between each element of fm having the same
class label. This can be solved by using the graph Laplacian L [51] reg-
ularization approach. To this end, we construct a graph G in which
each node ni corresponds to a sequence xi with the class label yi.
We connect all nodes with edges eij that have the weight sij, which
is defined by a similarity matrix S. In this work, we assign value 1,
if and only if yi = yj, i, j = 1, . . . , N, and 0 otherwise. Note, that y
is the sequence label and N the total number of sequences. We also
do not consider different sequence lengths. This ensures that only
the sequences that come from the same class of facial expressions or
contain activation of the same AU, are connected. Finally, the graph
Laplacian is constructed as L = D − S, where D is a diagonal matrix,
the entries of which are column-sums of S, that is, Dij =

∑
jSij. Then,

the proposed posterior regularization Rm is defined as follows:

Rm =
1
2

m∑
i,j=1

Sij • (P(m|yi, xi) − P(m|yj, xj))

=
m∑

i=1

P(m|yi, xi)2Dij −
m∑

i,j=1

P(m|yi, xi)P(m|yj, xj)Sij

= �f T
m D�fm − �f T

m S�fm
= �f T

m L�fm

where

�fm = (P(m|y1, x1), . . . , P(m|ym, xm))T (21)

Note that the larger values of the disparity in �fm result in a larger
regularization loss Rm for state m = {n, o}. The matrix L is positive
semi-definite, so Rm is convex in �fm and by minimizing Rm , we get a
conditional distribution fm which is sufficiently smooth on the data
manifold.

4. Experiments

In this section, we evaluate performance of the proposed VSL-CRF
model and different learning strategies in the tasks of classification
of facial expressions of emotions, and AU detection. The presented
experiments are conducted on three publicly available facial expres-
sion datasets: Extended Cohn–Kanade (CK+) [45], GEMEP-FERA [46]
and DISFA [47]. We also compare the performance of the proposed
models with the state-of-the-art methods for both tasks, in the
sequence-based classification and frame-based detection settings.

4.1. Experimental setup

4.1.1. Datasets
The facial expression datasets used in this work are summarized

in Table 2. The CK+ dataset contains 593 facial expression sequences
from 123 different subjects. Each sequence begins with a neutral face
and ends at the peak intensity of facial expression of target emo-
tion category. In total, 327 sequences that are labeled in terms of the
basic emotions: Anger, Contempt, Disgust, Fear, Happiness, Sadness,
or Surprise, are used. We performed 10-fold subject-independent

Table 1
F1-sequence-based results on the DISFA database.

AU SVM HCRF HCORF VSLm VSLd VSLem
(SB)

1 56.1 51.4 58.3 68.9 72.3 73.7
2 60.9 67.3 68.0 71.5 77.4 76.3

Upper 4 61.8 63.0 57.3 68.4 72.3 66.4
face 5 51.3 73.1 76.9 75.2 77.2 81.3

6 68.8 70.5 64.2 74.3 72.2 74.8
9 71.4 70.3 67.7 68.5 73.5 72.2
12 67.2 65.9 66.3 71.9 68.3 69.9
15 52.7 61.3 56.4 64.4 68.7 68.5

Lower 17 60.5 62.4 55.3 61.2 73.4 74.3
face 20 57.3 61.5 57.2 63.4 71.8 73.2

25 63.8 71.2 68.4 74.2 72.3 72.4
26 63.5 64.4 64.8 67.3 64.2 68.4
Avg 61.3 65.2 62.6 69.1 72.0 72.6

Bold data represents the results with the highest performance (highest numbers).

