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Abstract

Discovering the common (joint) and individual sub-
spaces is crucial for analysis of multiple data sets, including
multi-view and multi-modal data. Several statistical ma-
chine learning methods have been developed for discover-
ing the common features across multiple data sets. The most
well studied family of the methods is that of Canonical Cor-
relation Analysis (CCA) and its variants. Even though the
CCA is a powerful tool, it has several drawbacks that ren-
der its application challenging for computer vision appli-
cations. That is, it discovers only common features and not
individual ones, and it is sensitive to gross errors present
in visual data. Recently, efforts have been made in order
to develop methods that discover individual and common
components. Nevertheless, these methods are mainly appli-
cable in two sets of data. In this paper, we investigate the
use of a recently proposed statistical method, the so-called
Joint and Individual Variance Explained (JIVE) method, for
the recovery of joint and individual components in an arbi-
trary number of data sets. Since, the JIVE is not robust to
gross errors, we propose alternatives, which are both robust
to non-Gaussian noise of large magnitude, as well as able
to automatically find the rank of the individual components.
We demonstrate the effectiveness of the proposed approach
to two computer vision applications, namely facial expres-
sion synthesis and face age progression in-the-wild.

1. Introduction
Extracting the modes of variation from two or multi-

ple data sets has created a wealth of research in statistics,
signal and image processing, and computer vision. Two
mathematically similar but conceptually different models
underlie the bulk of the methodologies. In particular, the
Canonical Correlation Analysis (CCA) [12] and its variants
e.g.,[17, 24] are the methods of choice for extracting lin-
ear correlated components among two or more sets of vari-
ables. Similarly, inter-battery factor analysis [37] and its
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Figure 1. A visual representation of the RJIVE decomposition and
its applications considered in this paper. Images highlighted in red
boxes are given as input to the RJIVE (best viewed in color).

extensions e.g., [18] determines the common factors among
two sets of variables.

The main limitation of the above mentioned methods
is that they only recover the most correlated (joint) linear
subspace of the data, ignoring the individual components
of the data. This is alleviated by recent methods such as
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the Joint and Individual Variation Explained (JIVE) [20],
the Common Orthogonal Basis Extraction (COBE) [41]
and Robust Correlated and Individual Component Analysis
(RCICA) [25]. Except for the recently proposed RCICA,
the COBE and JIVE methods rely on least squares error
minimisation and thus they are prone to gross errors and
outliers [15], making the estimated components to be arbi-
trarily away from the true ones. Hence, their applicability
to analyse visual data captured in unconstrained conditions
(i.e., in-the-wild) is rather limited. On the other hand, the
RCICA, even though is not sensitive to gross errors, it can
be strictly applied in two sets of data only.

In this paper, we are concerned with the problem of re-
covering the common and individual components from an
arbitrary number of (visual) data sets, captured in-the-wild
and thus contaminated by gross non-Gaussian noise. To this
end, we propose robust alternatives of the JIVE (Fig. 1).
The proposed robust JIVE decomposes the data into three
terms: a low-rank matrix that captures the joint variation
across data sets, low-rank matrices accounting for struc-
tured variation individual to each data set, and a sparse ma-
trix collecting the gross errors.

Arguably the human face is the most suitable object for
demonstrating the effectiveness of the proposed method.
This is due to the fact that face images convey rich infor-
mation which can be perceived as a superposition of com-
ponents associated with attributes, such as facial identity,
expression, age etc. For instance, a set of images depict-
ing expressive faces consists of components that are shared
across all images (joint components) and imparts to the de-
picted objects the properties of human faces. Besides joint
components, an expressive face consists of individual com-
ponents that are related to different expressions. Such indi-
vidual components can be expression-specific deformation
of face, i.e., deformations around lips and eye in case of
smiles. Similarly, a set of images depicting faces in dif-
ferent ages can be seen as a superposition of joint compo-
nents that are invariant to the age and age-specific (individ-
ual) components that are individual to each age group (e.g.,
wrinkles).

