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1. Introduction 
Human affect sensing can be obtained from a broad range of behavioral cues and signals 
that are available via visual, acoustic, and tactual expressions or presentations of emotions. 
Affective states can thus be recognized from visible/external signals such as gestures (e.g., 
facial expressions, body gestures, head movements, etc.), and speech (e.g., parameters such 
as pitch, energy, frequency and duration), or invisible/internal signals such as physiological 
signals (e.g., heart rate, skin conductivity, salivation, etc.), brain and scalp signals, and 
thermal infrared imagery. 
Despite the available range of cues and modalities in human-human interaction (HHI), the 
mainstream emotion research has mostly focused on facial expressions (Hadjikhani & De 
Gelder, 2003). In line with this, most of the past research on affect sensing and recognition 
has also focused on facial expressions and on data that has been posed on demand or 
acquired in laboratory settings. Additionally, each sense such as vision, hearing, and touch 
has been considered in isolation. However, natural human-human interaction is multimodal 
and not occurring in predetermined, restricted and controlled settings. In the day-to-day 
world people do not present themselves to others as voice- or body-less faces or face- or 
body-less voices (Walker-Andrews, 1997). Moreover, the available emotional signals such as 
facial expression, head movement, hand gestures, and voice are unified in space and time 
(see Figure 1). They inherently share the same spatial location, and their occurrences are 
temporally synchronized. Cognitive neuroscience research thus claims that information 
coming from various modalities is combined in our brains to yield multimodally 
determined percepts (Driver & Spence, 2000). In real life situations, our different senses 
receive correlated information about the same external event. When assessing each others’ 
emotional or affective state, we are capable of handling significantly variable conditions in 
terms of viewpoint (i.e. frontal, profile, even back view), tilt angle, distance (i.e., face to face 
as well as at a distance) , illumination (i.e., both day and night conditions), occlusions (e.g., 
even when some body parts are occluded), motion (e.g., both when stationary and moving, 
walking and talking) and noise (e.g., while many people are chatting and interacting 
simultaneously).  
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The fact that humans perceive the world using rather complex multimodal systems does not 
necessarily imply that the machines should also posses all of the aforementioned 
functionalities. Humans need to operate in all possible situations and develop an adaptive 
behavior; machines instead can be highly profiled for a specific purpose, scenario, user, etc. 
For example, the computer inside an automatic teller machine probably does not need to 
recognize the affective states of a human. However, in other applications (e.g., computer 
agents, effective tutoring systems, clinical settings, monitoring user’s stress level) where 
computers take on a social role such as an instructor or helper, recognizing users' affective 
states may enhance the computers’ functionality (Picard, 1997).  
A number of survey papers exist within the affect sensing and recognition literature (e.g., 
Gunes & Piccardi, 2008; Zeng & et al., 2008). For instance, the shift from monomodal to 
multimodal affect recognition, together with systems using vision as one of the input 
modalities and analyzing affective face and body movement either as a pure monomodal 
system or as part of a multimodal affective framework, is discussed in (Gunes & Piccardi, 
2008). An exhaustive survey of past efforts in audiovisual affect sensing and recognition, 
together with various visual, audio and audio-visual databases, is presented in (Zeng & et 
al., 2008). However, no effort so far has attempted to compile and discuss visual (i.e., facial 
and bodily expression), audio, tactile (i.e., heart rate, skin conductivity, thermal signals etc.) 
and thought (i.e., brain and scalp signals) modalities together. Accordingly, this chapter sets 
out to explore recent advances in affect sensing and recognition by explicitly focusing on 
systems that are based on multiple input modalities and alternative channels, and is 
organized as follows. The first part is concerned with the challenges faced when moving 
from affect recognition systems that were designed in and for laboratory settings (i.e., 
analyzing posed data) to systems that are able to analyze spontaneous data in a multimodal 
framework. It discusses the problem domain of multimodal affect sensing, when moving 
from posed to spontaneous settings. The chapter initially focuses on background research, 
reviewing the theories of emotion, monomodal expression and perception of emotions, 
temporal information, posed vs. spontaneous expressions, and multimodal expression and 
perception of emotions. The chapter then explores further issues in data acquisition, data 
annotation, feature extraction, and multimodal affective state recognition. As affect 
recognition systems using multiple cues and modalities have only recently emerged, the 
next part of the chapter presents representative systems introduced during the period 2004 - 
2007, based on multiple visual cues (i.e., affective head, face and/or body movement), haptic 
cues (physiological sensing) or combination of modalities (i.e., visual and physiological 
channels, etc.) capable of handling data acquired either in the laboratory or real world 
settings. There exist some studies analyzing spontaneous facial expression data in the 
context of cognitive-science or medical applications (e.g., Ashraf & et al., 2007). However, 
the focus of this chapter is on multimodal or multicue affective data, accordingly, systems 
analyzing spontaneous data are presented in the context of human-computer interaction 
(HCI) and human-robot interaction (HRI). The last part of this chapter discusses issues to be 
explored in order to advance the state-of-the-art in multimodal and multicue affect sensing 
and recognition. 

2. From posed to spontaneous: changes and challenges 
Affect sensing and recognition is a relatively new research field. However, it should be 
realized that affect recognition from multiple modalities has an even shorter historical 
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background and is still in its infancy. It was not till 1998 that computer scientists attempted 
to use multiple modalities for recognition of emotions/affective states (Riseberg & et al., 
1998). The initial interest was on fusing visual and audio data. The results were promising; 
using multiple modalities improved the overall recognition accuracy helping the systems 
function in a more efficient and reliable way. Starting from the well-known work of Picard 
(Picard & et al., 2001), interest in detecting emotions from physiological signals emerged. 
Although a fundamental study by Ambady and Rosenthal suggested that the most 
significant channels for judging behavioral cues of humans appear to be the visual channels 
of face and body (Ambady & Rosenthal, 1992), the existing literature on automatic emotion 
recognition did not focus on the expressive information that body gestures carry till 2003 
(e.g., Camurri & et al., 2003). Following the new findings in psychology, a number of 
researchers have attempted to combine facial expressions and body gestures for affect 
recognition (e.g., Gunes & Piccardi, 2007; Karpouzis & et al., 2007; Martin & et al., 2006). A 
number of approaches have also been proposed for other sensorial sources such as thermal 
and brain signals (e.g., Nakasone & et al., 2005; Takahashi, 2004; Pun & et al., 2006; Puri & et 
al., 2005; Savran & et al., 2006; Takahashi, 2004; Tsiamyrtzis & et al., 2007). With all these 
new areas of research in affect sensing, a number of challenges have arisen (e.g., 
synchronization, fusion, etc.). The stage that affective computing has reached today is 
combining multiple channels for affect recognition and moving from laboratory settings 
towards real world settings. 
 

 
Figure 1: Examples of socially visible multimodal expression (facial expression, body 
gesture and speech) of emotions in real-life situations. 

We start with the description of what is meant by laboratory vs. real world settings. The so-
called laboratory/posed/controlled settings refer to: 
! an experimental setup or environment (e.g., a laboratory), with controlled and uniform 

background/illumination/placement conditions (e.g., a static background without any 
clutter, no audiovisual noise, with predetermined level of illumination and number of 
lights etc.), 

! human subject restricted in terms of free movement of head/body and in terms of 
location/seating and expressivity s(he) is allowed/able to display, 

! a setup where people are instructed by an experimenter on how to show the desired 
actions/expressions (e.g., by moving the left eyebrow up or producing a smile), where 
occurrences of occlusion/noise/missing data are not allowed, 

! a setup without considering any of the issues related to user, task or context. 
The so-called real world/spontaneous/natural settings instead refer to: 
! a realistic environment, for instance, home/office/hospital, without attempting to 

control the varying conditions, 
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! where people might show all possible affective states, expressed synchronously (e.g., 
speech and facial expression) or asynchronously (e.g., facial expression and body 
gesticulation), expressed with intention (e.g., irony) or without intention (e.g., fatigue), 

! with large head or body movements as well as moving subjects in various 
environments (e.g., office or house, not just restricted to one chair or room), 

! where people are not aware of the recording (or are, depending on the context), 
! where people will not restrain themselves unlike the case when they are part of an 

experiment, and will express emotions due to real-life event or trigger of events (e.g., 
stressed at work), 

! with possible occurrences of occlusions (e.g., hands occluding each other or hand 
occluding the face), noise (e.g., in audio recordings) and missing data, 

! where the recordings are acquired with multiple sensing devices (e.g., multiple cameras 
& microphones & haptic/olfactory/taste/brain sensors etc.), under non-uniform and 
noisy (lighting/voice recording) conditions and in long sessions (e.g., one whole day 
and possibly a couple of weeks or longer), 

! capturing all variations of expressive behavior in every possible 
order/combination/scale, 

! being able to adapt to user, task and context. 
As the real world settings pose many challenges to the automatic sensing and recognition of 
human affect, there have been a relatively higher number of research studies on affect 
recognition that have dealt with laboratory settings rather than real world settings. The shift 
from the laboratory to the real world is driven by various advances and demands, and 
funded by various research projects (e.g., European Union FP 6, HUMAINE and European 
Union FP 7, SEMAINE). However, similar to that of many other research fields, the shift is 
gradual and the progress is slow. The multimodal systems introduced so far can only 
partially handle challenges mentioned as part of the more naturalistic or real world settings. 
Although multimodal systems or machines aimed at assisting human users in their tasks 
might not need to function exactly as humans do, it is still necessary to investigate which 
modalities are the most suitable ones for which application context. To date, many research 
questions remain unexplored while advancing toward that goal.  

3. Background research 
Emotions are researched in various scientific disciplines such as neuroscience, psychology, 
and cognitive sciences. Development of affective multimodal systems depends significantly 
on the progress in the aforementioned sciences. Accordingly, we start our analysis by 
exploring the background in emotion theory, perception and recognition. 