cross-validation on this dataset. The GEMEP-FERA dataset contains
87 image sequences of 7 subjects with the per-frame labels for the
AU (1, 2, 4, 6, 7, 10, 12, 15, 17, 18, 25 and 26) activations (present or
not). Furthermore, in the target videos, each participant shows facial
expressions of the emotion categories: Anger, Fear, Joy, Relief or Sad-
ness. We report our results using a 7 fold subject-independent cross
validation, where each fold contained image sequences of a different
subject. The DISFA dataset, contains 32 sequences from 27 subjects.
Each sequence in this dataset is 4000 frames long, and each frame is
labeled in terms of the intensity level (using FACS) for each AU (1,
2, 4, 5, 6, 9, 12, 15, 17, 20, 25 and 26). For our detection approach,
we used the frames with the AU intensity higher than 0 as positive
examples, and the remaining ones as negative. We performed a 10
fold subject independent cross-validation on this dataset.

4.1.2. Sequence-based training
The proposed models require sequential data for training and pre-

diction and the CK+ database can be directly used. However, the AU
databases GEMEP-FERA and DISFA require a pre-segmentation step
in order to extract sequence training data from these databases. We
created a training dataset that consists of active and not-active sub-
sequences of each AU. More specifically, from the full dataset, we
selected the segments in which the target AU is active (inactive) for
the duration of at least 6 frames, and used these as positive (nega-
tive) sequences for training. We then balanced the data by removing
inactive sequences. Note that we selected the threshold of 6 frames
because less than this consistently downgrades the performance
on most target AUs, as can be seen from Fig. 6. Once the VSL-CRF
models are trained using these pre-segmented data, we apply it
in both sequence-based and frame-based manner, as explained in
Section 3.3.2.

Table 2
F1-frame-based results on the DISFA database.

AU SVM VSLem HMTMKL lpMTMKL MTFL
(FB) [31] [32] [55]

1 53.5 75.8 (10) 72 74 61
2 66.8 66.2 (6) 63 64 70

Upper 4 59.2 52.5 (12) 67 68 76
face 5 71.8 51.7 (6) 55 – —

6 58.8 65.3 (12) 70 71 65
9 65.5 65.4 (12) 63 – —
12 63.8 68.6 (10) 72 76 —
15 58.3 79.6 (10) 69 72 68

Lower 17 55.9 79.0 (8) 60 63 74
face 20 58.3 69.5 (8) 68 69 71

25 62.6 65.5 (6) 79 74 —
26 68.7 71.5 (10) 63 — —
Avg 61.9 67.6 (*69.1) 66.8 70.1 69.3

Bold data represents the results with the highest performance (highest numbers).
(*) average F1-Score for the subset of AUs that has been used in lpMTMKL.
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Fig. 2. Sample images with the used facial points from different datasets.

4.1.3. Input features
We used the locations of 49 facial points, extracted from target

images sequences using the appearance-based facial tracker in [54].
Fig. 2 depicts the used facial points from each dataset as input fea-
tures. The pre-processing of the features was performed by first
applying Procrustes analysis to align the facial points to the mean
faces of the datasets. This is important in order to reduce the effects
of head-pose and subject-specific variation. We then applied PCA
to reduce the feature size, retaining 97% of energy, resulting in 18,
21, and 24 dimensional feature vectors for the CK+, DISFA and
GEMEP-FERA datasets, respectively.