The above observations motivate us to demonstrate the
applicability of the proposed decomposition into two prob-
lems involving facial images captured under in-the-wild
conditions, namely Facial Expression Synthesis and Face
Age Progression. In addition, we selected the face anal-
ysis as the application area as (a) face is one of the very
limited objects which has so many attributes (e.g., age, ex-
pression, and identity) and (b) there is a huge line of re-
search on both facial expression synthesis and face age pro-
gression [16, 36, 8, 27, 35, 38], but there is no any method
able to address both problems. The RJIVE is, to best of our
knowledge, the first method that provides an unified solu-
tion on both problems. Summarising the contributions of

the paper are as follows:

• A set of novel methods, referred to as Robust JIVE
(RJIVE), for robust recovering of joint and individual
components from a arbitrary number of data sets, is
introduced. Furthermore, two efficient algorithms for
the RJIVE have been developed.

• Based on the learnt joint and individual components,
a suitable optimization problem that extract the corre-
sponding modes of variation of unseen test samples, is
proposed.

• We demonstrate the applicability of the proposed
methods in two challenging computer vision tasks
namely facial expression synthesis and face age pro-
gression in-the-wild.

2. Robust JIVE
Consider M data sets {X(i) ∈ Rd(i)×J}Mi=1, with x

(i)
j ∈

Rd(i) , j = 1, . . . , J being a vectorized (visual) data sam-
ple1. In practice, visual data are often contaminated by
gross, sparse non-Gaussian errors such as pixels corrup-
tion and partial image occlusions. The goal of the RJIVE is
to robustly recover the joint components which are shared
across all data sets as well as the components which are
deemed individual for each one of those data sets. That is:

X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E, (1)

where X =
[
X(1)T , · · · ,X(M)T

]T
∈ Rq×J , J =[

J(1)T , · · · ,J(M)T
]T
∈ Rq×J , {A(i) ∈ Rd(i)×J}Mi=1,

q = d(1) + · · ·+ d(M), are low-rank matrices capturing the
joint and individual variations, respectively and E ∈ Rq×J
denotes the error matrix accounting for the gross, but sparse
non-Gaussian noise. In order to ensure the identifiability
of (1), the joint and common components should be mu-
tual incoherent, i.e., {JA(i)T = 0}Mi=1. A natural estimator
accounting for the sparsity of the error matrix E, is to min-
imize the number of the nonzero entries of E measured by
the `0-quasi norm [4]. However, the minimization of the
`0 norm is NP-hard due to its discrete nature [23]. This
problem is typically addressed by adopting the `1 norm as
the convex surrogate of the `0 norm [7]. Thus, the joint

1Notation: Throughout the paper, scalars are denoted by lower-case
letters, vectors (matrices) are denoted by lower-case (upper-case) boldface
letters i.e., x, (X). I denotes the identity matrix. The j-th column of X
is denoted by xj . The `1 norm of x is defined as ‖x‖1 =

∑
i |xi|. The

matrix `1 norm is defined as ‖X‖1 =
∑

i

∑
j |xij |, where | · | denotes

the absolute value operator. The Frobenius norm is defined as ‖X‖F =√∑
i

∑
j x

2
ij , and the nuclear norm of X (i.e., the sum of singular values

of a matrix) is denoted by ‖X‖∗.



and individual components as well as the sparse error are
recovered by solving the following constrained non-linear
optimization problem:

min
J,{A(i)}Mi=1

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

.

s.t. rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1

(2)
Clearly, (2) is a robust extension to JIVE [20] and re-

quires an estimation for the rank of both joint and individ-
ual components. However, in practice those (M +1) values
are unknown and difficult to estimate. To alleviate this is-
sue, we propose a variant of (2) which is able to determine
the optimal ranks of individual components directly. By as-
suming that the actual ranks of individual components are
upper bounded i.e., {rank(A(i)) ≤ K(i)}Mi=1, problem (2)
is relaxed to the following one:

min
J,{A(i)}Mi=1

λ

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

+

M∑
i=1

∥∥∥A(i)
∥∥∥
∗
,

s.t. rank(J) = r, {JA(i)T = 0}Mi=1

(3)

where the nuclear norm acts as a convex surrogate of the
rank function [9] and λ > 0 is a regularizer.

2.1. Optimization Algorithms

In this section, algorithms for solving (4) and (18) are
introduced.