3.1 Theories of emotion 
One of the most discussed issues in the emotion literature is the definition, categorization 
and elicitation of emotions. As far as definition of emotion is concerned emotions are 
defined as affectively valenced states (Ortony & Turner, 1990). In general, emotions are 
short-term (seconds/minutes), whereas moods are long-term (several days), and 
temperaments or personalities are very long-term (months, years or a lifetime) (Jenkis & et 
al., 1998). 
As far as the categorization is concerned, a significant number of researchers in psychology 
advocate the idea that there exists a small number of emotions that are basic as they are 



From the Lab to the Real World: Affect Recognition Using Multiple Modalities 

 

189 

hard-wired to our brain and are recognized universally (e.g., (Ekman & et al., 2003). Ekman 
and his colleagues conducted various experiments on human judgment on still photographs 
of posed facial behavior and concluded that the six basic emotions can be recognized 
universally, namely, happiness, sadness, surprise, fear, anger and disgust (Ekman, 1982). To 
date, Ekman’s theory on universality is the most widely used theory in affect sensing by 
machines. 
Some other researchers argue about how many emotions are basic, which emotions are 
basic, and why they are basic (Ortony & Turner, 1990). Some researchers claim that the list 
of basic emotions (i.e., happiness, surprise, desire, fear, love, rage, sadness etc.) includes 
words that do not refer to emotions. For instance, a few researchers claim that surprise is an 
affectively neutral state; therefore is not an emotion (Ortony & Turner, 1990). 
Among the various classification schemes, Baron-Cohen and his colleagues, for instance, 
have investigated cognitive mental states (e.g.,  agreement, concentrating, disagreement, 
thinking, unsure and interested) and their use (see Figure 2a) in daily life via analysis of 
multiple asynchronous information sources such as facial actions, purposeful head gestures 
and eye-gaze direction. They showed that cognitive mental states occur more often in day to 
day interactions than the so-called basic emotions (Baron-Cohen & Tead, 2003). These states 
were also found relevant in representing problem-solving and decision-making processes in 
HCI context and have been used by a number of researchers (e.g., El Kaliouby & Robinson, 
2005). 
 

 
(a)     (b) 

Figure 2. Illustration of a) Baron-Cohen’s cognitive mental states (from Autism and 
Affective-Social Computing Tutorial at ACII 2007), and b) Russell’s circumflex model 
(Russell, 1980). 

A number of emotion researchers take the dimensional approach and they view affective 
states not independent of one another; rather, related to one another in a systematic manner 
(e.g., Russell, 1980). Russell (Russell, 1980) among others argues that emotion is best 
characterized in terms of a small number of latent dimensions, rather than in terms of a 
small number of discrete emotion categories. Russell proposes that each of the basic 
emotions is a bipolar entity as part of the same emotional continuum. The proposed polars 
are arousal (relaxed vs. aroused) and valence (pleasant vs. unpleasant). Arousal is a feeling 
state that ranges from sleepiness or boredom to frantic excitement. Valence ranges from 
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unpleasant feelings to pleasant feelings of happiness. The model is illustrated in Figure 2b. 
Another issue in the emotion research is that of certain emotions' co-occurrence. Russell and 
Carroll (Russell & Carroll, 1999), in accordance with Russell's circumflex model, propose 
that happiness and sadness are polar opposites and, thus, mutually exclusive. In other 
words, “when you are happy, you are not sad and when you are sad, you are not happy". In 
contrast, Cacioppo and Berntson (Cacioppo & Berntson, 1994) propose that positive and 
negative affect are separable, and mixed feelings of happiness and sadness can co-occur. 
As far as the labeling is concerned, different labels are used by different researchers when 
referring to the same emotion (e.g., anger - rage, happiness - joy - elation). The problem of 
what different emotion words are used to refer to the same emotion is by itself a topic of 
research for linguists, emotion theorists, psychologists and potentially ethnologists (Ortony 
& Turner, 1990). 
After all, even with over a century of research, all of the aforementioned issues still remain 
under discussion and psychologists do not seem to have reached consensus yet. In relevance 
to this chapter, in the following sections, background in nonverbal communication of 
emotions is provided. In particular, studies that explore the characteristic nonverbal 
expressions of emotions in HHI from various channels are reviewed under two categories: i) 
monomodal expression and perception of emotions and ii) multimodal expression and 
perception of emotions. 

3.2 Monomodal expression and perception of emotions 
Emotional information is conveyed by a broad range of modalities, including speech and 
language, gesture and head movement, body movement and posture, as well as facial 
expression. One limitation of prior work on human emotion perception is the focus on 
separate channels for expression of affect, without adequate consideration for the 
multimodal emotional signals that people encounter in their environment (Ekman, 1982; 
Pantic & Rothkrantz, 2003; Van den Stock & et al., 2007). Most research on the development 
of emotion perception has focused on human recognition of facial expressions and posed 
emotional data. The investigation of various ways in which people learn to perceive and 
attend to emotions multimodally is likely to provide a more complete picture of the complex 
HHI. 
Herewith, we provide a summary of the findings from emotion research in emotion 
communication from facial and bodily expression, audio or acoustic signals, and bio-
potential signals (physiological signals, brain signals and thermal infrared signals). Figure 3 
presents examples of sensors used for acquiring affective data from these channels. 

3.2.1 Facial expression 
Ekman and his colleagues conducted various experiments on human judgment on still 
photographs of posed face behavior and concluded that six basic emotions can be 
recognized universally: happiness, sadness, surprise, fear, anger and disgust. Several other 
emotions and many combinations of emotions have been studied but it remains 
unconfirmed whether they are universally distinguishable. Although prototypic 
expressions, like happiness, surprise and fear, are natural, they occur infrequently in daily 
life and provide an incomplete description of facial expression. To capture the subtlety of 
human emotion and paralinguistic communication, Ekman and Friesen developed the Facial 
Action Coding System (FACS) for coding of fine-grained changes on the face (Ekman & 
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Friesen, 1978). FACS is based on the enumeration of all face action units causing face 
movements. In addition to this, Friesen and Ekman (Friesen & Ekman ,1984) developed 
Emotion FACS (EMFACS) as a method for using FACS to score only the facial actions that 
might be relevant to detecting emotion. 
To date, Ekman's theory of emotion universality (Ekman & Friesen, 2003) and the Facial 
Action Coding System (FACS) (Ekman &Friesen, 1978) are the most commonly used 
schemes in vision-based systems attempting to recognize facial expressions and action units. 

3.2.2 Bodily expression 
Researchers in social psychology and human development have long emphasized the fact 
that emotional states are expressed through body movement (Hadjikhani & De Gelder, 
2003). However, compared to research in facial expression, the expressive information body 
gestures carry has not been adequately exploited yet. 
Darwin (Darwin, 1872) was the first to describe in detail the bodily expressions associated 
with emotions in animals and humans and proposed several principles underlying the 
organization of these expressions. It is also well known from animal research that 
information from bodily expressions can play a role in reducing the ambiguity of facial 
expression (Van Hoof, 1962). It has been shown that observers' judgments of infant 
emotional states depend on viewing whole-body behaviors more than facial expression 
(Camras & et al., 2002). Following Darwin’s early work, there have been a number of studies 
on human body postures communicating emotions (e.g., Argyle, 1975). Coulson presented 
experimental results on attribution of six emotions (anger, disgust, fear, happiness, sadness 
and surprise) to static body postures by using computer-generated figures (Coulson, 2004). 
He found out that in general, human recognition of emotion from posture is comparable to 
recognition from the voice, and some postures are recognized as effectively as facial 
expressions. Van den Stock & et al. (Van den Stock & et al., 2007) also presented a study 
investigating emotional body postures (happiness, sadness, surprise, fear, disgust and 
anger) and how they are perceived. Results indicate good recognition of all emotions, with 
angry and fearful bodily expressions less accurately recognized compared to sad bodily 
expressions. (Gross & et al., 2007) presented a study where bodily expression of felt and 
recognized emotions was associated with emotion specific changes in gait parameters and 
kinematics (content, joy, angry, sad and neutral). After recalling an emotion, participants 
walked across the laboratory while video and whole-body motion capture data were 
acquired. Walkers felt and observers recognized the same emotion in 67% of the available 
data. On average, sadness was most recognized and anger was least recognized. Gait 
velocity was greatest in high-activation emotion trials (anger and joy), and least in sad trials. 
Velocity was not different among neutral and low-activation emotion trials (content and 
sad). Both posture and limb motions changed with emotion expressed. 
In general, the body and hand gestures are much more varied than face gestures. There is an 
unlimited vocabulary of body postures and gestures with combinations of movements of 
various body parts. Despite the effort of Laban in analyzing and annotating body movement 
(Laban & Ullmann, 1988) unlike the face action units, body action units that carry expressive 
information have not been defined or coded with a Body Action Coding System. 
Communication of emotions by bodily movement and expressions is still a relatively 
unexplored and unresolved area in psychology, and further research is needed in order to 
obtain a better insight on how they contribute to the perception and recognition of the 
various affective states. 
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3.2.3 Audio 
Speech is another important communicative modality in human-human interaction. It is 
between 200 thousand and 2 million years old, and it has become the indispensable means 
for sharing ideas, observations, and feelings. Speech conveys affective information through 
explicit (linguistic) messages, and implicit (paralinguistic) messages that reflect the way the 
words are spoken. If we consider the verbal part (linguistic message) only, without 
regarding the manner in which it was spoken (paralinguistic message), we might miss 
important aspects of the pertinent utterance and even misunderstand the spoken message 
by not attending to the non-verbal aspect of the speech. However, findings in basic research 
indicate that spoken messages are rather unreliable means to analyze and predict human 
(affective) behavior (Ambady & Rosenthal, 1992). Anticipating a person’s word choice and 
the associated intent is very difficult: even in highly constrained situations, different people 
choose different words to express exactly the same thing. Yet, some information about the 
speaker’s affective state can be inferred directly from the surface features of words, which 
were summarized in some affective word dictionaries and lexical affinity (e.g., Whissell, 
1989). The rest of affective information lies below the text surface and can only be detected 
when the semantic context (e.g., discourse information) is taken into account. The 
association between linguistic content and emotion is language-dependent and generalizing 
from one language to another is very difficult to achieve. 
When it comes to implicit, paralinguistic messages that convey affective information, the 
research in psychology and psycholinguistics provides an immense body of results on 
acoustic and prosodic features which can be used to encode affective states of a speaker. For 
a comprehensive overview of the past research in the field, readers are referred to Juslin & 
Scherer (2005). The speech measures which seem to be reliable indicators of the basic 
emotions are the continuous acoustic measures, particularly pitch-related measures (range, 
mean, median, and variability), intensity and duration. For a comprehensive summary of 
acoustic cues related to vocal expressions of basic emotions, readers are referred to Cowie & 
et al. (2001). However, basic researchers have not identified an optimal set of voice cues that 
reliably discriminate among emotions. Nonetheless, listeners seem to be accurate in 
decoding some basic emotions from prosody (Juslin & Scherer, 2005) as well as some 
nonbasic affective states such as distress, anxiety, boredom, and sexual interest from 
nonlinguistic vocalizations like laughs, cries, sighs, and yawns (Russell & Fernandez-Dols, 
1997). 

