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Abstract

Local deep neural networks have been recently introduced for gender recognition. Although,
they achieve very good performance they are very computationally expensive to train. In this
work, we introduce a simplified version of local deep neural networks which significantly reduces
the training time. Instead of using hundreds of patches per image, as suggested by the original
method, we propose to use 9 overlapping patches per image which cover the entire face region. This
results in a much reduced training time, since just 9 patches are extracted per image instead of
hundreds, at the expense of a slightly reduced performance. We tested the proposed modified local
deep neural networks approach on the LFW and Adience databases for the task of gender and age
classification. For both tasks and both databases the performance is up to 1% lower compared to the
original version of the algorithm. We have also investigated which patches are more discriminative
for age and gender classification. It turns out that the mouth and eyes regions are useful for age
classification, whereas just the eye region is useful for gender classification.

1 Introduction and Related work

Gender classification and age estimation can benefit a wide range of applications, e.g. visual surveil-
lance, targeted advertising, human-computer interaction (HCI) systems, content-based searching etc
[10]. In order to solve these two tasks accurately and efficiently, a modified version of the Local Deep
Neural Networks (LDNN) [9] is proposed. The proposed method achieves similar results to most state-
of-the-art methods while the amount of computation needed is largely reduced. We also investigate
which face regions are important for gender/age-group classification. The conclusion drawn is that
the eyes and mouth regions are the most informative ones for age classification, whereas just the eyes
region is important for gender classification.

1.1 Age and gender classification using CNNs

A convolutional neural network (CNN) consisting of three convolutional layers was used in [§] to
achieve 86.8+1.4% and 50.7£5.1% accuracy for gender and age-group classification, respectively, on
the Adience database. Random patches of size 227 by 227 were cropped from the original and mirrored
images in order to augment the training data and avoid overfitting. When testing, five 227-by-227
patches were generated from every single image. Four of them were aligned with the four corners of
the image and one of them was aligned with the centre of the image. These five patches were then
reflected horizontally, resulting in ten patches generated from every single image. The final prediction
of the image was the average of these ten patches. The results of age classification on the Adience
database were improved to 64.0+4.2% using the VGG-16 CNN architecture pre-trained on ImageNet
[11].

1.2 Local deep neural networks (LDNNs)

LDNNs follow a different approach where small patches around important regions of images are ex-
tracted and then fed into deep neural networks to do gender/age classification [9]. The process is
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shown in Figure [I] Initially, filters, e.g. edge or corner detectors, are used to find edges in images.
Subsequently, patches are extracted around the detected edges. Finally, all patches are used to train
neural networks. During testing, the predictions of all the patches obtained from one image are av-
eraged as the final result for that image [9]. Classification rates of 96.25% and 77.87% in image and
patch level, respectively, were achieved on the LFW database and 90.58% and 72.83% in image and
patch level, respectively, were achieved on the Gallagher’s database using LDNN [9]. Using patches
obtained in this way seldom leads to overfitting since most redundant information has been removed
during filtering. Therefore, a simple feed forward neural network without dropout is used [9].
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Figure 1: Training a LDNN [9].

2 Databases

2.1 Labeled Faces in the Wild

The Labeled Faces in the Wild (LFW) database contains 13,233 face photographs labeled with the
name and gender of the person pictured. Images of faces were collected from the web with the only
constraint that they were detected by the Viola-Jones face detector [6].

i

Figure 2: Examples in the LEFW 3D version.

There are four versions of LFW - the original version, funneled version [4], deep funneled version [5]
and frontalised version (3D version). LFW is an imbalanced database including 10,256 images of men
and 2,977 images of women from 5,749 subjects, 1,680 of which have two or more images [6] [7]. The
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3D version is used in this work since the images are already cropped, aligned and frontalised properly
as shown in Figure

2.2 Adience database

The Adience database contains 26,580 face photos from 2,284 individuals with gender and age labels of
the person pictured. The images of faces were collected from the Flickr albums and released by their
authors under the Creative Commons (CC) license. The images are completely unconstrained as they
were taken under different variations in appearance, noise, pose, lighting etc [2].

