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Abstract

The extraction and quantization of local image and video descriptorsdautbsequent creation of visual
codebooks is a technique that has proved extremely effective foreimagd video retrieval applications.
In this paper we build on this concept and extract a new set of visualiges's that are derived from spa-
tiotemporal salient points detected on given image sequences andeploséd space-time description of
the visual activity. The proposed descriptors are based on the gécahptoperties of three-dimensional
piecewise polynomials, namely B-splines, that are fitted on the spatiotafripoations of the salient
points that are engulfed within a given spatiotemporal neighborhoodd€&eriptors are inherently trans-
lation invariant, while the use of the scales of the salient points for the defirafitine neighborhood
dimensions ensures space-time scaling invariance. Subsequentlgtexioty algorithm is used in order
to cluster our descriptors across the whole dataset and create a chaélisual verbs, where each verb
corresponds to a cluster center. We use the resulting codebook in aflvegos’ approach in order to
recover the pose and short-term motion of subjects at a short setoefsmive frames, and we use Dynamic
Time Warping (DTW) in order to align the sequences in our dataset anctigteuin time the recovered
poses. We define a kernel based on the similarity measure provideé BYT#V in order to classify our
examples in a Relevance Vector Machine classification scheme. Wenpresalts from two different
databases of human actions that verify the effectiveness of our thetho

1 Introduction

Vision-based analysis of human motion is nowadays one ofrth&t active fields of computer vision, due
to its practical importance for a wide range of vision-rethapplications, like video retrieval, surveillance,
vision-based interfaces and Human-Computer Interactirom any given video sequence humans are
usually able to deduce information about its content qyickid easily. When it comes to computers,
however, robust action recognition still remains a veryllelmging task, evident from the abundance of
different motion analysis approaches that have been deselfi3].

Typically, activity recognition systems can be dividedoitvo main categories. The first concerns
tracking of body parts and the subsequent use of the reguttiectories for recognition [17], [5]. These
approaches, however, are highly dependent on the typeobitigasystem that is used and its target applica-
tion. In addition, due to the deformable nature and artiedatructure of the human body, these methods
suffer from problems like accurate initialization, océtursand high dimensionality.

A second category of systems uses sets of spatiotemporatdatescriptors in order to represent human
body motion. The concept of spatiotemporal feature extradior activity recognition stems from the
domain of object recognition, where static features haenlseiccessfully used for the detection of various
objects from images [8], [1]. In [7], a Harris corner detedextended in the temporal domain, leading
to a number of corner points in time, called space-time @gepoints. The resulting interesting points
correspond roughly to points in space-time where the madimmuptly changes direction. In [3], human
actions are treated as three-dimensional shapes in the-ipae volume. The method utilizes properties
of the solution to the Poisson equation to extract space-femtures of the moving human body, such as
local space-time saliency, action dynamics, shape strietnd orientation. In [14] a local self-similarity
descriptor is extracted in order to match areas in imagesdeog that share similar geometric properties.
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Finally, in [6] a set of spatiotemporal features inspirezhirthe human visual cortex, called C features, are
extracted for the recognition of human and animal motiortee method works in an hierarchical way and
the obtained features are invariant to scale changes i spattime.

Recently a number of works used visual codebooks in orderetectl and recognize objects and/or
humans. The visual codebook creation is performed by gnoufie extracted feature descriptors in the
training set using, for instance, a clustering algorithi®][IThe resulting centers are then considered to be
codewords and the whole set of codewords forms a 'codebdoke’’bag of words’ approach each instance
is represented as a histogram of codewords, and recogtstiparformed by histogram comparison. In
[2] a set of SIFT-like features are hierarchically used idesrto form 'hyperfeatures’ for the purpose of
object recognition, while in [4] static and dynamic featibmsed respectively on gradients and optical flow
are extracted in order to detect humans in image sequencesdér to further enhance the performance
of these models, several researchers have gone one stegrdaamd encoded the spatial relationships that
exist between the features. In [9], extracted featuresvedss towards the center of the object from which
they are extracted. In this way the system implicitly encoithe spatial relationships between the extracted
features. In [15] a similar enhancement takes place by derisg pairs of visual words which co-occur
within local spatial neighborhoods, denoted as 'doubléts[11] constellations of static and dynamic bags
of features are modeled in order to recognize human aetivitrinally in [16], SIFT descriptors are extracted
from spatial video patches and their spatial layout is eadddr the purpose of video or image retrieval.