2.1.1 Solving problem (3)

Problem (3), is difficult to be solved due to the presence
of the orthogonality constraints {JA(i)T = 0}Mi=1 and
the non-differentiable but convex norms. The Alternating-
Direction Method of Multipliers (ADMM) [2] has been
proven to be very efficient for solving problems including
the nuclear- and `1- norms [25, 30, 10, 40]. To this end, (3)
is reformulated to the following separable one:

min
J,{A(i),R(i)}Mi=1,E

M∑
i=1

∥∥∥R(i)
∥∥∥
∗
+ λ ‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {R(i) = A(i),JA(i)T = 0}Mi=1

(4)
where {R(i) ∈ Rd(i)×J}Mi=1, {R(i) = A(i)}Mi=1 are aux-
iliary variables and the corresponding constraints, respec-
tively. To solve (4), the corresponding augmented La-

grangian function is defined as:

L(B,V) =
M∑
i=1

∥∥∥R(i)
∥∥∥
∗
+ λ ‖E‖1 −

1

2µ
‖F‖2F

+
µ

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T
−E +

F

µ

∥∥∥∥2
F

+

M∑
i=1

(
µ

2

∥∥∥∥R(i) −A(i) +
Y(i)

µ

∥∥∥∥2
F

− 1

2µ

∥∥∥Y(i)
∥∥∥2
F

)
,

(5)
where B = {J, {A(i),R(i)}Mi=1,E} is the set of primal
variables, V = {F, {Y(i)}Mi=1} is the set of Lagrange
multipliers related to the equality constraints in (4), and
µ > 0 is a parameter. Then, by employing the ADMM,
(5) is minimized with respect to each variable that be-
longs to B in an alternating fashion and finally the La-
grange multipliers V are updated. Let t be the iteration in-
dex. For notation convenience, L(J) will be used instead
of L(J, {A(i),R(i),Y(i)}Mi=1,E,F) when all the variables
except J are kept fixed. Therefore, given the primal vari-
ables Bt, Lagrange multipliers Vt and parameter µt, the
ADMM-based solver updates all the variables iteratively by
solving the following optimization sub-problems:

J-subproblem:

Jt+1 = min
J

∥∥∥∥X− J−
[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et +

Ft
µt

∥∥∥∥2
F

,

s.t. rank(J) = r.
(6)

The rank constrained least-squares problem (6) has the fol-
lowing closed-form solution:

Jt+1 = Qr

[
X−

[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et +

Ft
µt

]
.

(7)
The Qr operator is defined for any ma-
trix D with D = UΣVT as Qr [D] =[
U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)T

]
.

A(i)-subproblem:

A
(i)
t+1 = min

A(i)

∥∥∥∥∥X(i) − J
(i)
t+1 −A(i) −E

(i)
t +

F
(i)
t

µt

∥∥∥∥∥
2

F

+

∥∥∥∥∥R(i) −A(i) +
Y

(i)
t

µt

∥∥∥∥∥
2

F

, s.t. Jt+1A
(i)T = 0. (8)

Based on the Proposition 1, the solution of (8) is given by:

A
(i)
t+1 =

(
X(i) − J

(i)
t+1 −E

(i)
t + R

(i)
t +

F
(i)
t +Y

(i)
t

µt

)
P

2
,

(9)



Algorithm 1: ADMM solver of (4) (NN-`1-RJIVE).

Input : Data {X(i) ∈ Rd(i)×J}Mi=1. Rank of joint
component r. Parameter ρ.

Output : Joint component J, individual components
{A(i)}Mi=1

Initialize: Set J0, {A(i)
0 ,R

(i)
0 ,Y

(i)
0 }Mi=1, E0, F0 to zero

matrices, t = 0, µ0 > 0.

1 X =
[
X(1)T , · · · ,X(M)T

]T
;

2 while not converged do
3 Compute Jt+1 by (7);
4 for i = 1 :M do
5 Compute A

(i)
t+1, R

(i)
t+1, Y

(i)
t+1 by (9), (12), (16);

6 end
7 Compute Et+1 by (14);
8 Compute Ft+1 and µt by (15), (17);
9 t = t+ 1;

10 end

where P is a projection to the orthogonal complement of
V(:, 1 : r)V(:, 1 : r)T , namely P = I − V(:, 1 : r)V(:

, 1 : r)T and UΣVT = X− [A
(1)T

t , · · · ,A(M)T

t ]T −Et+
Ft/µt is the Singular Value Decomposition (SVD).

Proposition 1 The constrained optimization problem:

min
Z
‖B− Z‖2F , s.t. BZT = 0 (10)

has a closed-form solution given by Z = B
(
I−VVT

)
,

B = UΣVT .