3.2.4 Bio-potential signals 
Brain signals measured via functional Near Infrared Spectroscopy (fNIRS), scalp signals 
measured via electroencephalogram (EEG), and peripheral signals, namely, cardiovascular 
activity, including interbeat interval, relative pulse volume, pulse transit time, heart sound, 
and pre-ejection period; electrodermal activity (tonic and phasic response from skin 
conductance) or galvanic skin response (GSR), electromyogram (EMG) activity (from 
corrugator supercilii, zygomaticus, and upper trapezius muscles), are commonly referred to 
as physiological or bio-signals (Changchun & et al., 2005; Savran & et al., 2006; Takashi, 
2004). While visual modalities such as facial expressions and body gestures provide a 
visible/external understanding of the emotions, bio-signals such as EEG and fNIRS provide 
an invisible/internal understanding of the emotion phenomenon (see (Savran & et al., 2006) 
and Figure 3). 
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Figure 3: Examples of sensors used in multimodal affective data acquisition: (a) camera for 
visible imagery, (b) microphone(s) for audio recording, (c) infrared camera for thermal 
infrared (IR) imagery, (d) body media sense wear for physiological signal recording, (e)  
pulse wave signal recorder clipped on the finger, and (f) electroencephalogram (EEG) for 
brain/scalp signals recording and measurement. 

Researchers claim that all emotions can be characterized in terms of judged valence 
(pleasant or unpleasant) and arousal (calm or aroused) (Lang, 1995). Emotions can thus be 
represented as coordinates in the arousal–valence space. The relation between physiological 
signals and arousal/valence is established in psychophysiology that argues that the 
activation of the autonomic nervous system changes while emotions are elicited (Levenson, 
1988). Galvanic skin response (GSR) is an indicator of skin conductance (SC), and increases 
linearly with a person’s level of overall arousal and Electromyography (EMG) measures 
muscle activity and has been shown to correlate with negatively valenced emotions 
(Nakasone & et al., 2005). The transition from one emotional state to another, for instance, 
from state of boredom to state of anxiety is accompanied by dynamic shifts in indicators of 
autonomic nervous system activity (Changchun & et al., 2005). Moreover, there is evidence 
suggesting that measurements recorded over various parts of the brain including the 
amygdala enable observation of the emotions felt (Pun & et al., 2006). For instance, approach 
or withdrawal response to a stimulus is known to be linked to the activation of the left or 
right frontal cortex, respectively. Therefore, such responses can be used as correspondence 
to positive/negative emotions (Pun & et al., 2006). BCIs can assess the emotions by 
assuming that negative/positive valence corresponds to negative/ positive emotions and 
arousal corresponds to the degree of excitation, from none to high (e.g., (Pun & et al., 2006)). 
However, in general, researchers have not identified an optimal set of bio-potential cues that 
can assist in reliably discriminating among various affective states. 

3.2.5 Thermal infrared signals 
A number of studies in the fields of neuropsychology, physiology and behavior analysis 
suggest that there exists a correlation between mammals’ core body temperature and their 
affective states. Nakayama & et al. conducted experiments by monitoring the facial 
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temperature change of monkeys under stressful or threatening conditions. Their study 
revealed that decrease in nasal skin temperature is relevant to a change from neutral to 
negative affective state (Nakayama & et al., 2005). Vianna & Carrive conducted another 
independent experiment by monitoring the temperature changes in rats when they were 
experiencing fearful situations (Vianna & Carrive, 2005). The observation was that the 
temperature increased in certain body parts (i.e., eyes, head and back), while in other body 
parts (i.e., tail and paws) the temperature dropped simultaneously.  
There also exist other studies indicating that contraction or expansion of the facial/bodily 
muscles of humans causes fluctuations in the rate of blood flow (e.g., Khan & et al., 2006a, 
2006b; Tsiamyrtzis & et al., 2007). This thermo-muscular activity results in a change in the 
volume of blood flow under the surface of the human facial and/or bodily skin. Thus, skin 
temperature is heavily modulated by superficial blood flow and environmental 
temperature. However, influence of environmental temperature blends in the background 
once the person is in that environment and can be modeled or ignored. This in turn implies 
that it is possible to obtain objective measurements of skin temperature change. 
Unlike other bio-physiological signal measurement, sensing using infrared thermal imagery 
does not rely on contact with the human body. Thus, the noninvasive detection of any 
changes in facial and/or bodily thermal features may help in detecting, extracting, and 
interpreting human affective states. For instance, (Pavlidis & et al., 2001) and (Tsiamyrtzis & 
et al., 2007) have shown that there is a correlation between increased blood perfusion in the 
orbital muscles, and anxiety and stress levels of humans, respectively. Similarly, Puri & et al. 
reported that users’ stress level was correlated with increased blood flow in the frontal 
vessels of forehead causing dissipation of convective heat (Puri & et al., 2005).  
A generic model for estimating the relationship between fluctuations in blood flow and 
facial/bodily muscle activity is not yet available. Such a model could enhance our 
understanding of the relationship between affective states and the facial/bodily thermal and 
physiological characteristics. 

3.3 Temporal information 
Studies show that the temporal dynamics play an important role for interpreting emotional 
displays (Ambady & Rosenthal, 1993; Schmidt & Cohn, 2001). The temporal aspect of a 
facial movement is described by four segments: neutral, onset, apex and offset (Ekman, 
1979). The neutral phase is a plateau where there are no signs of muscular activation, the 
face is relaxed. The onset of the action/movement is when the muscular contraction begins 
and increases in intensity and the appearance of the face changes. The apex is a plateau 
usually where the intensity reaches a stable level and there are no more changes in facial 
appearance. The offset is the relaxation of the muscular action. A natural facial movement 
evolves over time in the following order: neutral- onset- apex-offsetneutral. Other 
combinations such as multiple-apex facial actions are also possible. 
Similarly, the temporal structure of a body gesture consists of (up to) five phases: 
preparation (pre-stroke)- hold- stroke- (post-stroke) hold-retraction. The preparation moves 
to the stroke’s starting position and the stroke is the most energetic part of the gesture. 
Holds are optional still phases which can occur before and/or after the stroke. The 
retraction returns to a rest pose (e.g., arms hanging down, resting in lap, or arms folded) 
(Wilson & et al., 1997). 
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As stated previously, research on bodily expression of emotions is relatively new. Moreover, 
most of the present studies on bodily expression of emotion have used static images, in line 
with the large majority of studies on facial expressions. Due to such reasons issues such as 
the importance of motion, timing, and spontaneity have not been considered as extensively 
as in the facial expression literature.  
The importance of temporal information has also not been widely explored for bio-potential 
signals. Overall, similar body of research to the facial expressions needs to be conducted in 
order to identify the importance of such factors for bodily or bio-potential signal-based 
expressions of emotions and correlation between these cues and modalities. After all, 
detection of the temporal phases and/or dynamics can effectively support automated 
recognition of affective states (e.g., Gunes, 2007). 

3.4 Posed vs. spontaneous expressions 
Most of the studies supporting the universality of emotional expressions are based on 
experiments related to deliberate/posed expressions. Studies reveal that both 
deliberate/posed and natural/spontaneous emotional expressions are recognized equally 
accurately; however, deliberate expressions are significantly different from natural ones. 
Deliberate facial behavior is mediated by separate motor pathways and differences between 
natural and deliberate facial actions may be significant. Schmidt and Cohn (Schmidt & 
Cohn, 2001) found that an important visual cue signaling a smile as deliberate or 
spontaneous is the timing of the phases. A major body of research has been conducted by 
Cohn and his colleagues in order to identify such differences for other facial expressions of 
emotions (Affect analysis group, 2008). 
In natural situations, a particular bodily expression is most likely to be accompanied by a 
congruent facial expression being governed by a single emotional state. Darwin argued that 
because our bodily actions are easier to control on command than our facial actions, the 
information contained in the signal of body movements should be less significant than the 
face, at least when it comes to discerning spontaneous from posed behavior. Ekman 
however, argued that people do not bother to censor their body movements in daily life  
and therefore, the body would be the leakier source (Ekman, 2003). Furthermore, research in 
nonverbal behavior and communication theory stated that truthful and deceptive behavior 
differ from each other in lack of head movement (Buller & et al., 1994) and lack of 
illustrating gestures which accompany speech (DePaulo, 2003). 
Compared to visible channels of face and body, the advantage of using bio-signals for 
recognizing affective states is the fact that physiological recordings cannot be easily faked or 
suppressed, and can provide direct information as to the user’s state of mind. 
Overall, perceiving dynamics for spontaneous emotional face and body language and 
recognition of dynamic whole bodily expressions has not been studied extensively. In day-
today life people express and communicate emotions multimodally. Research that study 
posed vs. spontaneous expressions in a multicue and/or multimodal context therefore is 
needed in order to obtain a better understanding of the natural communication of emotions 
in HHI to be later used in HCI. 