In this paper we extract a new set of visual descriptors tleatarived from the spatiotemporal salient
points of [12]. At each salient point location we define a Epgamporal neighborhood with dimensions
proportional to the detected space-time scale of the paid.use the locations of the salient points that
are engulfed within this neighborhood in order to approxemathree dimensional piecewise polynomial,
namely a B-spline. Our descriptors are subsequently défieen the geometrical properties of each poly-
nomial as these are captured in their partial derivativediftérent orders. At the next step, the whole set
of descriptors is accumulated into a number of histogramgedding on the number of parameters that de-
scribe the spline and the maximum degree of its derivat8a&e our descriptors correspond to geometrical
properties of the spline, they are translation invarianirtfrermore, the use of the automatically detected
space-time scales of the salient points for the definiticth@heighborhood ensures invariance in space and
time. Similar to other approaches, where a codebook of Wsoils is created from appearance descriptors,
we create a codebook of visual verbs by clustering our matéstriptors across the whole dataset. We use
the resulting codebook in a 'bag of verbs’ approach in ordeetover the pose and instantaneous motion of
subjects at a short set of successive frames and we use a yhiame Warping scheme (DTW) in order to
structure in time the recovered poses. We use the similaggsure between the examples, provided by the
DTW, in order to define a kernel for a classifier based on Relswd/ector Machines (RVM). We present
results in two different databases of human actions thafyvinre effectiveness of our method. Finally, we
perform experiments in order to verify the generality of descriptors, that is, their ability to encode and
discriminate between unseen classes.

One of the main contributions of the method presented inghjser is the sparsity of the extracted
descriptors, since they are extracted at spatiotempagaire that are detected at sparse locations within the
image sequence. This is contrary to the work of Blank et aMBre a whole image sequence is represented
as a space-time shape. Furthermore, the use of DTW addtusé&rtie the recovered short-term motions of
the subjects, as opposed to [3], [6], where features arehmdtoased on the maximum similarity accross a
whole video sequence. Our results are comparable [3], [Bhow improvement [11] with state of the art
methodologies for the same sequences.

The remainder of the paper is organized as follows: in seciave describe our feature extraction
process, including our B-spline approximation and thetgwaaof our codebook. In section 3 we present
our recognition method, that includes the DTW and RVM stdpssection 4 we present our experimental
results and finally, in section 5 our final conclusions arewtra

2 Representation

In this section we introduce the visual descriptors that e&in order to represent an image sequence. We
will initially give some basics on B-splines and we will selgsiently describe their usage in extracting local
spatiotemporal image sequence descriptors. Finally, Wévigfly explain the process that we followed in
order to create a codebook from these descriptors.
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2.1 B-spline Surfaces

Let us define ad/ x N grid of control points{P;;},7 =1... M andj = 1... N. Let us also define a knot
vector ofh knots in theu direction ,U = {uq,us,...,u} and a knot vector of knots in thev direction,
V = {v1,vs,...,v:}. AB-spline surface of degreesy in thew andv directions respectively is given by:

F(u,0) =Y > Nip(u)Njq(v) Py, 1)

i=0 j=0
whereN; ,(u) andN; ,(v) are B-spline basis functions of degreandg, respectively, defined as:

1, if up <u<uigpr and up < uiqq
otherwise

)

Ni,p(u) __u—wuy Ni,p—l(u) + MNH_LP_I(U)

Uitp—Usi Witp+1—UWit1

The set of control points is referred to as the control nefleathe range of the knots is usuall, 1]. For
this work we assuma™ degree polynomials, that is,= ¢ = 3.