R(i)-subproblem:

R
(i)
t+1 = min

R(i)

∥∥∥R(i)
∥∥∥
∗
+
µt
2

∥∥∥∥∥R(i) −A
(i)
t+1 +

Y
(i)
t

µt

∥∥∥∥∥
2

F

.

(11)
The solution of the nuclear-norm regularized least-squares
subproblem (11), is obtained by applying the Singular Value
Thresholding (SVT) [3] operator Dτ :

R
(i)
t+1 = D1/µt

[
A

(i)
t+1 −

Y
(i)
t

µt

]
. (12)

For any matrix X = UΣVT the SVT operator is defined
asDτ = USτVT . The shrinkage operator Sτ [4] is defined
element-wise as Sτ [σ] = sgn(σ)max(|σ| − τ, 0).

E-subproblem:

Et+1 = min
E

λ ‖E‖1 +

µt
2

∥∥∥∥X− Jt+1 −
[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−E +

Ft
µt

∥∥∥∥2
F

(13)

The closed-form solution of (13) is given by the shrinkage
operator:

Et+1 = S λ
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
+

Ft
µt

]
.

(14)
Update Lagrange multipliers and parameter µ:

Ft+1 = Ft + µt

(
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

)
. (15)

Y
(i)
t+1 = Y

(i)
t + µt(R

(i)
t+1 −A

(i)
t+1), i = 1, . . . ,M (16)

µt+1 = min(ρµt, 10
7) (17)

The ADMM solver of (4) is outlined in Alg. 1.
The dominant cost of Algorithm is mainly associated
to the SVD. Therefore, the complexity of each itera-
tion is O(max(q2J, qJ2)). Alg. 1 is terminated when∥∥∥∥X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

∥∥∥∥2
F

/ ‖X‖2F
is less than a predefined threshold ε1 or the number of
iterations reach a maximum value.

2.1.2 Solving problem (2)

To solve problem (2) via ADMM, we firstly reformulate it
as:

min
J,{A(i)}Mi=1,E

‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1

(18)
The corresponding augmented Lagrangian function is given
by:

L(J, {A(i)}Mi=1,E,L) = ‖E‖1 −
1

2µ
‖L‖2F

+
µ

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T
−E +

L

µ

∥∥∥∥2
F

.

(19)
The ADMM solver of (18) is wrapped up in Alg. 2 while
its derivation is similar to that of Alg. 1. Furthermore,
Alg. 2 has the same complexity and convergence criterion
as Alg. 1.

3. RJIVE-Based Reconstruction
Having recovering the individual and common compo-

nents of the M data sets, we can effectively use them in
order to extract the joint and individual mode of varia-
tions of a test sample. For instance, the components re-
covered by applying the RJIVE in a set of facial images



Algorithm 2: ADMM solver for (18) (`1-RJIVE).

Input : Data {X(i) ∈ Rd(i)×J}Mi=1. Rank of joint
component r. Ranks of individual components
{r(i)}Mi=1. Parameter ρ.

Output : Joint component J, individual components
{A(i)}Mi=1

Initialize: Set J0, {A(i)
0 }Mi=1, E0, L0 to zero matrices,

t = 0, µ0 > 0.

1 X =
[
X(1)T , · · · ,X(M)T

]T
;

2 while not converged do

3 M = X−
[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et + µ−1

t Lt;

4 Jt+1 = Qr [M], [U,Σ,V] = svd(M);
5 P = I−V(:, 1 : r)V(:, 1 : r)T ;
6 for i = 1 :M do
7 A

(i)
t+1 =

Qr(i)

[(
X(i) − J

(i)
t+1 −E

(i)
t + µ−1

t L
(i)
t

)
P
]

8 end
9 E =

S 1
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
− µ−1

t L

]
Lt+1 = Lt +

µt

(
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

)
;

10 µt+1 = min(ρ · µt, 10
7);

11 t = t+ 1;
12 end

of different expressions can be utilized in order synthesize
the ‘Happy’ and ‘Surprise’ expression of a ‘Neutral’ sub-
ject. Let {UJ(i) ∈ Rd(i)×W