3.5 Multimodal expression and perception of emotions 
In noisy situations, humans depend on access to more than one modality, and this is when 
the nonverbal modalities come into play (Cassell, 1998). It has been shown that when speech 
is ambiguous or in a speech situation with some noise, listeners do rely on gestural cues 
(McNeill, 1985). 
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Cross-modal integration is known to occur during multi-sensory perception. Judgments for 
one modality are influenced by a second modality, even when the latter modality can 
provide no information about the judged property itself or increase ambiguity (Driver & 
Spence, 2000). A number of studies reported that facial expressions and emotional tone of 
voice or emotional prosody influence each other (De Gelder & et al.,1999; Massaro & Cohen, 
2000).. In a study with static facial expressions and emotional spoken sentences, de Gelder 
and Vroomen observed a cross-modal influence of the affective information. Recognition of 
morphed vocal expressions was biased toward the simultaneously presented facial 
expression, even when the participants were instructed to ignore the visual stimuli. A follow 
up study suggested that this cross-modal integration of affective information takes place 
automatically, independent of attentional factors (Vroomen & et al., 2001). Van den Stock & 
et al. (Van den Stock & et al., 2007) investigated the influence of wholebody expressions of 
emotions on the recognition of facial and vocal expressions of emotion. The recognition of 
facial expression was strongly influenced by the bodily expression. This effect was a 
function of the ambiguity of the facial expression. In another experiment they found that the 
recognition of emotional tone of voice was similarly influenced by task irrelevant emotional 
body expressions. Taken together, the findings illustrate the importance of emotional whole-
body expressions in communication when viewed in combination with facial expressions 
and emotional voices. 
When input from multiple expressive sources or channels is available the affective message 
conveyed by different modalities might be congruent (i.e., agreeing) or incongruent (i.e., 
disagreeing). Observers judging a facial expression were found to be strongly influenced by 
emotional body language (Meeren & et al., 2005). (Meeren & et al., 2005) investigated the 
combined perception of human facial and bodily expressions. Participants were presented 
compound images of faces on bodies and their emotional content was either congruent or 
incongruent. The results showed that responses were more accurate and faster when face 
and body expressed the same emotion. When face and body convey conflicting emotional 
information, judgment of facial expression is hampered and becomes biased toward the 
emotion expressed by the body. The results show that the whole-body expression has the 
most influence when the face ambiguity is highest and decreases with reduced facial 
ambiguity. 
Emotion research has not reported such cross-modal interaction for other pairs of modalities 
such as tactile and visual, or tactile and audio etc. These issues need to be addressed in 
follow-up studies to obtain a better understanding of the interaction between various 
expressive cues, sources and modalities in HHI. The multimodal affect systems should 
potentially be able to detect incongruent messages and label them as incongruent for 
further/detailed understanding of the information being conveyed (Paleari & Lisetti, 2006) . 
Different to the cross-mode compensation but still part of the multicue or multimodal 
perception, there exist findings reporting that when distance is involved humans tend to 
process the overall global information rather than considering configurations of local 
regions. Researchers found that if a face is present at close range, especially the eyes are 
important, but when the distance increases, the configural properties of the whole face play 
an important role (Van den Stock & et al., 2007). Whole-body expressions seem to be 
preferentially processed when the perceiver is further away from the stimulus. When the 
facial expression of the producer is not visible, emotional body language becomes 
particularly important. Such issues are yet to be explored in multimodal affect recognition. 



From the Lab to the Real World: Affect Recognition Using Multiple Modalities 

 

197 

If humans are presented with temporally aligned but conflicting audio and visual stimuli, 
the perceived sound may differ from that present in either channel. This is known as 
McGurk effect in the audio-visual speech perception literature. (Ali & et al., 2003) examined 
the effect of temporal misalignment of audio and visual channels when users interact with 
multimodal interfaces (e.g., talking heads). Their study showed that when the audio is not in 
synchrony with the visual channel, the McGurk effect is observed and participants need to 
apply extra mental effort for recognition. Such an analysis has not yet been applied in the 
field of affect sensing and recognition. 
Overall, further research is needed in multicue and multimodal affect sensing and 
recognition in order to explore the issues that have been discussed in this section. 

4. Data acquisition 
A recent discussion in the automatic affect sensing field is the creation and use of posed vs. 
spontaneous databases. Affective data may belong to one of the following categories: posed 
(i.e., produced by the subject upon request), induced (i.e., occurring in a controlled setting 
and designed to create an affective activation or response such as watching movies) or 
spontaneous (i.e., occurring in real-life settings such as interviews or interactions between 
humans or between humans and machines) (Bänziger and Scherer, 2007). 
When acquiring posed affective multimodal data, the experiments are usually carried out in 
a laboratory setting where the illumination, sounds, and room temperature are controlled to 
maintain uniformity. The stimulated emotions usually include the so-called six basic 
emotions (e.g., Takashi, 2004). Posed databases are recorded by asking “actors” to act 
specific affective-cognitive states. The easiest way to create a posed multimodal affect 
database is by having an experimenter direct and control the expression/display and the 
recordings. The creation of such database usually depends on the restrictions imposed on 
the actors: e.g., where the subject should sit or stand, where the subject should look, how a 
smile should be displayed, whether or not head motion, body motion or speech are allowed 
etc. Moreover, transitions between affective states are not allowed. Depending on which 
modalities are recorded, the experimenters typically use a number of sensors: two cameras 
where face and upper body are recorded simultaneously (e.g., the FABO database (Gunes & 
Piccardi, 2006)), a camera and a microphone when recording facial expressions and audio 
signals (e.g., the University of Texas Database (O'Toole & et al., 2005)) etc. A typical affective 
state recorded thus consists of neutral-onset-apex-offset-neutral temporal segments. When 
acquiring spontaneous affective multimodal data, the subjects are recorded without their 
knowledge while they are stimulated with some emotionally-rich stimulus (e.g., Zuckerman 
& et al., 1979). In the facial expression recognition literature the so-called spontaneous data 
is facial behavior in less constrained conditions such as an interview setting where subjects 
are still aware of placement of cameras and their locations (e.g., Littlewort & et al., 2007; 
Pantic & Bartlett (2007). 
Recording of the physiological or bio-potential signals is a bit more complicated compared 
to the aforementioned recordings. In the brain-computer interface (BCI) or bio-potential 
signal research context, the subject being recorded usually wears headphones, a headband 
on which electrodes are mounted, a clip sensor, and/or touch type electrodes. The subject is 
then stimulated with emotionally-evocative images/videos/sounds. EEG recordings 
capture neural electrical activity on a millisecond scale from the entire cortical surface while 
fNIRS records hemodynamic reactions to neural signals on a seconds scale from the frontal 
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lobe. The skin conductance meter is usually composed of a number of electrodes and an 
amplifier. The electrodes are mounted on a surface, for example a mouse in order to contact 
the fingers of the subject. The variation of the skin conductance at the region of interest is 
then measured (Takahashi, 2004). In summary, the bio-potential affect data acquisition is 
induced, however, due to its invasive nature, the experimental settings provided do not 
encourage spontaneity. 
Recently, there have been a number of attempts to create publicly available affect databases 
using multiple sensors or input modalities. Some examples can be listed as follows: the 
SmartKom Corpora, the FABO Database, the Database collected at the University of 
Amsterdam and the Database collected at the University of Texas. These databases have 
been reviewed in (Gunes & Piccardi, 2006b) in detail. Such affect databases fall in either the 
posed or induced category. A number of databases (e.g.,: Drivawork Database, SAL 
Database and Mixed/spaghetti Data) have also been created as part of HUMAINE EU FP6 
and have been presented in (Douglas-Cowie & et al., 2007).  Among these, the Belfast 
database is a naturalistic audio-visual database consisting of clips taken from television and 
realistic interviews with a research team, and the SAL database contains induced data where 
subjects interacted with artificial listener with different personalities were recorded audio-
visually. 
Creation and annotation of affect databases from face and body display has been reviewed 
in (Gunes & Piccardi, 2006b). Various visual, audio and audio-visual databases have been 
reviewed in (Zeng & et al., 2008). 
Overall, very few of the existing multimodal affect databases contain spontaneous data. 
Although there is a recent attempt to collect spontaneous facial expression data in real-life 
settings (in the context of autism disorder) (El Kaliouby & Teeters, 2007), such an attempt is 
lacking for multimodal affect database creation. Overall, acquiring data in fully 
unconstrained environments with multiple sensors involves ethical and privacy concerns 
together with technical difficulties (placement of sensors, controlling the environmental 
conditions such as noise, illumination, occlusions, etc., consistency, repeatability etc.). 