2.2 Spatiotemporal Descriptors

In order to approximate a B-spline polynomial we need tdafijt define its control net, that is?;;. For-
mally, for each salient point location we want to approxienaipolynomial having as control net the points
within a small neighborhoo® around the point in question. For a good approximation, lvewerdering
of the control points in terms of their spatiotemporal lozatis an important factor in order to avoid loops.
In order to make this more clear, let us consider a set of pdint {I;} sampled uniformly from a circular
curve. In order for a polynomial to approximate the circudarve from theL points, these points should
be given in sequence, that i5,= {i1,[2,...,I,}. If this is not the case, then the polynomial will attempt
to cross the points in a different order, creating unwanteghs$. Furthermore, it is clear that any points
enclosed by the circle will also degrade the approximatioth should not be accounted for. In order to
overcome these problems, we perform two preprocessing stethe sef5: In the first step, we eliminate
points that are enclosed within the closed surface defingtidopoundary. In our implementation, a point
lies in the boundary if it lacks any neighbors within a ciarulice shaped neighborhood of radiysnini-
mum anglez and having the point as origin. For our implementation weatel a radius of 10 pixels and
an angle of 70 degrees. In the second step, we order theexblemtindary points. We do this by randomly
selecting a point on the boundary as a seed and by applyinigmative recursive procedure that matches
the seed point with its nearest neighbor in terms of Eucfidéistance. This process repeats itself having as
seed the nearest neighbor selected until there are no heaigkbors left, that is, either an edge has been
reached or all points have been accessed. One could ardukeahmocedure described above would select
points in the convex hull of the motion, creating problemghia case of non-stationary background or if
there are more than one subjects performing activitiesérstime scene. This however, is not true, as the
whole procedure is performed locally. In effect, the amafrocality is determined by the radius

Let us denote bys” = {(3},¢},yp ;) } the set of spatiotemporal salient points located on theanoti
boundary, obtained from the procedure of the previous aectiFor each salient point position withit
we define a spatiotemporal neighborhacbf dimensions proportional tg,. Let us denote by)’ the set
of points inN. Then, for eachV, we approximate a B-spline polynomial as in eq. 1. The gridasftrol
points P;; in eq. 1 corresponds to the g8t, that is, eactP;; is a point in space-time. We should note that
the grid is not and does not need to be uniform, that is, thevise distances of the control points can be
different. The knot vector& andV are a parameterization of the B-spline, and essentiallpdmthe way
the B-spline surface changes with respect to its contraitpoMore specifically, the knot vector encodes
the way ther coordinates change with respectjtowhile the knot vectol” encodes the way bothandy
change with respect to time Using this process, any given image sequence is represasta collection
of B-spline surfaces, denoted &B;(u, v)}. The number of surfaces per sequence depends on the number
of points in.S’, since we fit one surface per salient point position. An exeropa spline fitted to a set of
points is presented in Fig. 1. Each member of the{$&fu, v)} is essentially a piecewise polynomial in
a three dimensional space. This means that we can fully ibests characteristics by means of its partial
derivatives with respect to its parameters. That is, for a grid of knots of dimensiorisx h we calculate
the following matrixR; of dimensiongpq — 1) x (hk):
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Figure 2: First derivatives with respect to ¢aand (b)v, drawn as three dimensional vectors
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whered? /duP is thep — th partial derivative with respect te. From eq. 1 it is apparent that for specific
values ofu, v, F;(u,v) is a point in space-time, that is3ax 1 vector. Consequently, each elementfis

a vector of the same dimensions. In Fig. 2 an illustratiorhefftrst derivatives with respect toandwv is
given. The derivatives are drawn as three dimensional ¥&caperimposed on the spline from which they
were extracted.

Our goal is to be able to represent eachwith a single descriptor vector. For this reason, we bin
each row ofR; into a single histogram of partial derivatives and we coecate all the resultingpg — 1)
histograms into a single descriptor vector. This vectorstitutes the descriptor df; and consequently the
descriptor of a specific region in space and time of the imageence. By repeating this process for each
F;, we end up with a set of descriptors for the whole sequence.