There are three versions of the Adience database, including the original version, aligned version
and frontalised version (3D version) with 26,580, 19,487 and 13,044 images respectively[2]. The 3D
version is used in this work since most images are already frontalised and aligned to the centre of the
image. However, images in the Adience database 3D version may be extremely blurry or frontalised
incorrectly as shown in Figure [3] Additionally, people in the images could show emotions. Therefore,
patches extracted from those images may not always contain the same face region which may result in
lower classification rates.

Figure 3: Examples in the Adience database 3D version

2.2.1 Age groups merging

There are eight age groups and another 20 different age labels in the Adience database as shown in
Table 1| Using only the eight age groups is not feasible as no images for the 6! group - (38, 43) exist
in folds 1 or 2. Therefore, images that are labeled with one of the 20 age labels were merged to one of
the eight age groups. In order to use all images labeled with age and to make the data more balanced,
images were grouped as following;:

e The 1%¢ age group: images labeled with ’(0, 2)’ or ’2’
e The 2"? age group: images labeled with ’(4, 6)’ o
e The 3™ age group: images labeled with ’(8, 12)’ or "13’

)

e The 4" age group: images labeled with ’(15, 20)’, ’(8, 23)’ or 22’

(

(

e The 5! age group: images labeled with ’(25, 32)’, *(27, 32)’, ’23’, '29 or "34’

e The 6" age group: images labeled with (38, 43)’, ’(38, 48)’, ’(32, 43)’, ’(38, 42)’, ’35’, ’36’, 42’
or 45’
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e The 7" age group: images labeled with (48, 53)’, ’55’ or '56’

e The 8" age group: images labeled with ’(60, 100)’, ’57" or ’58’

Table 1: All age labels in Adience database [2]

Fold 0 | Fold_1 | Fold_2 | Fold_3 | Fold_4
(0, 2) 675 | 173 | 633 | 117 | 219
(4, 6) 366 | 338 | 268 | 200 | 414
(8,12) | 161 | 447 | 349 | 405 | 226
(15,20) | 111 | 374 | 162 | 322 | 152
(25,32) | 1,143 | 442 | 508 | 628 | 629
(38,43) | 403 0 0 326 | 328
(48,53) | 167 94 81 71 159

(60, 100) | 94 08 129 80 182

2 0 0 3 0 0
3 12 0 2 3 0
(8, 23) 0 0 0 1 0
13 3 103 0 0 0
22 0 77 2 7 0
23 0 29 11 29 0
(27, 32) 0 1 0 42 0
29 0 0 6 0 0
(32, 43) 0 300 | 208 0 0
34 0 0 0 75 0
35 21 80 8 77 28
36 3 0 0 42 0

(38, 42) 0 10 0 22 0

(38, 48) 1 0 0 0 5
42 0 0 0 1 0
15 1 A7 2 3 2
55 3 44 3 3 8
56 0 0 1 0 0
57 0 0 2 4 10
58 2 0 0 2 0

We have defined this merging protocol so results may not be directly comparable with other works
that potentially use a different protocal. However, we were not able to find any publicly available

protocol.

2.2.2 One-off age classification rates

Due to the similarity of people in adjacent age groups, images classified into adjacent age groups are
also considered to be classified correctly and the corresponding result is called one-off classification

rate [8].

2.2.3 Three subsets of the Adience database 3D version

Images labeled with gender are not necessarily labeled with age groups and vice-versa. This leads to
three subsets of the Adience database 3D version. The 1! subset consists of 12,194 images labeled
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with gender. The 2"? subset consists of 12,991 images labeled with age. The 3¢ subset, where the
experiments were conducted, consists of 12,141 images labeled with both gender and age as shown in

Table 21

Table 2: Images labeled with both gender and age in the Adience database 3D version [2]
Group | 1% ond | grd 4t 5th 6! | 7th | 8% | Total
Male 533 693 736 508 | 1,635 | 1,011 | 333 | 291 | 5,740
Female | 494 910 952 699 | 1,867 | 875 | 296 | 308 | 6,401
Total | 1,027 | 1,603 | 1,688 | 1,207 | 3,502 | 1,886 | 629 | 599 | 12,141

3 The proposed LDNN nine-patch method

The LDNN approach (see Section generates hundreds of patches for every single image. As a
consequence, it is computationally expensive to train a neural network when there are thousands of
images. In order to reduce the computational cost, we propose the nine-patch method which generates
only nine patches for every single image. Figure [4 shows an example of the nine patches of an image.
The nine patches are indexed from left to right and then from top to bottom; The top left patch is
indexed as the 1% patch and the bottom right is indexed as the 9" as shown in Figure |4l The height
and width of patches are set to half of the height and width of images. The overlapping ratio of
adjacent patches is 50%; the 2"¢ patch overlaps 50% with the 15 and the 37¢ patch and the 4" patch
overlaps 50% with the 1% and the 7" patch.