5. Data annotation 
The relative weight given to facial expression, speech, and body cues depend both on the 
judgment task (i.e. what is rated and labeled) and the conditions in which the behavior 
occurred (i.e. how the subjects were simulated to produce the expression) (Ekman, 1982). 
People do not judge the available communicative channels separately and the information 
conveyed by these channels cannot be assumed simply additive (i.e., cross-mode 
compensation). However, in general, annotation of the data in multimodal affect databases, 
both for posed and spontaneous data, has been done separately for each channel assuming 
independency between the channels. 
The experimental setup for labeling or annotating emotional behaviors expressed via the 
visual channels usually consist of static photographs (e.g., Van den Stock & et al., 2007) or 
videos containing semi-professional actors expressing six basic (or more) emotions with face 
(e.g., Bänziger & Scherer, 2007), face and upper body (e.g., Gunes & Piccardi, 2006a), whole- 
body with faces blurred (e.g., Van den Stock & et al., 2007), or stick figures (e.g., Coulson, 
2004). Visual data are presented on a computer screen, and participants are asked to view 
and choose an emotion label from a predetermined list of labels that best describes the 
expressed emotion. Such studies usually aim to determine rates of observer recognition in 
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visual stimuli, and to use motion analysis to quantify how emotions change patterns in 
characteristic ways. 
In general, when annotating or labeling affect data from face display, Ekman's theory of 
emotion universality and the Facial Action Coding System (FACS) are used. When it comes 
to annotating body gestures, unlike the AUs, there is not one common annotation scheme 
that can be adopted by all the research groups. Laban and Ullman defined and analyzed 
body movement by using the following information and descriptions: body part (e.g., left 
hand), direction (e.g., up/down), speed (e.g., fast/slow), shape (hands made into fists), 
space (flexible/direct), weight (light/strong), time (sustained/quick), and flow 
(fluent/controlled) (Laban & Ullmann, 1988). Overall, the most time-costly aspect of current 
facial/body movement manual annotation is to obtain the onset-apex-offset time markers. 
This information is crucial for coordinating facial/body activity with simultaneous changes 
in physiology, voice, or speech. 
Hereby we describe some attempts or the so-called coding schemes for annotating multimodal 
affect data. In (Allwood & et al., 2004) authors designed a coding scheme for the annotation 
of 3 videos of TV interviews. Facial displays, gestures, and speech were coded using the 
following parameters: form of the expression and of its semantic-pragmatic function (e.g. 
turn managing) and the relation between modalities: repetition, addition, substitution, 
contradiction. (Martin & et al., 2005) designed a coding scheme for annotating multimodal 
behaviors during real life mixed emotions (i.e., TV interviews). They focused on the 
annotation of emotion specific behaviors in speech, head and torso movements, facial 
expressions, gaze, and hand gestures. They grounded their coding scheme on the following 
parameters: the expressivity of movements, the number of annotations in each modality, 
their temporal features (duration, alternation, repetition, and structural descriptions of 
gestures), the directions of movements and the functional description of relevant gestures. 
(Martin & et al., 2007) designed a multilevel coding scheme for the representation of 
emotion at several levels of temporality and abstraction. At the global level there is the 
annotation of emotion (categorical and dimensional including global activation). Similar 
annotations are available at the level of emotional segments of the video. At the level of 
multimodal behaviors there are tracks for each visible behavioral cue: torso, head, 
shoulders, facial expressions, gaze, and hand gestures. The head, torso and hand tracks 
contain a description of the pose and the movement of these cues. For the annotation of 
emotional movements, they use a model which describes expressivity by a set of six 
dimensions: spatial extent, temporal extent, power, fluidity, repetition, overall activity. The 
annotation also includes the structural descriptions (phases) of gestures. 
When annotating or labeling affect data from audio participants are asked to identify an 
emotion (e.g., happy or sad) given an auditory spoken sentence. Thus, again Ekman's theory 
of emotion universality or Russell's theory of arousal and valence is the most common way 
to annotate audio signals. 
For bio-potential signal annotation, ground truth usually consists of the participant’s self-
assessment (e.g., Pun & et al., 2006). In general, Ekman's theory of emotion universality or 
Russell's theory of arousal and valence is used. However, obtaining a correlation between 
emotions and the neural, thermal and other signals is not a straightforward process and is 
inherently different compared to visual or audio channels. The data labeling for bio-signals 
is directly dependant on the individuals’ evaluation of his own emotional situation during 
the experimental setup (i.e., emotion elicitation) or recordings. This implies that, the ground 
truth coding or labeling is very subjective and cannot be evaluated by independent 
observers or emotion research experts.  
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Another major challenge in affect data annotation is the fact that there is no coding scheme 
that is agreed upon by all the researchers to accommodate all possible communicative 
modalities like facial expressions, body gestures, voice, bio-potential signals etc. Addressing 
the aforementioned issues will potentially extend the state-of-the-art in multimodal affect 
sensing and recognition. 

6. Feature extraction 
After multimodal affect data has been acquired and annotated, representative and relevant 
features need to be extracted prior to the automatic affect recognition procedure. The feature 
extraction is only broadly covered here under each communicative source or channel: facial 
expression, body gestures, audio, bio-potential signals and thermal infrared imagery. 

6.1 Facial expression 
There exists an extensive literature for human face detection, feature extraction and 
expression recognition. Possible strategies for face detection vary significantly depending on 
the type of input images. Face detection can become a simplified problem with the 
assumption that an input image contains only one face. The so-called appearance-based 
methods have proved very robust and fast in recent years. They usually are based on 
training a classifier using positive and negative examples of faces. Various classifiers can be 
used for this purpose: Naive Bayes classifier, Hidden Markov model (HMM), Sparse 
network of windows (SNoW), Support Vector Machines (SVM), Adaboost etc. For face 
detection, the current state-of-the-art is based on the robust and well-known method 
proposed by Viola and Jones (Viola & Jones, 2001) and extended by Lienhart and Maydt 
based on a set of rotated Haar-like features (Lienhart & Maydt, 2002), and improved by 
(Fasel & et al., 2005)  using GentleBoost. 
Facial feature extraction aims to detect the presence and location of features such as eyes, 
nose, nostrils, eyebrow, mouth, lips, ears, etc. Similar to face detection, for facial feature 
extraction usually it is assumed that there is only one face in the image. There exists an 
extensive literature for face feature extraction for the detection of facial region and facial 
features using texture, depth, shape, color information or statistical models. Such 
approaches can be categorized under two categories: feature-based approaches and 
appearance-based approaches. In the feature-based approach, specific facial features such as 
the pupils, inner/outer corners of the eyes/ mouth are detected and tracked, distances 
between these are measured or used and prior knowledge about the facial anatomy is 
utilized. In the appearance-based approach, certain regions are treated as a whole and 
motion, change in texture are measured. A similar approach to face detection can also be 
used for training a separate classifier on each facial feature (eyes, lips etc.). Such an 
approach can handle inplane rotation and tolerate variations in lighting. Methods based on 
Haar features or wavelets, also known as appearance-based methods, in general have 
demonstrated good empirical results. They are fast and fairly robust and can be easily 
extended to detect objects in different pose and orientation. 
(Tian & et al., 2002) have shown that appearance-based methods alone perform poorly for 
the facial expression recognition. They found that when image sequences include 
nonhomogeneous subjects with small head motions, appearance-based methods have a 
relatively poor recognition rate compared to using an approach based on the geometric 
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features and locations. Combining the two approaches (appearance based methods and 
geometric features) resulted in the best performance (Tian & et al., 2002). On the other hand, 
Bartlett and her colleagues have shown that appearance-based methods perform better than 
feature-based methods (Pantic & Bartlett, 2007). For further details on facial feature 
extraction and tracking for facial expression or action unit recognition the reader is advised 
to see (Pantic & Bartlett, 2007). 

6.2 Body gesture 
There exists an extensive literature for body feature extraction, tracking and gesture 
recognition from video sequences. In the context of affect sensing, we only briefly 
summarize the existing trends in body gesture recognition. 
The existing approaches for hand or body gesture recognition and analysis of human 
motion in general can be classified into three major categories: model-based (i.e., modeling 
the body parts or recovering three-dimensional configuration of articulated body parts), 
appearance-based (i.e., based on two dimensional information such as color/gray scale 
images or body silhouettes and edges), and motion-based (i.e., using directly the motion 
information without any structural information about the physical body) (Elgammal, 2003). 
In the aforementioned approaches, Dynamic Time Warping (DTW) or Hidden Markov 
Models (HMM) are typically used to handle the temporal properties of the gesture(s). 
An overview of the various tasks involved in motion analysis of the human body such as 
motion analysis involving human body parts, tracking of human motion using single or 
multiple cameras from image sequences is presented in (Yilmaz & et al., 2006). The literature 
on visual interpretation of hand gestures mainly focuses on HCI rather than affect sensing. 
(Mitra & Acharya, 2007) provide a recent survey on gesture recognition, with particular 
emphasis on hand gestures and facial expressions. Applications involving hidden Markov 
models, particle filtering and condensation, finite-state machines, optical flow, skin color, 
and connectionist models are discussed in detail. (Poppe, 2007) also provides a recent 
survey on vision-based human motion analysis and discusses the characteristics of human 
motion analysis via modeling and estimation phases. 
Vision based gesture recognition is a challenging task due to various complexities including 
segmentation ambiguity and the spatio–temporal variability involved. Gesture tracking 
needs to handle variations in the tracked object (i.e., shapes and sizes of hands/arms) 
illumination, background, noise and occlusions. Recognition requires spotting of the gesture 
(i.e., determining the start and end points of a meaningful gesture pattern from a continuous 
stream) and segmenting the relevant gesture. Hand gestures may occlude each other as they 
switch from one gesture to another. Moreover, there occur intermediate and transition 
motions that may or may not be part of the gesture, and the same gesture may dynamically 
vary in shape and duration even for the same gesturer. Color as a distinct feature has been 
widely used for representation and tracking of multiple objects in a scene. Several tracking 
methods have been used in the literature; amongst them, the Kalman filter, Condensation 
tracking, Mean-shift tracking, and Cam-shift tracking. (Dreuw & et al. , 2006), for instance, 
present a dynamic programming framework with the possibility to integrate multiple 
scoring functions e.g. eigenfaces, or arbitrary objects, and the possibility of tracking multiple 
objects at the same time. Various techniques for extracting and tracking specific features 
such as shoulders have also been proposed in the literature. (Ning & et al., 2006) introduce a 
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system that can detect shoulder shrug by firstly using a face detector based on AdaBoost 
and then detecting shoulder positions by fitting a parabola to the nearby horizontal edges 
using weighted Hough Transform to recognize shrugs. There are also more recent works 
using different (or a combination of) tracking schemes depending on what they aim to track 
and recognize. An example system is that of Valstar & et al. (Valstar & et al.,2007) that uses a 
cylindrical head tracker to track the head  motion, an auxiliary particle filtering to track the 
shoulders motion, and a particle filtering with factorized likelihood tracking scheme to track 
movements of facial salient points in an input video. Overall, most of the existing 
hand/body gesture recognizers work well in relatively constrained environments (e.g., 
assuming that the person is seated on a chair) with relatively small changes in terms of 
illumination, background, and occlusions (Pantic & et al., 2007). 
Compared to automatic gesture analysis and recognition, affective body gesture recognition 
per se has not been widely explored. For recognition of emotions from body movement and 
gesture dynamics, some researchers propose to extract the whole-body silhouette and the 
hands of the subjects from the background (e.g., Villalba & et al., 2007). Different motion 
cues are then calculated: amount of motion computed with silhouette motion images, the 
degree of contraction and expansion of the body computed using the bounding region, 
velocity and acceleration computed based on the trajectory of the hands etc. However, 
despite the challenges pertaining in the field, advance tracking techniques need to be 
created and used to be able to track body parts such as torso, head, shoulders, and hands in 
real world settings. 