2.3 Codebook Creation

In order to create a codebook, applying a clustering algarito the whole set of descriptors is time and
memory consuming. According to the authors of [9], the wayeabulary is constructed has little impact
to the final classification results. We therefore follow ttaiproach and randomly subsample our descriptor
set. Subsequently, we cluster our randomly selected featiging K-means clustering. The resulting cluster
centers are the codewords and the whole set of codewordstatesthe codebook. For this work we used
a total number of 1000 clusters, as a compromise betweeesemiation accuracy and speed.
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3 Classification

Having constructed our codebook, our goal is to be able tesgmt and classify any test image sequence
to one of the available classes in our training set. A corigaat application of a 'bag of verbs’ approach
would dictate that each image sequence in the dataset issmqped as a histogram of visual codewords
drawn from the codebook. Using the codebook in this way farspecific set of descriptors resulted in
recognition rate of abou0%, using a 1-NN classifier based on tjé distance between the histograms of
the test and training sequences. We follow instead a diffeapproach and use the codebook in order to
recover the pose and instantaneous motion of the subjedtspég the actions at a short set of successive
frames. By doing this, we essentially encode each video afiection of instantaneous motions.

As we will show in the experimental results section, evemugiopose recovery and subsequent classifi-
cation using just a chamfer distance based nearest neighpooach works quite well, this is not sufficient,
as we would like to be able to add some structure and ordereiingtantaneous motions that are being
recovered. A possible solution would be to use a temporalainidde a Hidden Markov Model in order
to encode the temporal relationships between the poses.sbhition however is not practical, as the high
dimensionality of the codebook would make the training afrsa model cumbersome, especially in es-
timating the emission probabilities of the model. The usa ofassification method that would be able to
automatically provide these probabilities is not very picat either, as this would require manual annotation
of similar poses between different examples of the same clmsorder to deal with these issues, we de-
cided to use Dynamic Time Warping (DTW) to align our sequeracessubsequently apply a discriminant
classifier like a Relevance Vector Machine (RVM) [18] forgd#ication.

3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well established techniquedtigning any two sequences. The se-
guences are "warped” non-linearly in time in order to defeera measure of their similarity independent
of certain non-linear variations in the time dimension. tdey to use DTW for our problem, we consider
as a sequence the series of the recovered instantaneowssnoftieach example, each being represented as
a histogram of codewords. Since we are dealing with histogra suitable distance metric to use would
be they? distance. Using this distance, we align our test sequenitbsewery sequence in our training
set. This procedure results in a similarity measure betwkertesting and training sequences, which is
subsequently used in an RVM classification step.

3.2 Relevance Vector Machine

A Relevance Vector Machine Classifier (RVM) is a probaldisparse kernel model identical in functional
form to the Support Vector Machine Classifier (SVM). Giveragadet ofV input-target pair§ (F,,,1,,), 1 <
n < N}, an RVM learns functional mappings of the form:

N
y(F) = w,K(F, F,) + wo, 4
n=1

where{w, } are the model weights anl{(.,.) is a Kernel function. For our work, we use the similarity
measure provided by the DTW of the previous section in oradefine a kernel for the RVM. More specif-
ically, we apply the logistic sigmoid function to the DTW slarity measure in order to obtain a distance
measure instead. Subsequently, we use a Gaussian RBF te thefikernel, that is,

D(F,Fp)?

K(F7 Fn) =e = ) (5)
whereD is the logistic sigmoid function of the DTW similarity meaewandr is the width of the kernel.
In the two class problem, a sampleis classified to the class € [0, 1] that maximizes the conditional
probability p(I|F). For L different classes[ different classifiers are trained and a given examples
classified to the class for which the conditional distriboty; (I|F),1 < ¢ < L is maximized:

Class(F) = arg In?x(p,-(l|F)). (6)
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Class | R/P (NN) | R/P (DTW) | R/P (RVM) Confusion Matrix
bend 1.0/1.0 0.88/1.0 1.0/0.9 9 0 O O O o o0 1 o0
jack 1.0/0.9 1.0/1.0 1.0/1.0 0O 9 0 O O O O o0 o0
jump | 0.67/0.67| 0.56/1.0 078088 (|0 O 7 0O O 1 o0 0 O
pjump | 0.89/1.0 1.0/1.0 1.0/1.0 O 0 O 9 0O O O o0 o
run 1.0/0.71 1.0/0.56 1.0/0.9 0O 0 1 0 10 0 o0 o0 O
side 0.89/1.0 0.89/1.0 07820 |{O O O O O 7 O o0 O
walk 0.5/0.71 1.0/0.83 1008 (0O O 1 0 O 1 10 O O
wavel | 1.0/1.0 0.78/1.0 07820 |O O O O O O o0 7 O
wave2 | 1.0/1.0 0.78/1.0 1.0/0.9 0O o0 O O O o o0 1 9
Total | 0.88/0.88| 0.89/0.93 0.93/0.93

Table 1:Recall and Precision rates for the kNN and RVM classifiers on the Weizmataset

Class [ RIP (SP-RVM) | R/P (NN) | R/P (DTW) | R/P (RVM)
1 1.0/1.0 0.9/1.0 1.0/1.0 1.0/1.0
2 1.0/0.63 1.0/0.91 | 1.0/0.83 1.0/0.83
3 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
4 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
5 0.7/0.78 1.0/056 | 0.4/0.67 1.0/0.91
6 0.6/0.5 0.3/0.3 | 0.6/0.35 0.8/0.8
7 0.7/1.0 0.9/1.0 | 1.0/0.91 0.9/0.9
8 1.0/1.0 1.0/1.0 0.9/1.0 0.9/0.9
9 1.0/1.0 1.0/0.67 | 1.0/0.71 0.9/0.9
10 0.7/0.78 0.1/05 | 0.4/0.67 0.8/0.89
11 1.0/1.0 1.0/1.0 1.0/1.0 0.9/1.0
12 1.0/1.0 1.0/091 | 1.0/1.0 1.0/1.0
13 0.7/1.0 0.9/1.0 0.8/1.0 0.8/1.0
14 1.0/1.0 1.0/091 | 1.0/1.0 1.0/0.91
15 1.0/1.0 0.5/1.0 0.7/1.0 1.0/1.0

Total 0.89/0.91 | 0.84/0.85| 0.85/0.88 | 0.93/0.94

Table 2:Recall and Precision rates for the KNN and RVM classifiers on the asrdbtaset

4 Experimental Results

In order to evaluate the proposed method we use two diffatetasets. The first is the one used in [3],
containing 9 different actions such as walking, running jmeping. The second datageis one created by
our group, containing a set of 15 different aerobic exessiperformed twice by five different subjects.

We performed our experiments in the leave-one-subjectrartner. That is, in order to classify a test
exercise performed by a specific test subject, we creatediebook and trained the respective classifiers
using all available data except for those belonging to timeeselass and performed by the same subject as
the test exercise. We present three different sets of @itzd#on results. In the first set, each frame of a test
sequence is matched with the closest frame of a trainingssegLin terms of theiy? distance and an overall
distance measure is calculated as the sum of the minimurolatdd frame distances. The test example is
then classified to the class of the training example with thalkest overall distance (Chamfer distance). In
the second set, each test example is classified to the cl#ss whining example with the highest similarity,
as this is calculated by the DTW procedure. Finally, we presesults using an RVM classifier according
to eqg. 6. In Table 1 we present our classification resultsHeM/eizmann dataset, in the form of recall and
precision rates. Similar classification results for theoh#s dataset are given in Table 2. In the same Table,
we also show classification results on this dataset baseldeoalgorithm of [12] (denoted as SP-RVM), in
which only the location of the spatiotemporal points wassidered . As we can see, there is considerable
improvement, which demonstrates the descriptive poweneptoposed B-spline based representation.