Figure 4: The nine patches of the image

If images are frontalised and cropped properly, like images in the LFW database 3D version, the
1% patch should certainly contain the left eye and the mouth should be contained in the 8 patch.
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3.1 Pre-processing

Initially, images are converted into grey-scale (from 0.0 - black to 1.0 - white). For images in the
Adience database, the face is cropped using a fixed box - [20 20 100 100], which indicates that the
coordinate of the top-left corner of the fixed box is [20 20] and the height and width of the box are
both 100. For images in the LF'W database, no box is needed since images are already cropped and
aligned perfectly. Subsequently, images are resized to 60 by 60. Then the nine 30-by-30 patches are
generated. For every single patch, pixel values were normalised to the standard Gaussian distribution
with zero mean and unity variance.

3.2 Methodology

During training, the nine patches are extracted as shown in Figure |4/ and used to train a neural network.
The testing procedure is shown in Figure [5l When testing, for every single image, the corresponding
nine patches are classified by the trained neural network. Subsequently, the outputs or the posteriors
of the nine patches are averaged. The averaged result is the final prediction of the image and the image
will be classified to the class with the highest posterior.

An image _.<—>_—- el | Average

network

Output 9

Figure 5: The methodology of the nine-patch method

4 Experimental Results on the LFW database

We have run a series of experiments on the LFW database, including optimisation of parameters and
different combinations. In order to test the nine-patch method, five-cross-validation using the same
five folds as [9] is used. Around % of patches of men are randomly discarded in each fold to balance
the data.

4.1 Parameters of neural networks

We have run a series of experiments to identify a suitable set of training parameters. We have experi-
mented with the number of hidden layers, number of hidden units per layer, dropout rates, activation
functions (leaky ReLU), learning rate update policies etc. As a result, we have found that the following
set of parameters leads to good performance:

e learning algorithm: SGD + Momentum

e 0.8 and 0.5 retain dropout probability for input and hidden units, respectively
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e Initial learning rate: 3

e Learning rate update rule: Ir < Ir x 0.998 from the first epoch to the last
e Initial momentum: 0.5

e Final momentum: 0.99

e Momentum would increase from the first epoch until the 500" epoch.

e Number of hidden units: 512

e Number of hidden layers: 2

e Activation function: ReLLU

e Weights were initialised with He’s method [3]

4.2 A replication of LDNN

Firstly, the original LDNN method is replicated. After images have been cropped and resized to 60*60,
a sobel/canny edge detector is used to obtain edges from the images. Subsequently, a low pass filter,
e.g. a Gaussian filter, is used. Then a threshold is set so that strong edges, e.g. contours, would be
preserved while noisy points and weak edges would be removed, resulting in the binary mask shown in
Figure[6] Around every single white pixel in the binary mask, a patch with size 13*13 is generated.

-
_

Low pass filter Binary mask

Figure 6: Comparison between using the Sobel and Canny edge detector

There is a trade-off between the number of patches and the information left after pre-processing.
When most useful edges are preserved, the number of patches is extremely large. For example, in
the case shown in Figure @ a nine-by-nine Gaussian kernel N(u = 0,0 = 2) is used as the low pass
filter and the threshold is set to 0.2. There are 425/485 patches on average for one image when
the Sobel/Canny edge detector are used respectively as listed in Table |3, which leads to 425*2647 =
1,124,975 or 485*2647 = 1,283,795 patches respectively for a single fold of the LFW database. Due
to the huge number of patches and the limited amount of memory, it is not feasible to train a neural
network using all of the four training folds.