4.1.4. Parameter selection
The model parameters that need to be pre-defined are the fixed

number of latent states C and the regularization parametern ko,kn

and kp. We found the optimal number of latent states by applying
a grid search over different settings (in a subject-independent man-
ner). In particular, we applied a two fold cross validation on different
AUs from target datasets. To illustrate this, in Fig. 4 we show the F1-
scores for sequence-based detection of AU6 from the GEMEP-FERA
and DISFA datasets when a different number of latent states is used in
the compared models: H-CRF, H-CORF and VSLd. The results drop for
the H-CRF model when selecting more than 4 latent states per class.
This is mainly because of overfitting but also because of the higher
dimensionality of the problem. This effect is not significant for the
H-CORF model since the ordinal constrains prevent this model from
overfitting. However, in all experiments on all AUs, the F1-measure
has a strong increase from 2 to 3 hidden states, which is the num-
ber of states corresponding to the temporal phases of expression
development (neutral-onset/offset-apex). Adding more states does
not improve the models’ performance significantly but increases
their complexity. Therefore, we set in all our experiments the num-
ber of hidden states C = 3 for both ordinal and nominal classes.
It is important to mention that although VSL-CRF has more latent
states per class (3 nominal and 3 ordinal), as noted above, increas-
ing the number of states in H-CRF and H-CORF does not improve
their performance significantly. Consequently, the difference in the
performance of the compared models (shown in the experiments
below) cannot be attributed to the difference in the number of their
latent states. Lastly, the regularization parameters kn/o and kp were

set using a grid-search procedure on the validation set found sep-
arately for each target fold (no test data were used to perform this
validation).

4.2. Evaluation measure

We report the classification/detection results using the standard
F1-score. This score is widely used for AU-detection and classification
of facial expressions of emotions because of its robustness to the
imbalance in positive and negative samples, which is very common
in the case of AUs. For each AU, the F1-measure is computed based
on a frame-based detection (i.e. an AU detection has to be speci-
fied for every frame, for every AU, as being either present or absent).
We also provide the results for the sequence-based classification,
where the F1-score for sequences is computed based on a sequence-
based prediction, and then weighted by the number of frames in
each sequence. We do so in order to have the fair comparison with
the frame-based approaches. We refer to these metrics F1-sequence-
based for the sequence based approaches, and the F1-frame-based
for the frame-based detection. For emotion classification, we used
the F1 score, without weighting with the number of frames in the
expression sequence, as methods compared on the CK+ dataset
perform the sequence-based classification Fig. 3.

4.2.1. Compared methods
In all our experiments, as the baseline for the classification we

also include the results obtained by first applying the multi-class
SVMs (with the RBF kernel) and trained/evaluated per frame to
obtain the F1-frame-based measure. The sequence labels and the F1-
sequence-based measure were obtained by majority voting over the
frames within the sequence. The results for H-CRF and H-CORF, were
obtained using our own implementation3 . The initial parameters of
the models were set using the same approach as in the VSL-CRF. To
compare the performance of target models with the state-of-the-art
models for each of target tasks (sequence-based emotion recogni-
tion and frame-based AU detection), we report the results from the
original papers, as detailed below.

3 We provide a toolbox with the Matlab code for the compared H-CRF, H-CORF and
VSL-CRF models, at http://ibug.doc.ic.ac.uk/resources/DOC-Toolbox/.

http://ibug.doc.ic.ac.uk/resources/DOC-Toolbox/
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Fig. 3. Per-sequence classification rate on the CK+ database and comparison with the state-of-the-art.

4.2.1.1. Sequence-based methods. Note that some of the methods
compared use different number of folds when performing cross-
validation on the CK+ dataset. Specifically, PO-HCRF9 (partially
observed H-CRF) [18] used a 5-fold cross-validation. In this method,
some states are observed during training and represent activations
of AUs but the goal is to classify emotions. TMS [17] (Temporal Mod-
eling of Shapes) uses Latent-Dynamic CRFs [25] for a frame-based
prediction. However, these predictions are then used to obtain the
sequence label. They applied a 4-fold cross validation. ITBN [26]
(Interval Temporal Bayesian Network) aims to model temporally
overlapping or sequential primitive facial events and the experi-
ments are performed in a 15-fold cross validation setup. Cov3D [53]
is based on spatio-temporal covariance descriptors. The descrip-
tors belong to the group of matrices, which can be formulated as
a connected manifold. The authors used a 5-fold cross validation.
The Constrained Local Method (CLM) [52] is a generic or person-
independent face alignment algorithm with goal of finding the shape
which is described by a 2D triangulated mesh that fits the target face.
They use a 10-fold experimental setup. The MTSL [22] is a multi-
task sparse learning framework in which expression recognition and
face verification tasks, are coupled to learn specific facial patches for
individual expression. Lastly, we compare our method to the state-
of-the-art method for target task, STM-ExpLet [13]. The approach
combines low-level features from videos with a spatio-temporal
manifold learning framework and they evaluate the method using
10-fold cross-validation.