6.3 Audio features 
Most of the existing approaches to vocal affect recognition use acoustic features, particularly 
pitch-related measures (range, mean, median, and variability), intensity, and duration, 
based on the acoustic correlations for emotion expressions as summarized by Cowie & et al. 
(2001). In addition, and mostly because they proved very suitable for speaker identification 
task, spectral features (e.g., MFCC, cepstral features) have been used in many of the current 
studies on automatic vocal affect recognition. Various studies have shown that pitch and 
energy among these features contribute most to affect recognition (Zeng & et al, 2008). A 
few efforts have been also reported that use some alternative features such as voice-quality 
features (Campbell & Mokhtari, 2003) and speech disfluencies (e.g., filler and silence pauses; 
Devillers & et al., 2004). 
However, with the research shift towards analysis of spontaneous human behavior, it 
became clear that analysis of acoustic information only will not suffice for identifying subtle 
changes in vocal expression (Batliner & et al., 2003). In turn, several recent studies 
investigated the combination of acoustic features and linguistic features (language and 
discourse) to improve recognition of emotions from speech signal (e.g., Fragopanagos & 
Taylor, 2005). Examples include using spoken words and acoustic features, using prosodic 
features, spoken words, and information of repetition, and using prosodic features, Part-of-
speech (POS), dialogue act (DA), repetitions, corrections, and syntactic-prosodic boundary 
to infer the emotion. For more details on such studies, readers are referred to the 
comprehensive survey of the past efforts in the field by Zeng & et al (2008). It must be noted, 
however, that although the above-mentioned studies reported an improved performance by 
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using information of language, these systems typically depend on both accurate recognition 
of verbal content of emotional speech, which still cannot be reliably achieved by existing 
automatic speech recognition systems, and on accurate extraction of semantic discourse 
information, which is attained manually in the present systems. 

6.4 Bio-potential features  
Prior to extracting features, affect recognition systems that use bio-potential signals or 
modalities as input usually pre-process signals to remove noise (e.g., Savran & et al., 2006). 
Peripheral signals (e.g., GSR, respiration and blood volume pressure) are first filtered by a 
mean filter to remove noise (i.e., the resistance of the skin) or depending on the signal used, 
the environmental noise is removed by applying a bandpass filter. Various signal processing 
techniques such as Fourier transform, wavelet transform, thresholding, and peak detection, 
are commonly used to derive the relevant features from the physiological signals 
(Changchun & et al., 2005).   
Following the preprocessing stage, there are various alternatives for feature extraction. For 
physiological signals, usually the following features are calculated: means, the standard 
deviations, the means of the absolute values of the first differences, the means of the 
absolute values of the first differences of the normalized signals, the means of the absolute 
values of the second differences, the means of the absolute values of the second differences 
of the normalized signals etc. (e.g., Picard & et al., 2001; Takahashi, 2004).   
For brain signals, one alternative is to collect EEG energies at various frequency bands, time 
intervals and locations in the brain. The gathered signals are separated using frequency 
domain analysis algorithms and are then analyzed in terms of frequency bands (i.e., low, 
middle and high frequency band), and center frequency etc. (Takahashi, 2004). (Aftanas & et 
al., 2003, 2004) used the correlation between arousal variation and power in selected 
frequency bands and electrodes. Another possibility is to compute the STFT (Short Term 
Fourier Transform) on a pre-determined time segment of each electrode, assuming that the 
signal remains stationary within the chosen time widow (Savran & et al., 2006). 
After these procedures, various pattern recognition techniques such as evaluation of subsets 
or feature selection, transformations of features, or combinations of these methods are 
applied. The extracted and calculated feature values then make up the overall feature vector 
used for classification. 
Researchers reported that muscle activities (e.g., opening the mouth, clenching the jaw etc.) 
due to expression generation contaminate EEG signals with strong artifacts. Use of multiple 
sensors can thus cause cross-sensor noise (e.g., Savran & et al., 2006). Design of an 
appropriate filter or use of other techniques such as Independent component analysis (ICA) 
should be explored to remove this type of noise. Estimating a Laplacian reference signal by 
subtracting for each electrode the mean signal of its neighbors might potentially provide a 
better representation for the brain activity.   

6.5 Thermal infrared imagery  
Systems analyzing affective states from thermal infrared imagery perform feature extraction 
and selection, exploit temporal information (i.e., infrared video) and rely on statistical 
techniques (e.g., Support Vector Machines, Hidden Markov Models, Linear Discriminant 
Analysis, Principal Component Analysis etc.)  just like their counterparts in visible spectrum 
imagery. 
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Current research in the thermal infrared imagery has utilized several different types of 
representations, from shape contours to blobs (Tsiamyrtzis & et al., 2007). Some studies 
estimate differential images between the averaged neutral face/body and the expressive 
face/body (e.g., Yoshitomi, 2000) and perform a transformation (e.g., discrete cosine 
transformation (DCT)). Other researchers divide each thermal image into grids of squares, 
and the highest temperature in each square is recorded for comparison (Khan & et al., 
2006b). Patterns of thermal variations for each individual affective state are also used (Khan 
et al., 2006a). Similar tracking techniques to those in the visible spectrum are utilized (e.g., 
Condensation algorithm, Kalman/Particle Filtering etc.) and therefore, similar challenges 
pertain to tracking in the thermal infrared imagery domain (Tsiamyrtzis & et al., 2007). 

7. Affective state recognition  
The main problem overarching affect sensing is the recognition of affective states in their 
nature of complex spatio-temporal patterns. Should emotion recognition be regarded as an 
easier or a harder problem than an equivalent recognition problem in a generic domain? In 
the following, we identify its main characteristics as challenges or facilitators, alongside the 
main pattern recognition techniques that have been or can be used to deal with them. 

7.1 Challenges 
The main challenges we identify from the pattern recognition perspective can be listed as 
feature extraction, high inter-subject variation during recognition, dimensionality reduction, 
and optimal fusion of cues/modalities. 
The value range of certain features is very limited compared to typical noise levels. Let us 
consider, for instance, the raising of an eyebrow that has to be recognized as an expression 
of surprise. When sensed by a camera, such a movement may translate into just a few pixels 
extent. Facial feature extraction from videos is typically affected by comparable errors, thus 
undermining recognition accuracy. Higher-resolution cameras (and lenses – in the order of 
several equivalent megapixels per frame) are required for effective feature extraction in such 
cases. 
The space in which emotions have to be recognized is typically a feature space with very 
high dimensionality: for instance, (Gunes, 2007) uses a feature set with 152 face features and 
170 upper-body features; (Bhatti2004) uses a feature set with 17 speech features; (Kim & et 
al, 2004) uses a feature set with 29 features from a combination of ECG, EMG, skin 
conductivity and respiration measurements. This aspect of emotion recognition is certainly a 
challenge and imposes the use of dimensionality reduction techniques. Linear combination 
techniques such as PCA and LDA and non-linear techniques such as KPCA have been used 
for that purpose, and so have been feature selection techniques such as Sequential Forward 
Selection (Bhatti & et al.,2004) and Genetic Algorithms (Noda & et al., 2006). However, 
feature-space dimensionality reduction for sequential data (not to be confused with 
reduction along the time dimension)is still an open problem. 
High inter-subject variation is reported in many works. This challenges generalization over 
unseen subjects that are, most often, the actual targets of the emotion recognition process. 
The search for features with adequate discriminative power-invariance trade-off is an 
attempt at solving this problem (Varma & Ray, 2007). 
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Eventually, as modalities are heterogeneous and possibly asynchronous, their optimal 
fusion adds to the list of challenges. The asynchrony between modalities may be two fold: 
(a) asynchrony in subject's signal production ( e.g., face movement might start earlier than 
the body movement), and (b) asynchrony during recording (e.g., a video recorded at 25 Hz 
frame rate while the audio recorded at 48 kHz) and processing of the signals coming from 
various sensing devices. For instance when fusing effective information coming from the 
EEG, the video or fNIRS, it should be noted that these have orders of magnitude difference 
in their relative time scales (Savran & et al., 2006). 
The most straightforward approach to tackle modality fusion is at the decision or score level 
since feature- and time-dependence are abstracted. In decision level fusion each classifier 
processes its own data stream, and the two sets of outputs are combined at a later stage to 
produce the final hypothesis. There has been some work on combining classifiers and 
providing theoretical justification for using simple operators such as majority vote, sum, 
product, maximum/minimum/median and adaptation of weights (Kittler & et al., 1998). 
Decision-level fusion can also be obtained at the soft-level (a measure of confidence is 
associated with the decision); or at the hard-level (the combining mechanism operates on 
single hypothesis decisions). 
Recent works have attempted at providing synchronization between multiple cues to also 
support feature-level fusion, reporting greater overall accuracy when compared to 
decisionlevel fusion (e.g., Gunes, 2007 and Shan & et al., 2007). Feature-level fusion becomes 
more challenging as the number of features increases and they are of very different natures 
(e.g. distances and times). Synchronization then becomes of utmost importance. 
Outside the affect sensing and recognition field, various techniques have been exploited for 
implicit synchronization purposes. For instance, dynamic time warping (DTW) has been 
used to find the optimal alignment between two time series if one time series may be 
warped non-linearly by stretching or shrinking it along its time axis. This warping between 
two time series can then be used to find corresponding regions between the two time series 
or to determine the similarity between them. Variations of HMM have also been proposed 
for this task. The pair HMM model was proposed to align two non-synchronous training 
sequences and an asynchronous version of the Input/Output HMM was proposed for 
audio-visual speech recognition (Bengio, 2004). Coupled HMM and fused HMM have been 
used for integrating tightly coupled time series, such as audio and visual features of speech 
(Pan & et al., 2004). Bengio (Bengio, 2004), for instance, presents the Asynchronous HMM 
that could learn the joint probability of pairs of sequences of audiovisual speech data 
representing the same sequence of events (e.g., where sometimes lips start to move before 
any sound is heard for instance). There are also a number of efforts within the affect sensing 
and recognition field to exploit the correlation between the modalities and relax the 
requirement of synchronization by adopting the so-called model-based fusion approach 
using Bayesian Networks, Multi-stream Fused HMM, tripled HMM, Neural Networks etc. 
(see Zheng & et al., 2008 for details on these). 
A number of approaches have also been reported for explicit synchronization purposes. 
(Gunes, 2007) identifies the neutral-onset-apex-offset-neutral phases of face and body inputs 
and synchronizes the sequences at the phase level (i.e., apex phase). (Savran & et al., 2006) 
have obtained feature/decision level fusion of the fNIRS and EEG feature vectors and/or 
decision scores on a block-by-block basis. In their experiments a block is 12.5 seconds long 
and represents all emotional stimuli occurring within that time frame. Video features and 
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fNIRS features can be fused at the feature or decision level on a block-by-block basis. 
(Paleari & Lisetti, 2006) introduce a generic framework with ‘resynchronization buffers’. 
They aim to compare the different estimations, and realign the different evaluations so that 
they correspond to the same phenomenon even if one estimation is delayed compared to the 
other one.(e.g., in the case of delay). 
For affective multimodal recognition, synchronization between the modalities is a very 
interesting and challenging problem and needs to be investigated further. In particular, 
synchronization other than feature-level, for example at higher levels of abstraction such as 
temporal phase or segment-level or even task-level synchronization, has not been be 
explored. 