Table 3: Comparison between our implementation of LDNNs and the original version presented in [9].

Sobel | Canny | LDNN [9] | LDNN with location[9]
Number of patches per image 425 485 unknown unknown
Patch level 63.27% | 64.95% | 74.50% 77.26%
Image level 91.55% | 93.68% | 95.79% 96.25%
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Instead of using three or four folds, only one fold was used for training and one fold was used for
testing, leaving three folds unused. This leads to classification rates of 91.55%/93.68% as shown in
Table (3| which are lower than those reported in [9] (~ 96%). However, this could well be the result of
using a smaller training set that contains only one fold.

4.3 Patch size and overlapping

In order to identify the most suitable patch size, we have run a series of experiments with different
patch sizes. The highest classification rate in image level without overlapping is obtained when patch
size is 30 as shown in Table[d As shown in Figures[7]and [9] the reason that patch size 15 and 30 lead
to over 94% classification rates in image level could be that important facial regions, e.g. eyes, are not
split into more than two patches. Especially when the patch size is 30, the 1%! patch of the first row
would contain the entire left eye and the second would contain the right, which leads to the highest
classification rate in image level without overlapping. Additionally, using patch size 30 requires the
smallest amount of computation. Thus, patch size is set to 30.

Table 4: Classification rates with different patch sizes and 512 hidden units for each hidden layer.
Patch Size | 13*13 15*15 20*20 30*30 | Entire images [9]
Patch level | 73.12% | 75.13% | 78.50% | 87.56% 92.60%
Image level | 93.366% | 94.028% | 92.852% | 94.21% 92.60%

Using 50% overlapping ratio increases the classification rates by 1% approximately while using
75% overlapping ratio does not further improve the performance as shown in Table [5. Therefore, the
overlapping ratio is set to 50%, which is also less computationally expensive.

Table 5: Using overlapping ratios 0%, 50% and 75% when patch size was 30

overlapping ratios | no overlapping 50% 75%
Patch level 87.56% 88.34% | 84.22%
Image level 94.21% 95.072% | 94.25%

4.4 Classification rate of individual patches

For every single experiment using the nine patches, the classification rate of each patch is recorded.
Results are shown in Table [6] It is consistent with all experiments that the highest classification rate
comes from the patches that contain the eye.

Table 6: Classification rates of patches
1st 2nd 37‘d 4th 5th 6th 7th 8th gth

Cr | 89.31% | 87.75% | 90.49% | 90.11% | 88.60% | 90.84% | 86.00% | 86.01% | 86.70%

Compared with the last three patches that do not contain the eyes as shown in Figure to
Figure the classification rates of the first six patches are 2 to 4% higher.

4.5 Five rows

In this experiment, five rows with 60-by-20 pixels are cropped for every single image as shown in
Figure Five neural networks are trained using one of the five rows separately. When testing, for
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Figure 7: Patch size 30

Figure 8: Patch size 20

Figure 9: Patch size 15




4.6 Using entire images 4 EXPERIMENTAL RESULTS ON THE LFW DATABASE

. .
Figure 10: The first, second and third patch from left to right

’.

Figure 11: The fourth, fifth and sixth patch from left to right

% |

Figure 12: The seventh, eighth and ninth patch from left to right

every single image, the five rows are cropped and classified by the corresponding neural network. The
final output of the image is the average of the outputs of the five rows cropped from the image.

Figure 13: Five 60*20 rows.

Results are shown in Table[7] As expected, the highest classification rate of a single row comes from
the second row, which contains the two eyes as shown in Figure [I3] Combining the five rows achieves
93.73% classification rate, which is higher than any single row results. However, the performance is
lower than the nine-patch method.