As we can see from Tables 1 and 2, there is a slight increadegdsification performance in the Weiz-
mann and aerobics datasets using DTW, while there is a emaild increase of almos¥ by additionally

1This dataset is available from the author’s website
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using RVM. Although the increase is small, the use of DTW astdscture and consistency to the repre-
sentation. In general, introduction of structure is impottand expected to show benefits in datasets with
larger number of classes. Using DTW, frames that are fart &man each other in terms of time cannot be
matched. In the case of a classification method with no teatjstructure, these kind of restrictions do not
exist, and a frame in the beginning of a sequence can be nabtalie any frame of another sequence, as
long as their? distance is small.

The average recall rate for the Weizmann dataset is @38tit From the confusion matrix of the Table 1,
we notice that there are reasonable confusions betweeftasichasses likgump, run, walk andside, as
well aswavel andwave2. Concerning the results on the aerobics dataset, we notice Table 2 that
there is low performance on classg$ and10 for the NN and DTW classifications, which considerably
increases using the RVM classifier. The reason for this isttiese classes are very similar and concern
motions like squatting with an upright torso or bending whhe subject is facing the camera. In order to
discriminate between these motions, depth informatiomggirtant, and since our features stem from salient
point representations, they have difficulty recovering it.

Compared to the work of [3] and [6], our classification resalte almost% lower. The use of DTW
from our system, however, introduces structure to the rewal/short-term motions and classification is
performed based on this structure. On the contrary, in i]fdatures are matched based on maximum
similarity across whole image sequences. In addition, gstesn uses a sparse representation as opposed to
[3], where a whole image sequence is represented as a spereHape. Sparse, local representations, are
shown to be significantly better in dealing with clutter arotlasions for object detection and recognition
in comparison to global representations. Similar obs@matare expected to hold in the problem of action
recognition. A sparse and structured representation id isfl1], where a recognition rate G2.8% is
reported on the Weizmann dataset, by far inferior tod3i& achieved by our method.

We used a leave-one-subject-out approach in order to é¢eabua method. This means that for any test
example, the created codebook contains information abeutlaiss of this example, although from different
same-class examples. We would like to determine, if ouufeatare general enough to handle completely
unknown classes, that is, given a codebook of verbs how w/étiis codebook able to discriminate classes
that did not contribute at all to its creation. Our motivatifor this experiment lies in the fact that our
system is able to consistently recover short-term motia@miall spatiotemporal regions. Therefore, given an
unknown class that shares a number of similar such regicdhseveral known classes, there should be some
limited ability for good discrimination. We performed twdfdrent experiments. In the first experiment we
created a codebook fromnl classes of the aerobics dataset, completely excluding 8Jaghich was kept
out for testing. The result was out of 10 instances of the test class correctly classified. In therskco
experiment, we created a codebook from the whole aerobteselzand tested it on the Weizmann dataset.
The classes between these two datasets are completehedtffexcept for the clagack of the Weizmann
dataset which is similar to cladsof the aerobics dataset and classasel andwave2 of the Weizmann
dataset which look like class@sand7 of the aerobics dataset. The average recall rate for thisrerpnt
was67.5%, with the worst performing classes beipgnp, run andwalk. This result is reasonable, as these
classes do not seem to share common poses with the ones erttéca dataset. These results indicate that
it might be possible to use the proposed descriptors foleggmting new classes of actions. We intend to
investigate on the issue of the size of the action databas@enform the same experiments with features
that are currently the state of the art in the field, like thadiees of [3], [6] and [11].

5 Conclusions

In this paper we presented a feature based method for huntigityaecognition. The features that we
extract stem from automatically detected salient pointscmtain static information concerning the moving
body parts of the subjects as well as dynamic informatiorceoring the activities. We used the extracted
features in order to recover the pose and the short-termomofithe subject in a 'bag of verbs’ approach.
Our results show that our representation is able to rectwekind of motion performed in a variety of
different cases. Furthermore, our preliminary experimetiow that our system is able to generalize well
and handle unknown classes, which do not contribute to #gtion of the utilized codebook at all.

Our future directions include additional experiments idesrto determine the robustness of the proposed
method in more challenging scenarios, like in the preserficdyeamic background or moving camera.
Furthermore, we intend to implement different, more efficimethods for codebook creation.
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