7.2 Facilitators 
Affective data can be thought of as uninterrupted streams originating from a variety of 
sensors (cameras, microphones etc): prior to recognition, or simultaneously with it, it is also 
required to identify the data sequences corresponding to atomic emotions – a typical time 
segmentation problem in time series. In some applications, it is possible that a special 
neutral state can be recognized per se as the marker of the end of an emotion/start of the 
next, thus easing the time segmentation problem. This is the case, for instance, of a sequence 
of affective body gestures where each gesture concludes to an identifiable rest state. 
Affective data are generated by humans under anatomical and biological constraints. This 
offers an unrivalled opportunity to simplify the recognition approach by exploiting such 
prior information. For instance, the generation of facial and bodily expressions undergo 
muscular constraints: a plateau is reached and maintained for a few seconds in which the 
features are at their maximum extent. (Gunes, 2007) uses this fact to decouple the temporal 
and spatial aspects of the recognition process: the plateau is identified first, prior to and 
independently of the specific emotion thanks to the constrained dynamics; emotion 
recognition is performed then by assuming that the feature values at the plateau are i.i.d. in 
the presence of noise. Similarly, (Elgammal & et al., 2003) posits a layer of “exemplars” that 
separate the spatial and temporal sides in a gesture recognition application. Use of such 
constraints should be incorporated in approaches to mitigate the high-dimensionality issue. 
Affect is naturally expressed via multiple cues and channels. An adaptive framework based 
on fusion of the available cues and modalities thus offers an opportunity to improve the 
analysis and recognition of affective states. However, to date, most of the existing fusion 
algorithms have not been made adaptive to the input quality and therefore do not consider 
eventual changes on the reliability of the different information channels. (Paleari & Lisetti, 
2006) proposed a generic fusion framework that is able to accept different single and 
multimodal recognition systems and to automatically adapt the fusion algorithm to find 
optimal solutions, and be adaptive to channel (and system) reliability. They describe a 
bufferized approach where two different fusion chains would be active in parallel. The first 
chain, treats close to real time signals and interpretations returning fast interpretations of 
the recognized emotion. The second chain works on the same bufferized and re-aligned data 
in order to have the possibility to resynchronize data just before fusion. The objective of this 
double chain is to have both a fast but less reliable and a longer but more accurate 
evaluations of the user’s affective states. 
Further research is needed to test the feasibility of the framework proposed by (Paleari & 
Lisetti, 2006) and/or create a more generic and common framework that can be easily 
adopted by the research community. 
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8. Affect sensing and recognition from multiple cues and modalities: 
representative systems 
In this section we briefly review a number of automated systems that attempt to recognize 
affect from multicue or multimodal expressive behavior. This review is intended to be 
illustrative rather than exhaustive. For an exhaustive survey of past efforts in audiovisual 
affect sensing and recognition, the readers are referred to Zeng & et al.  (Zeng & et al. , 
2008).Here, we present representative projects/systems introduced in the multimodal affect 
recognition literature during the period 2004-2007 by grouping these systems under three 
categories: i) the lab, ii) from the lab to the real world and iii) the real world. 
The lab systems analyze posed affect from multicue or multimodal expressive behavior. An 
example system is that of (Gunes, 2007) that recognizes 12 affective states (anger, anxiety, 
boredom, disgust, fear, happiness, negative surprise, positive surprise, neutral surprise, 
uncertainty, puzzlement and sadness) and their temporal segments (neutral-onset-apex-
offset-neutral) from either face/upper-body/combined face-and-body display, acquired by 
two cameras simultaneously. The temporal segmentation of face and body display is 
achieved explicitly, a phase-synchronization scheme is introduced to deal with 
simultaneous yet asynchronous face and upper-body data and affective state recognition is 
performed both on a frame-basis and a video-basis. Experiments were conducted on the 
FABO database (Gunes & Piccardi, 2006a) from 10 subjects and 539 videos. The approach 
explores the usefulness of the temporal segment/phase detection to the overall task of affect 
recognition with various experiments. It also proposes fusion of information coming from 
multiple visual cues by phase synchronization and selective fusion, and proves the greater 
performance of this approach by comparative experiments. Using 50% of the data for 
training and remaining 50% for testing, the FABO system obtains an average recognition 
rate of 35% for facial expressions alone, 77% for bodily expression alone, %82.6 (frame-basis) 
and %85 (video-basis) by fusing  face and upper-body data. From the experiments the 
authors concluded that explicit detection of the temporal phases can improve the accuracy 
of affective state recognition, recognition from fused face and body cues performs better 
than from facial or bodily expression alone, and synchronized feature-level fusion achieves 
better performance than decision-level fusion. (Shan & et al., 2007) also report affective state 
recognition results using the FABO database. They exploit the spatial-temporal features 
based on space-time interest point detection for representing body gestures in videos. They 
fuse facial expressions and body gestures at the feature-level by using the Canonical 
Correlation Analysis (CCA), a statistical tool that is suited for relating two sets of signals. 
For their experiments they selected 262 videos of seven affective states (anger, anxiety, 
boredom, disgust, happiness, puzzle, and surprise) from 23 subjects in the FABO database 
and obtained 88.5% recognition accuracy. 
Systems that analyze (more) spontaneous or real world affect data from multiple cues or 
modalities are described as from the lab to the real world systems. An example system is that of 
(Valstar & et al., 2007). It automatically distinguishes between posed and spontaneous 
smiles by fusing information from multiple visual cues including the head, face, and 
shoulder actions. It uses a cylindrical head tracker to track the head motion; particle filtering 
with factorized likelihoods to track fiducial points on the face and auxiliary particle filtering 
to track the shoulders motion (see Figure 4a). Based on tracking data, the presence of AU6 
(raised cheeks), AU12 (lip corners pulled up), AU13 (lip corners pulled up sharply), head 
movement (moved off the frontal view), and shoulder movement (moved off the relaxed 
state), are detected first. For each of these visual cues, the temporal segments (neutral, onset, 
apex, and offset) are also determined.  Classification is then performed by combining 
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GentleBoost ensemble learning and Support Vector Machines (SVM). A separate SVM is 
trained for each temporal segment of each of the five behavioral cues (i.e., in total 15 
GentleSVMs). The authors combined the results using a probabilistic decision function and 
investigated two aspects of multicue fusion: the level of abstraction (i.e., early, mid-level, 
and late fusion) and the fusion rule used (i.e., sum, product and weight criteria). 
Experimental results from 100 videos displaying posed smiles and 102 videos displaying 
spontaneous smiles were presented. Best results were obtained with late fusion of all cues 
when 94.0% of the videos were classified correctly (with 0.964 recall, and 0.933 precision). 
The results seem to indicate that using video data from face, head and shoulders increases 
the accuracy, and the head is the most reliable source, followed closely by the face. 
 

  
(a) (b) 

Figure 4. System of (a) (Valstar & et al., 2007) and (b) (Savran & et al., 2006). 

(Savran & et al., 2006) present a project as part of the eNTERFACE Workshop on 
multimodal emotion detection from three modalities: brain signals via fNIRS, face video and 
the scalp EEG signals (see Figure 4b). fNIRS sensors were used to record frontal brain 
activity and EEG sensor was used to capture activity in the rest of the brain. In addition to 
these, a respiration belt, a GSR (Galvanic Skin Response) and a plethysmograph (blood 
volume pressure) were also used to record aperipheral body processes. All these devices 
were synchronized using a trigger mechanism. Three emotions (i.e., calm, exciting positive 
and exciting negative corresponding to neutral, happiness and disgust) were elicited in five 
subjects using emotionally evocative images evaluated on valence and arousal dimensions. 
Participants were then asked to self-assess their emotions by giving a score between 1 and 5 
for valence and arousal components.  For facial feature extraction an active contour-based 
technique and active appearance models (AAM) were used. For classification, Transferable 
Belief Model (TBM) was utilized. The authors considered fusion of fNIRS with video and of 
EEG with fNIRS. Fusion of all three modalities was not considered due to the extensive 
noise on the EEG signals caused by facial muscle movements. Both feature and decision 
level fusion was considered by adopting a block for each emotional stimuli (12.5 seconds 
long in their experiment) and a block-by-block fusion was applied. Assessment of emotion 
detection performance of individual modalities and their fusion has not been explored. 
Takahashi proposed an emotion recognition system from multimodal bio-potential signals 
collected using an EEG sensor, a pulseoxymeter, and a skin conductance meter (Takahashi, 
2004). Recordings of 12 subjects were obtained in a laboratory where the illumination, noise, 
and room temperature were controlled to maintain uniformity. To stimulate emotions (joy, 
anger, sadness, fear, and relax), several commercial films broadcasted on TV were used. 
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Recognition was carried out with NN and SVM using leave-one-out cross-validation 
method. The averaged recognition rate of 63.9% for NN and 66.7% for SVM was achieved. 
Pun & et al. describe the work they conducted in the domain of multimodal interaction via 
the use of EEG and other physiological signals for assessing a user’s emotional status (Pun & 
et al., 2006). The experimental setup consisted of three participants viewing strongly 
positive or negative images. Ground truth consisted of the participant’s self-assessment. The 
following physiological signals were recorded: EEGs, blood pressure, GSR, breathing rate, 
and skin temperature. Each participant was asked to provide valence and arousal values for 
each image they viewed. These values were then divided into either two classes (calm 
versus exciting for arousal, positive versus negative for valence), or three classes (same two 
classes plus an intermediate one). Features extracted such as signal power in particular 
frequency bands, means, standard deviations, and extreme values were saved as vectors. A 
Naïve Bayes classifier and a Fisher discriminant analysis were applied in a leave-one-out 
manner for classification. Depending on the classifier used, the participant, the use of either 
EEGs, or of peripheral signals only, or of both EEGs and peripheral signals, accuracies 
ranged between about chance level to 72% for the two classes problem, and between chance 
levels to 58% for the three classes problem. 
Systems that analyze (more) realistic multimodal affect data are described as the real world 
systems. An example system is that of (Kapoor & et al., 2007) that assesses whether a learner  
is about to click on a button saying I’m frustrated. To this aim they use multiple nonverbal 
channels of information: a chair and a mouse both equipped with pressure sensors, a 
wireless skin conductance sensor placed on the wristband of the user, two cameras (one 
video camera for offline coding and the Blue-Eyes camera to record elements of facial 
expressions). See Figure 5a for details on the sensors used. The data obtained by the 
aforementioned sensors are classified into pre-frustration or not pre-frustration behavior using 
Gaussian process classification and Bayesian inference. The system deals with data 
synchronization in a similar manner to (Paleari & Lisetti, 2006). In other words, it gathers 
data for a predetermined time window (i.e., window size of 150 s), normalizes and then 
averages them. The proposed method was tested on data gathered from 24 participants 
using an automated learning companion. The experimental setup is described as follows. 
The users were asked to sit in front of a wide screen plasma display where an agent appears 
in a 3D environment. The user can interact with the agent and can attend to and manipulate 
objects and tasks in the environment. In the aforementioned experimental setup, the system 
was able to predict the indication of frustration from the collected data with 79% accuracy. 
 