(i)
J ,UA(i) ∈ Rd(i)×W

(i)
A , }Mi=1

be orthonormal bases extracted by applying the SVD onto
{J(i),A(i)}Mi=1 and t ∈ Rd(i)×1 a new sample. The cor-
responding i-th sets of variables or modality of t is recon-
structed by solving the following constrained optimization
problem:

min
{c(n),v(n)}2n=1,y≥0

2∑
n=1

∥∥∥v(n)
∥∥∥
1
+ θ ‖e‖1 ,

s.t. {v(n) = c(n)}2n=1

t = UJ(i)c(1) + UA(i)c(2) + e

y = UJ(i)c(1) + UA(i)c(2)

(20)

where θ is a positive parameter that balances the norms,
v(1), v(2) are auxiliary variables, y corresponds to the non-
negative clean reconstruction, and e is an error term.

4. Experimental Evaluation

4.1. Synthetic

In this section, the ability of RJIVE to robustly recover
the joint and individual components of synthetic data cor-
rupted by sparse non-Gaussian noise, is tested. To this end,
sets of matrices {X(i) = J

(i)
∗ +A

(i)
∗ +E

(i)
∗ ∈ Rd(i)×J}2i=1

of varying dimensions were generated. In more detail, a
rank-r joint component J∗ ∈ R(q=d(1)+d(2))×J was cre-
ated from a random matrix X = [X(1)T ,X(2)T ]T ∈ Rq×J .
Next, the orthogonal to J rank-r(1), r(2) common compo-
nents A

(1)
∗ and A

(2)
∗ were computed by [A

(1)T

∗ ,A
(2)T

∗ ]T =
(X − J∗)(I −VVT ), where V was formed from the first
r columns of the row space of X. E

(i)
∗ is a sparse error

matrix with 20% non-zero entries being sampled indepen-
dently from N (0, 1).

The Relative Reconstruction Error (RRE) of the joint
and individual components achieved by both `1-RJIVE and
Nuclear-Norm regularized (NN-`1-RJIVE) for a varying
number of dimensions, joint and individual ranks, are re-
ported in Table 1. The corresponding RRE obtained by
JIVE [20], and COBE [41] are also presented. As it can be
seen, the proposed methods accurately recovered both the
joint and individual components. It is worth mentioning that
the NN-`1-RJIVE successfully recovered all components by
utilizing only the true rank of the joint component. In con-
trast, all the other methods require knowledge regarding the
true rank for both joint and individual components. Based
on the performance of NN-`1-RJIVE on the synthetic data,
we decided to exploit it in the experiments described bellow
and referred to as RJIVE hereafter.

4.2. Facial Expression Synthesis (FES) In-The-Wild

In this section, we investigate the ability of the RJIVE
to synthesize a set of different expressions of a given facial
image. Consider M data sets where each one contains im-
ages of different subjects that depict a specific expression.
In order to effectively recover the joint and common compo-
nents, the faces of each data set should be put in correspon-
dence. Thus, theirN = 68 facial landmark points are local-
ized using the detector from [1] trained with images pro-
vided from 300-W challenge [34, 29, 33] and subsequently
employed to compute a mean reference shape. Then, the
faces of each data set are warped into corresponding ref-
erence shape by using the piecewise affine warp function
W(·) [21, 6]. After applying the RJIVE on the warped data
sets, the recovered components can be used for synthesiz-
ing M different expressions of an unseen subject. To do
that, the new (unseen) facial image is warped to reference
frame corresponds to expression that we want to synthesize
and subsequently is given as input to the solver of (20).

The performance of RJIVE in FES task is assessed



Table 1. Quantitative recovering results produced by JIVE [20], COBE [41], `1-RJIVE (18), and NN-`1-RJIVE (4).(
d(1), d(2), J, r, r(1), r(2)

)
Method

{
‖J(i)

∗ −J
(i)‖2

F∥∥∥J(i)
∗

∥∥∥2

F

}2

i=1

{
‖A(i)

∗ −A
(i)‖2

F∥∥∥A(i)
∗

∥∥∥2

F

}2

i=1

Time (in CPU seconds)

(500, 500, 500, 5, 10, 10)

COBE 3.6403 1.0956 0.14
JIVE 0.5424 0.93488 26
`1-RJIVE 5.5628e− 08 3.5073e− 08 13
NN-`1-RJIVE 1.3338e− 08 1.1897e− 08 13

(1000, 1000, 1000, 10, 20, 20)