4.2.1.2. Sequence-based results. Table 3 shows the results for facial
expression recognition from the CK+ dataset. The average classi-
fication rate is obtained by unweighted averaging of the results of
the 6 basic emotion (*) plus the contempt emotion. Note that while
the results of the compared L-CRF models are directly comparable,
as they are trained/tested on the same data/folds, this is not the
case with the rest of the models as they use different evaluation
settings. However, we report their performance for the sake of com-
parisons. Note also that in this task, i.e., the classification of facial
expressions of emotions, the dynamic methods (H-CRF, H-CORF and
VSL-CRF) outperform by the large margin the sequence-based SVM
classifier that does not account for temporal dynamics. This table
also shows that the proposed variable-state method outperforms
the other methods that do not have the flexibility to select the best
latent states. On the other hand, the proposed VSLem learning strat-
egy improves the classification performance compared to the other
two introduced learning methods (VSLm and VSLd). We attribute this
to the iterative learning of the latent states, as well as the posterior
regularization, which, evidently, together help to increase the dis-
criminative power of the VSL-CRF model. Lastly, the proposed VSLem
achieves the state-of-the-art performance in the target task by per-
forming similar or better than the best performing state-of-the-art
models, STM-ExpLet and TMS.

Tables 1 and 3 show the results for AU detection on the DISFA
and GEMEP-FERA database using pre-segmented sequences. Again,
the proposed VSL-CRF model outperforms the models that use only

Fig. 4. Cross validation over the number of latent states. The tables show the F1-per-sequence measure on AU6 from (a) the GEMEP-FERA and (b) the DISFA datasets w.r.t. the
different number of the latent states (nominal and ordinal). In the case of VSL-CRF, the shown number is used separately for nominal and ordinal states.
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Fig. 5. Frame-based predictions of AU1 (Inner Brow Raiser) and AU12 (Lip Corner
Puller) from the DISFA database. We used a sliding window with the optimal size
around each target frame to obtain the per-frame detection (red box) from the predic-
tion (blue) of the models. The plots also show the annotated 5 intensity levels (green)
that have been binarized to train the models for AU detection.

nominal (H-CRF) or ordinal (H-CORF) states, trained/tested on iden-
tical data/folds. Furthermore, the highest detection rate is again
achieved using the VSLem model on both the DISFA and GEMEP-
FERA datasets. Moreover, all the VSL-CRF methods achieve signifi-
cantly higher results than the other L-CRF models, which is mainly
because of the ability to select the optimal states per sequence.

4.2.1.3. Frame-based methods. We also compared the variable state
models with recent methods for frame-based AU detection. The
first related method, Early Fusion (EF) [23], applies a hierarchical
Gaussianization and scale-invariant feature transform on motion
features. The classification is done by SVMs. In MKL [30], a kernal-
ized SVM is trained for each AU and the outputs are averaged in
order to exploit temporal information. CoT (Cascade of Tasks) [39]
is trained on sequences and applies segment-based detection. This
approach is a combination of three simple algorithms for static-
frame-level-detection, segment-level-detection and transition-level
detection. Selective Transfer Machine (STM) [28] is based on static
SVMs, which personalizes the generic SVM classifier by learning the
classifier and re-weighting the training samples that are most rele-
vant to the test subject during inference. HMTMKL [31] is a method

for multiple AU recognition. A multi-task feature learning (MTFL)
algorithm is adopted to learn the shared features among AUs and rec-
ognize AUs simultaneously. The AU relations are then modeled by a
Bayesian graphical model. Finally, [32] is also a multi task learning
approach and applies simultaneous detection of multiple facial AUs
by exploiting their inter-relationships.