  
(a) (b) 

Figure 5. (a) The system of (Kapoor & et al., 2007) and (b) a humanoid interacting in a 
humanlike manner (Spexard & et al., 2007). 
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(Spexard & et al., 2007)present an anthropomorphic robot framework (BARTHOC) bringing 
together different interaction concepts and perception capabilities with the goal of creating 
an interdisciplinary research platform for multimodal human-robot interaction (HRI). The 
framework uses two cameras and two microphones only, has components for face detection, 
a tracking module based on anchoring, and extended interaction capabilities based on both 
verbal and nonverbal communication (see Figure 5b). Sounds are validated as voices by 
using the results of a face detector. The robot is equipped with an attention system for 
tracking and interacting with multiple persons simultaneously in real time. As sensors cover 
a limited area only, people are tracked by utilizing a short-time person memory that extends 
the existing anchoring of people. A long-time memory stores person specific data into file 
enabling robust tracking in real time. A modular integration approach utilizing XML-based 
data exchange is used for implementing different interaction capabilities like deictic 
gestures, natural adaptive dialogs, and emotion awareness on the robot. The robot can 
recognize affect by classifying the prosody of an utterance to seven emotional states 
(happiness, anger, fear, sadness, surprise, disgust, and boredom) independently from the 
content in emotional states of the speaker. The robot is thus able to realize when a 
communication partner is getting angry and can react showing a calming facial expression 
on its face. The appropriate facial expression can be invoked from different modules of the 
overall system, e.g., BARTHOC starts smiling when it is greeted by a human and “stares” 
onto an object presented to it. The framework also contains a 3-D body tracker based on 2-D 
video data and a 3-D body model to compensate the missing depth information from the 
video data. Deictic gestures and the position a person is referring to are estimated using the 
direction and speed of the body extremity trajectories. The robot is then able to perform 
pointing gestures to presented objects itself. Robot’s emotion recognition and facial 
expression generation capabilities were evaluated by creating a setup in which multiple 
persons were invited to read out a shortened version of the fairy tale to the robot. For this 
experiment, an office-like surrounding with common lighting conditions was used. The 
robot mirrored the classified prosody of the utterances during the reading in emotion 
mimicry at the end of any sentence, grouped into happiness, fear, and neutrality. As the 
neutral expression was also the base expression, a short head movement toward the reader 
was generated as a feedback for non-emotional classified utterances. Overall, the use of 
emotion recognition and mimicry of the robot was found to be encouraging for further 
research in a robotic platform for multimodal human-robot interaction. 

9. Conclusion and discussion 
This chapter focused on the challenges faced when moving from affect recognition systems 
that were designed and experimented in laboratory settings (i.e., analyzing posed data) to 
the real world systems (i.e., analyzing spontaneous data) in a multicue and/or multimodal 
framework. It discussed the problem domain of affect sensing and recognition by explicitly 
focusing on multiple input modalities (audio, vision, tactile, and thought) and cues (facial 
expressions, head and body gestures, etc.) together with alternative channels (brain and 
thermal infrared signals), and explored a number of representative systems introduced 
during the period 2004-2007, either capable of handling laboratory, more realistic or real 
world settings. 
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The analysis provided in this chapter indicates that the automatic multimodal affect 
recognition systems have slowly but steadily started shifting their focus from the lab to the 
real world settings. There already exist a number of efforts for automatic multimodal affect 
recognition in real world settings. Existing systems deal with the so-called spontaneous data 
obtained in less-controlled or restricted environment (i.e., subjects are taking part in the 
interaction, subjects are not always stationary, etc.), and can handle a limited number of 
emotion categories (e.g., 2-6). These real world systems have been mostly trained to have 
expertise in a specific interaction context. As stated by (Kapoor & et al., 2007), generalization 
thus might be affected by various factors such as: the experimental setup (i.e., the tasks and 
situations the users are presented), age of the users, availability/robustness of the sensors 
(e.g. the skin conductance sensor is effected by sweat) etc. 
One of the main disadvantages of the bio-potential based affect recognition systems is the 
fact that they are cumbersome and invasive and require placing sensors physically on the 
human body (e.g., a sensor clip that is mounted on subject’s earlobe, a BCI mounted on the 
subject’s head etc. (Takahashi, 2004). Moreover, EEG has been found to be very sensitive to 
electrical signals emanating from facial muscles while emotions are being expressed via face. 
Therefore, in a multimodal affect recognition system the simultaneous use of these 
modalities needs to be reconsidered. Additionally, during recording the fNIRS device is 
known to cover the eyebrows. This in turn poses another challenge (i.e., occluding facial 
features) for multimodal affective data recordings if the simultaneous use of these 
modalities is intended. However, new forms of non-contact psychological sensing might 
help spreading the use of psychological signals as input to multimodal affect recognition 
systems. 
The most notable issue is the fact that there exists a gap between different communities 
researching emotions or affective states. For instance, affect recognition communities seem 
to use different databases compared to psychology or cognitive science communities. 
Moreover, for annotation of the data, a more uniform and multi-purpose scheme that can 
accommodate all possible modalities should be explored. Another issue to consider is fusion 
of multimodal affect data. Researchers claim that the choice of fusion strategy depends on 
the targeted application (Wu & et al., 1999, Busso & et al., 2004). Accordingly, all available 
multimodal recognizers have designed and/or used ad hoc solutions for fusing information 
coming from multiple modalities but cannot accept new modalities. In summary, there is 
not a general consensus when fusing multiple modalities. 
An important point to note is that experimentation with all possible human behavioral cues 
(linguistic terms/words, audio cues such as pitch, facial expression/AUs, body postures 
and gestures, physiological signals, brain and thermal infrared signals etc.) has been 
impossible to date due to lack of a generic and shared platform for automatic affect 
recognition. We would like to stress that it is highly likely that machines aimed at assisting 
human users in their tasks will need neither the human-like flexibility to adapt to any 
environment and any situation nor will they need to function exactly as humans do. 
Machines can be highly profiled for a specific purpose, scenario, user, etc. Nonetheless, it is 
necessary to investigate which modalities are the most suitable for which application 
context. The representative systems covered in this chapter are thus encouraging towards 
such a goal. 
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However, further research is still needed in order to identify the importance/feasibility of 
the following questions/factors for creating multimodal affect recognizers that can handle 
the so-called more natural or real world settings: 
! Among the available external and internal modalities, which ones should be used for 

automatic affect recognition? In which context? Will the affect recognition accuracy 
increase as the number of modalities a system can analyze/integrate increases? 

! In automated multimodal affect systems, can global processing replace local processing 
(i.e., whole-body expression analysis instead of facial expression analysis) by still 
providing means for fast and accurate analysis (e.g., when distance between the subject 
and the cameras/sensors poses a challenge)? 

! What cross-modal interactions between pairs of various modalities (e.g., tactile and 
visual, tactile and audio etc.) can be exploited for multimodal affect analysis? Can we 
follow the example of HHI where judgments for one modality are influenced by a 
second modality even at the cost of increased ambiguity? How can such analysis be 
integrated for fusion of modalities? 

! How can automated systems detect and label an affective message conveyed by 
different modalities as either congruent (i.e., agreeing) or incongruent (i.e., disagreeing)? 
After labeling, how can such knowledge be incorporated into the multimodal systems 
for detailed understanding of the information being conveyed? Should the goal be 
towards detecting and decreasing ambiguity, and increasing the reliability and accuracy 
of the automatic recognition process? Should/can we use the so-called internal signals 
(e.g., thermal infrared or physiological signals) for resolving ambiguity, instead of 
relying purely on the external ones? 

! For the fusion purposes, how can an automated system include and integrate a new 
modality (when it becomes available) automatically? How can the system dynamically 
adapt to the channel conditions (e.g., when noise increases) in order to find an optimal 
solution? 

! For the recognition purposes, how can a system estimate different affective phenomena 
(emotions, moods, affects and/or personalities)? How should the system include the 
knowledge about the environment and the user to the overall multimodal recognizer? 

! How should the requirements of an automated system be decided? Is real-time 
processing and outputting labels as quickly as possible the priority? Or is the priority 
having a better, more accurate understanding of the user’s affective state, regardless of 
the computational time it will take (Paleari & Lisetti, 2006)? 

Overall, the research field of multimodal affect sensing and recognition is relatively new, 
and future efforts have to follow to address the aforementioned questions. 
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