COBE 5.2902 1.0945 3.3
JIVE 0.83977 1.481 58
`1-RJIVE 8.9035e− 08 5.8665e− 08 27
NN-`1-RJIVE 9.78e− 08 8.9923e− 08 46

(2000, 2000, 2000, 20, 40, 40)

COBE 7.3973 1.1808 30
JIVE 1.3961 2.1977 390
`1-RJIVE 2.427e− 07 2.3743e− 06 310
NN-`1-RJIVE 2.2969e− 07 2.0574e− 07 351

Input

BKRRR

RJIVE

GT

Figure 2. Synthesized expressions of MPIE’s subject ‘014’ pro-
duced by the BKRRR and RJIVE methods.

by conducting inner- and cross-databases experiments on
MPIE [11] and in-the-wild facial images collected from
the internet (ITW). The synthesized expressions obtained
by RJIVE2 are compared to those obtained by the state-of-
the-art BKRRR [13] method. In particular, the BKRRR is
a regression-based method that learns a mapping from the
‘Neutral’ expression to the target ones. Then, given the
‘Neutral’ face of an unseen subject, new expressions are
synthesized by employing the corresponding learnt regres-
sion functions. The performance of the compared methods
is measured by computing the correlation between the vec-
torized forms of true images and the reconstructed ones. In
the first experiment, 534 frontal images of MPIE database
that depict 89 subjects under six expressions (i.e., ‘Neutral’,
‘Scream’, ‘Squint’, ‘Surprise’, ‘Smile’, ‘Disgust’) were em-
ployed to train both RJIVE and BKRRR. Then, all expres-
sions of 58 unseen subjects from the same database were
synthesized by using their images correspond to ‘Neutral’
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expressions. In Fig. 3(a) the average correlations obtained
by the compared methods for the different expressions are
visualized. As it can be seen the proposed RJIVE method
achieves the same accuracy to BKRRR without learning any
kind of mappings between the different expressions of the
same subject. Specifically, the RJIVE extracts only the in-
dividual components of each expression and the common
one.

Furthermore, we collected from the internet 180 images
depicting 60 subjects with ‘Surprise’, ‘Smile’, and ‘Neu-
tral’ expressions (three images for each subject). Then, all
the expressions were generated by employing the ‘Neutral’
images and the BKRRR and RJIVE3 methods trained on
MPIE. Figure 3(b) depicts the obtained correlations for each
subject. Clearly, the RJIVE outperforms the BKRRR. Com-
pared to the previous experiment, there is a drop in perfor-
mance for both methods. This is attributed to the fact that
the methods were trained by employing only images cap-
tured under controlled condition. Thus, synthesizing ex-
pressions of in-the-wild images is a very difficult task. In
order to alleviate this problem we can augment the training
set with in-the-wild images. Although the RJIVE can be
trained from in-the-wild images of different subjects, this
is not the case of BKRRR, which requires the correspon-
dence of expressions across the training subjects. Collect-
ing in-the-wild images of same subjects under different ex-
pressions is a very tedious task. In order to improve the
performance of RJIVE, we augmented the training set with
another 1200 images from WWB database [22] (400 images
for each expression). As it can be observed in Fig. 3(b), the
in-the-wild train set improved the accuracy of RJIVE in the
ITW dataset. Figure 4 depicts examples synthesized in-the-
wild expressions produced by the RJIVE. The images from
the ‘Input’ column were given as input to the RJIVE and
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(a) (b)
Figure 3. Mean average correlation achieved by JIVE and BKRRR methods on (a) MPIE and (b) ITW databases.

Input RJIVE GT RJIVE

Figure 4. Synthesized in-the-wild expressions produced by the
RJIVE method.

subsequently the synthesized expressions were warped and
fused with the actual images [26]. Clearly, the produced ex-
pressions are characterized by high quality of both expres-
sion and identity information. It is worth mentioning that
RJIVE synthesize almost perfectly the input images without
using any kind of information about the depicted subject.