4.2.1.4. Frame-based results. The experiments for per-frame AU
detection were performed on the GEMEP-FERA and DISFA database,
where we applied a sliding window to each frame in order to obtain
the predictions per frame (by assigning the classifier’s prediction to
the central frame in the window). For each AU, we cross-validated
over different window sizes to find the optimal size per AU. The
results are shown in Fig. 6. Interestingly, the average window size
on the AUs from the GEMEP-FERA dataset is shorter than that of the
AUs from the DISFA dataset. This is mainly because both datasets
contain facial expressions recorded in different contexts (acted vs.
spontaneous), so this difference in the duration of the AU activations
is expected. Also, in DISFA, the expressions are less dynamic because
the participants respond spontaneously to the watched youtube
videos, while in GEMEP-FERA, the participants are actors and show
much more dynamic emotions like ‘Anger’ or ‘Fear’ with fast facial
muscle movements.

Table 4 shows the F1-measure for the detection of each AU from
the GEMEP-FERA dataset with the window size reported in brackets.
The STM [28], despite the subject adaptation, still fails to reach the
full performance of the VSLem model on the mutual set of evaluated
AUs. This is attributed to the fact that the STM does not model the
temporal dynamics. But again, different settings were used in these
evaluations. These results demonstrate again that the assignment of
both types of latent states, as done in the VSL-CRF models is critical
for achieving superior performance on this task. Table 2 shows the
results on the DISFA dataset. The two multi-task learning approaches
(MTL) [32, 55] apply simultaneous detection of multiple facial AUs by
exploiting their inter-relationships. They also model the correlation
among AUs which results in the very high detection rate. The pro-
posed VSL-CRF model reaches the results that are comparable with
that of the state-of-the-art. The high F1-frame-based score achieved
by both methods demonstrates the importance of both the modeling
of the inter-relationships of AUs, as done in the former, and dynam-
ics, as done in the latter. The importance of modelling dynamics for
AU detection is demonstrated in Fig. 5. The frame-based detection of
AU1 (Inner Brow Raiser) and AU12 (Lip Corner Puller) of the HCRF
and VSLem models is smooth and outperform the SVM that is applied
in a static manner. Note that the VSLem model succeeds to detect
even the segments with very low AU intensity. Examples for AU12
are the segments at frame number 820 and 1450.

4.2.2. Sequence-based cross-database results
Detecting AUs across datasets is challenging because of differ-

ences in contexts in which this data is recorded (acted vs. sponta-
neous, illumination, frame rate, etc.). In this experiment, we apply
the VSL-CRF models, the H-CRF and H-CORF models, and the baseline
SVM on the pre-segmented sequence form the AU databases GEMEP-
FERA and DISFA. Tables 6 and 5 show the results for the experiment
in which we trained the models using the GEMEP-FERA database and
evaluated them on the DISFA database, and the other way round,
respectively. We observe that in this setting also the proposed VSL-
CRF models outperform nominal- or ordinal-state methods, and the
static SVM. This demonstrates the strong generalization capability
of the proposed models. It is interesting to note that this differ-
ence is much smaller in the results reported in Table 6, where HCRF
achieves similar results to VSLem, compared to Table 5, where the
HCRF and H-CORF are largely outperformed by the VSL-CRF mod-
els. We attribute this to the fact that the acted data (GEMEP-FERA)
contains much more variation in facial expressions compared to
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Fig. 6. F1-measure per AU for different window sizes for the frame-based VSLem detection.

Table 3
F1-sequence-based results on the GEMEP-FERA database.