4.6 Using entire images

Images are converted into greyscale and are resized to [32 32] and are mapped to the standard Gaussian
distribution. The neural networks are then trained using entire images directly, which results in 92.72%
classification accuracy.
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Table 7: Classification rate of the five rows
The 15t row | The 2" row | The 3" row | The 4" row | The 5™ row | Combined

Accuracy 89.73% 92.59% 90.58% 89.07% 90.24% 93.73%

4.7 Combinations

In this section, we experiment with several combination of the nine patches, the entire images and the
five rows. The best combination is shown in Figure [14] and results in a classification rate of 95.64% as
shown in Table 8l

; - Neural networks Nine posteriors of | X (1/9)
(A) the nine patches
Neural networks Posterior of the .
: summation
(8) image
Neural networks Posterior of the
The second row
(C) second row

Figure 14: Combining the nine-patch method with entire images and the second row

The best performance was achieved by combining the neural network (A) trained using the nine-
patch method with the neural network (B) trained using entire images and the neural network (C)
trained using the second row. When testing, for every single image, the nine patches are classified by
the neural network (A) and the image itself is fed to the neural network (B) and the second row of
the image is fed to the neural network (C). When combining these three sets of neural networks, the
posteriors from the neural network (A) are multiplied by %, which means an entire image shares the
same weight as the nine patches extracted from the image.

Table 8: Comparison between the combination and using the nine-patch method only
Entire images | The nine-patch method | The combination
Accuracy 92.72% 95.072% 95.64%

To summarise, the highest classification rate that the nine-patch method can achieve on the LFW
database is 95.072% and combining the nine-patch method with entire images and the second row
results in 95.64%, both of which outperform the highest results that DNN, Deep Convolutional Neural
Networks (DCNN), Gabor+PCA+SVM or BoostedLBP+SVM can achieve on the LEW database [9].

11
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Additionally, compared with LDNN, the nine-patch method reduces the amount of computation largely
while the classification rate is only around 0.5% lower.

5 Experimental results on the Adience database

Initially, experiments for gender/age classification are conducted separately on the 3D version. Subse-
quently, the neural networks that are responsible for gender classification are used to assist age-group
classification. Similarly, five cross validation using the same folds as [§] is conducted to evaluate the
performance.

5.1 Gender classification

We have trained neural networks using the nine-patch method and entire images with the same pa-
rameters as in Section Results are shown in Table [J] The nine-patch method leads to a slight
improvement (1% approximately) compared with training neural networks using entire images. Com-
pared with the results on the LEW database, the gender classification rates achieved on the Adience
database are approximately 17% lower. The main reason is that images in the Adience database are
not frontalised perfectly. As a consequence, patches do not always contain the same region of faces.

Table 9: Results of gender classification
Using entire images | The nine-patch method
CR 77.79% 78.63%

The classification rates for each patch are shown in Table [I0] Unlike the LEW database, for the
Adience database 3D version, higher classification rates only come from the second row, which consists
of the 4", the 5" and the 6" patches while the classification rates of the other six patches are 2% -
4% lower. The reason may be that the first three patches may not contain the eye or may be distorted
seriously. For the second row (the 4 to the 6! patch), the patches contain the entire eye and a part
of the nose as shown in Figures [15 to Therefore, the classification rates of patches in the second
row are the highest.

Figure 15: The first, second and third patch from left to right
Figure 16: The fourth, fifth and sixth patch from left to right

Figure 17: The seventh, eighth and ninth patch from left to right

12
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Table 10: Gender classification rates of the nine patches on the 3D version
15t 2nd 37“d 4th 5th 6th 7th 8th 9th

Cr | 70.82% | 69.66% | 71.55% | 73.75% | 72.15% | 74.19% | 70.98% | 69.61% | 71.42%

5.2 Age-group classification

We also carry out age-group classification using entire images and the nine-patch method. Results
are shown in Table The age-group classification rate using the nine-patch method is 40.25%.
Compared with using entire images, the nine-patch method increases the classification rate by 0.75%
approximately and increases the one-off classification rate by 1% approximately.

Table 11: Results of age classification rates on the 3D version
Entire images (DNN) | The nine-patch method
Accuracy 39.50% 40.25%

One-off 76.18% 77.05%

Table 12: Age classification rates of the nine patches on the Adience database 3D version
15t 2nd 3rd 4th 5th 6th 7th 8th gth

Cr | 35.07% | 37.50% | 35.64% | 37.73% | 39.52% | 37.67% | 33.52% | 37.22% | 34.53%

The age-group classification rate of each patch is shown in Table[I2] Similarly, the highest classifi-
cation rates come from the patches in the second row that contains the eyes. In addition to the second
row, the classification rates of the 2"¢ patch and the 8** patch are 2.5-3.5% higher than those of the
other patches. The reason may be that the 2"¢ patch contains the inner corners of the two eyes and
the 8" patch contains the mouth.