4.3. Face Age Progression In-The-Wild

Face age progression consists in synthesizing plausible
faces of subjects at different ages. It is considered as a very
challenging task due to the fact that the face is a highly
deformable object and its appearance drastically changes
under different illumination conditions, expressions, and
poses. Various databases that contain faces at different ages
have been collected in the last couple of years [5, 28]. Al-
though these databases contain huge number of images,
they have some limitations including limited images for
each subject that cover a narrow range of ages and noisy age
labels, since most of them have been collected by employ-

ing automatic procedures (crawlers). Recently, the AgeDB
database that overcomes the aforementioned problems have
been proposed in [39]. In order to train the RJIVE, the
AgeDB was divided into M = 10 age groups (700 images
per group): 0− 3, 4− 7, 8− 15, 16− 20, 21− 30, 31− 40,
41−50, 51−60, 61−70, and 71−100. Then, following the
same procedure as in FES task, the RJIVE was employed to
extract the joint and common components from the warped
images. The performance of RJIVE in face age progres-
sion in-the-wild is qualitatively assessed conducting exper-
iments on images from the FG-NET database [19]. To this
end, we compare the performance of RJIVE with the Illumi-
nation Aware Age Progression (IAAP) method [16], Cou-
pled Dictionary Learning (CDL) method [36], Deep Aging
with Restricted Boltzmann Machines (DARB) method [8],
CG [27], and Recurrent Face Aging (RFA) method [38]. In
Fig. 5 progressed images produced by the compared meth-
ods are depicted. Note, that all the progressed faces have
been warped back and fused with the actual ones.

The performance of the RJIVE4 is also quantitatively as-
sessed by conducting age-invariant face verification exper-
iments. Following the successfully used verification proto-
col of the LFW database [14], we propose four new age-
invariant face verification protocols based on the proposed
AgeDB database. Each one of the protocols was created
by splitting the AgeDB database into 10 folds, with each
fold consisting of 300 intra-class pairs and 300 inter-class
pairs. The essential difference between these protocols is
that in each protocol the age difference of each pair’s faces
is equal to a predefined value i.e., {5 ages, 10 ages, 20 ages,
30 ages}.

In order to assess the performance of RJIVE, the fol-
lowing procedure was performed. For each fold of a spe-
cific protocol the training images were split into M = 10
age-groups and subsequently the RJIVE was employed on
their warped version in order to extract the joint and indi-
vidual components. All images of each training pair were
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Figure 5. Progressed faces produced by the compared methods on the FG-NET database.

then progressed into M = 10 age groups resulting into 10
new pairs. As we wanted to represent each pair by using
a single feature, gradients orientations were extracted from
the corresponding images and subsequently the mean value
of their cosine difference was employed as the pair’s fea-
ture [31, 32]. M Support Vector Machines (SVMs) were
trained by utilizing the extracted features and their scores
were lately fused by using an SVM.

Table 2. Mean AUC and Accuracy on the proposed four protocols.
RJIVE Original Images

Protocol AUC Accuracy AUC Accuracy
5 years 0.686 0.637 0.646 0.609
10 years 0.654 0.621 0.624 0.591
20 years 0.633 0.598 0.585 0.552
30 years 0.584 0.552 0.484 0.495

In Fig. 6, Receiver Operating Characteristic (ROC)
curves computed based on the 10 folds of each one of the
proposed protocols are depicted. The corresponding mean
classification accuracy and Are Under Curve (AUC) are re-
ported in Table 2. In order to assess the effect of progres-
sion, the results obtained by utilizing only the original im-
ages are also provided. Some interesting observations are
drawn from the results. Firstly, the improvement in accu-
racy validates that the identity information of the face re-
mains after the RJIVE-based progression. Furthermore, the
improvement in accuracy is higher when the age difference
of images of each pair is big enough. For instance, the im-
provement in accuracy in ‘Protocol 30 years’ is higher than
the corresponding in ‘Protocol 5 years’. Finally, the pro-
duced results justify that the problem of age-invariant face
verification becomes more difficult when the age difference
is very large (e.g., 30 years).

5. Conclusions

In this paper, the RJIVE along with its algorithmic
framework for robust recovery of joint and individual vari-
ance among several visual data sets has been proposed. The

(‘Protocol 5 years’) (‘Protocol 10 years’)

(‘Protocol 20 years’) (‘Protocol 30 years’)
Figure 6. ROC curves of RJIVE on the proposed four protocols.
‘Original images’ corresponds to the results obtained by employ-
ing the actual images.

performance of the RJIVE has been assessed on facial ex-
pression synthesis, and face age progression by conducting
experiments on data sets captured under both constrained
and in-the-wild conditions. The experimental results vali-
date the effectiveness of the proposed RJIVE method over
the state-of-the-art.
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