AU SVM HCRF HCORF VSLm VSLd VSLem
(SB)

1 63.1 57.1 63.4 67.3 55.8 65.1
2 62.2 65.8 64.8 63.8 64.4 71.7

Upper 4 44.7 44.4 44.2 44.2 49.7 48.2
face 6 57.4 53.5 51.8 58.4 53.7 54.9

7 60.3 64.2 65.4 63.2 66.2 67.5
10 50.8 55.5 56.4 58.5 57.4 56.3
12 54.3 45.2 43.2 53.3 54.7 54.7
15 12.4 15.3 14.9 14.4 14.2 15.5

Lower 17 44.9 64.8 68.3 67.8 69.4 71.6
face 18 44.0 43.1 41.7 50.3 50.1 49.8

25 52.5 54.3 51.2 61.1 54.8 57.5
26 48.3 33.4 35.8 49.4 44.4 48.4
Avg 52.0 53.5 53.4 57.7 57.2 59.0

Bold data represents the results with the highest performance (highest numbers).

spontaneous expressions in DISFA dataset. Consequently, the models
are learned on more diverse data, allowing them to generalize better
to subtle facial expressions, as evidenced by this experiment. We also
observe that all three VSL-CRF learning approaches perform similarly
in this setting. A possible reason is that since the data distributions
vary significantly across the datasets (in terms of number of active
examples, as well as the AU co-occurrences), this limits the proposed
learning approaches to reach their full performance. Finally, note
that the performance on the both datasets drops significantly com-
pared to the results in Tables 1 and 3. For example, for GEMEP-FERA,

Table 4
F1-frame-based results on the GEMEP-FERA database.

AU SVM VSLem CLM CoT STM MKL EF
(FB) [52] [39] [28] [30] [23]

1 52.5 66.9 (6) 78 64.2 68.1 61.1 57.6
2 51.8 71.2 (10) 72 57.2 65.5 54.4 49.4

Upper 4 42.5 52.7 (6) 43 46.6 43.3 45.4 43.6
face 6 55.2 67.0 (6) 66 72.9 71.6 67.0 62.3

7 53.3 74.1 (10) 55 67.4 66.2 65.1 61.3
10 44.9 63.0 (4) 47 — — — —
12 42.2 62.9 (10) 78 78.3 82.1 75.4 71.5
15 12.2 22.9 (10) 16 39.3 — — —

Lower 17 31.9 50.1 (10) 47 38.6 35.9 36.7 30.1
face 18 42.4 38.7 (6) 45 — — — —

25 41.3 39.7 (6) 31 — — — —
26 49.5 39.0 (6) 54 — — — —
Avg 46.5 58.7 (*63.6) 56.0 57.1 61.8 57.9 57.6

Bold data represents the results with the highest performance (highest numbers).
(*) average F1-Score for the subset of AUs that has been used in lpMTMKL.

Table 5
Per-sequence classification rate on the cross dataset experiment DISFA →GEMEP-
FERA.

AU SVM HCRF HCORF VSLm VSLd VSLem

1 40.0 44.2 39.7 42.6 43.3 43.7
2 40.4 44.8 47.4 43.3 42.8 41.2
4 33.3 33.5 25.3 22.4 34.8 34.0
6 57.7 54.1 46.3 58.7 49.7 54.5
12 23.7 35.9 34.5 33.0 36.0 37.4
17 22.2 29.4 16.9 19.8 24.6 25.6
25 37.2 67.9 44.6 46.7 44.4 45.6
26 37.5 31.4 36.0 37.3 33.2 32.4
AVG 35.3 38.9 36.3 37.9 38.6 39.2

Bold data represents the results with the highest performance (highest numbers).

the results on the used set of AUs from 60.2% to 39.2% for the best
performing model. This indicates the importance of accounting for
the dataset-differences during modeling of facial expressions.