5.3 Age classification for men/women

We conduct age-group classification for images of men and women separately using the nine-patch
method and entire images. Results are shown in Table In order to combine gender and age
classification, the neural network (B) in Figure |18|is trained using 5,740 images of men only while the
neural network (C) is trained using 6,410 images of women only.

The classification rate of each patch is shown in Tables [14] and For images of men, the classifi-
cation rates of the 1°* and the 3" patch are almost the same as those of the 7** and the 9*". However,
for images of women, the classification rates of the 1! and the 3"¢ patch are about 2% higher than
those of the 7% and the 9*". This indicates that the 1°* and the 3" patches, which contain the inner
corners of the eyes, are more important to estimate women’s age groups.

5.4 Combination of age/gender classification

We run a series of experiments to combine gender and age-group classification. Results are shown
in Table |[17] and the process is shown in Figure Three sets of neural networks already trained in
the previous experiments are used. The neural network (A) is responsible for gender classification
and the neural networks (B) and (C) are responsible for age-group classification for men and women,
respectively. Initially, every single patch is classified by gender. If the patch is recognised as a patch
of men, it would be fed and classified by the neural network (B). If the patch is recognised as a
patch of women, it would be fed and classified by the neural network (C). Combining age/gender

13
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A
. Gender g€
An image P classification
classification Yes—
/a patch (A) for males
(B)
No
Age
classification
for females
(©)
Figure 18: Combination of age/gender classification
Table 13: Results of age-group classification for men and women
Neural network (B): Neural network (C):
age-group classification for men | age-group classification for women
Classification rate Exact One-off Exact One-off
Entire images 38.69% 77.63% 36.48% 74.83%
The nine-patch method | 39.90% 80.32% 41.27% 77.14%

Table 14: Age classification rates of the nine patches of men
15t 2nd 3rd 4th 5th 6th 7th 8th gth

Cr | 30.84% | 32.22% | 31.07% | 32.53% | 34.42% | 31.80% | 32.01% | 32.64% | 31.08%

Table 15: Age classification rates of the nine patches of women
15t 2nd 3rd 4th 5th 6th 7th 8th gth

Cr | 33.03% | 34.37% | 32.38% | 34.49% | 37.00% | 34.37% | 31.13% | 34.01% | 31.78%

classification increases the classification rates by 1.5% and increases the one-off classification rate by
1% approximately.

If images/patches are classified incorrectly by the neural network (A) that is responsible for gender,
they would be fed into the wrong neural network to do age-group classification. To investigate the
effect on the performance of this issue, we fed images of men into the neural network (C) that is
responsible for female age-group classification and vice-versa. Results are shown in Table In the
former case, the classification rate decreases to 36.15%/73.07%(one-off) and in the latter case the
age-group classification rate decreases to 36.30%/66.82% (one-off).

To summarise, using the nine-patch method, the gender and age-group classification rates on the
Adience database 3D version are 78.63% and 40.25% respectively, which are approximately 1% higher
than using entire images. The combination of gender/age classification increases the age-group classi-
fication rates to 41.82% and increases the one-off classification rate to 77.98%. The results are similar
to those established without using CNN [g].
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Table 16: Testing age-group classification on other gender using the nine-patch method

Neural network (B) (Male): | Neural network (C) (Female):
tested on images of women tested on images of men
Exact 36.30% 36.15%
One-oft 66.82% 73.07%

Table 17: Results of combining age/gender classification
The nine-patch method | The combination
Exact 40.25% 41.82%
One off 77.05% 77.98%

Conclusion

We have presented a modified version of local deep neural networks which significantly reduces the
training time and achieves classification rates which are around 0.5-1% lower than the original version.
Additionally, the proposed method outperforms other existing methods on the LEFW database, e.g.
Gabor+PCA+SVM [I] and BoostedLBP+SVM [12], and achieves similar results to other methods on
the Adience database without using CNNs. We have also analysed the performance of different face
regions and found that the eyes region is important for gender and age classification. In addition, the
mouth region is also important for age estimation.
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