4.2.3. The effect of posterior regularization
On all datasets, the VSLd and VSLem outperforms VSLm. This is

mainly attributed to the more flexible representation of the latent
states as well as the additional posterior regularization. To get some
insights into the behavior of the posterior regularization during
the learning process, we performed additional experiment on the
CK+ dataset. Specifically, we trained the VSLem model with and
without the posterior regularization and monitored the parame-
ter for each EM-iteration (the graphs showing the changes in the
nominal/ordinal states on the training data). The training/test sets
consisted of 162 sequences each, and are sorted according to the
sequence label. The results are shown in Fig. 7. The bar on the right
side of each main figure shows the contribution of ordinal/nominal
states for the prediction of the test sequences. We can see that the

Table 6
Per-sequence classification rate on the cross dataset experiment GEMEP-FERA
→DISFA.

AU SVM HCRF HCORF VSLm VSLd VSLem

1 28.5 32.8 29.6 35.2 40.0 35.2
2 37.2 45.7 41.3 49.4 49.3 40.9
4 25.9 44.9 29.2 24.8 35.5 40.9
6 50.8 44.6 39.9 48.6 42.6 48.4
12 21.2 32.1 26.2 42.7 28.5 39.6
17 26.6 23.1 21.9 25.4 25.3 32.7
25 42.1 46.5 50.5 52.6 53.2 45.3
26 22.2 34.1 33.0 33.3 37.8 38.0
AVG 34.3 36.7 33.9 39.0 39.1 40.1

Bold data represents the results with the highest performance (highest numbers).
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Fig. 7. The visualization of the learning of the latent variable m = {ordinal, nominal} within the VSLem model applied to the CK+ database. The evaluation was performed using
2-fold subject-independent evaluation using equal number of training/test data. The posterior probabilities P(m|y, x) are shown for each sequence after the maximization step of
each EM-iteration. The plots in (a) and (b) shows the learning process without and with the posterior regularization (using the optimal valdiation parameter kp).

emotion happiness exhibited a strong ordinal structure as encoded
with its ordinal states, while the other emotion were predicted using
the nominal states. The figure on the right shows the same learning
process with active posterior regularization. Again, the emotion hap-
piness was trained and predicted using mainly the ordinal states but
all other emotions mainly preferred using the nominal states during
training and inference, as the result of the regularization. The learned
type of the latent states is also consistent on the test data. Finally,
although only emotion happiness showed strong ordinal nature, as
learned from the employed features of facial expressions, the nom-
inal states selected for the other emotion categories do not imply
that there is no ordinal structure in their facial expressions but that
the nominal states were a better fit for the target data used in this
experiment. Note also that when the posterior regularization is used,
the F1-sequence-based measure on the test sets is higher (69.5%
vs. 67.9%), demonstrating the benefit of the posterior regulariza-
tion. Furthermore, note that this regularization enforces the model
to converge to either nominal or ordinal states during the model
learning.

5. Conclusions

In this paper, we proposed a novel variable-state Conditional
Random Field model for dynamic facial expression recognition and
AU detection. By allowing the structure of the latent states of tar-
get classes to vary for each target sequence, the proposed model
can better discriminate between different facial expressions than the
existing models that restrict their latent states to have the same and
pre-defined structure for all classes (nominal or ordinal). For this
model, we proposed two novel learning strategies and the poste-
rior regularization of the latent states, resulting in a more robust
model for the target tasks. This leads to superior performance com-
pared to traditional latent CRF models. We also showed on three
facial expression datasets that the proposed model performs simi-
lar or better than the state-of-the-art for the task of sequence-based
facial expression recognition, and that it reaches state-of-the-art per-
formance for the task of per-frame AU-detection. The future work
should focus on more detailed analysis of the learning of the target
latent states within each emotion class and AU (e.g., the automated
selection of the window size for each AU), as well as analysis of the
relations between the learned latent states and the temporal aspects
of facial expressions such as their temporal phases and intensity.

Also, extending the proposed approach so that it can handle simul-
taneous detection of multiple AUs, and its adaptation to previously
unseen datasets, are also interesting avenues to pursue.
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