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Abstract

The extraction and quantization of local image and video
descriptors for the subsequent creation of visual codebooks
is a technique that has proved extremely effective for im-
age and video retrieval applications. In this paper we build
on this concept and extract a new set of visual descriptors
that are derived from spatiotemporal salient points detected
on given image sequences and provide local space-time de-
scription of the visual activity. The proposed descriptors are
based on the geometrical properties of three-dimensional
piecewise polynomials, namely B-splines, that are fitted on
the spatiotemporal locations of the salient points that are
engulfed within a given spatiotemporal neighborhood. Our
descriptors are inherently translation invariant, while the
use of the scales of the salient points for the definition of
the neighborhood dimensions ensures space-time scaling
invariance. Subsequently, a clustering algorithm is used in
order to cluster our descriptors across the whole dataset
and create a codebook of visual verbs, where each verb
corresponds to a cluster center. We use the resulting code-
book in a ’bag of verbs’ approach in order to recover the
pose and short-term motion of subjects at a short set of suc-
cessive frames, and we use Dynamic Time Warping (DTW)
in order to align the sequences in our dataset and struc-
ture in time the recovered poses. We define a kernel based
on the similarity measure provided by the DTW to classify
our examples in a Relevane Vector Machine classification
scheme. We present results in a well established human ac-
tivity database to verify the effectiveness of our method.

1. Introduction

Vision-based analysis of human motion is nowadays one
of the most active fields of computer vision, due to its prac-
tical importance for a wide range of vision-related applica-
tions, like video retrieval, surveillance, vision-based inter-
faces and Human-Computer Interaction. From any given
video sequence humans are usually able to deduce informa-
tion about its content quickly and easily. When it comes to

computers, however, robust action recognition still remains
a very challenging task, evident from the abundance of mo-
tion analysis approaches that have been developed [15].

Typically, activity recognition systems can be divided
into two main categories. The first concerns tracking of
body parts and the subsequent use of the resulting trajec-
tories for recognition [18], [4]. These approaches, however,
are highly dependent on the type of tracking system that
is used and its target application. In addition, due to the
deformable nature and articulated structure of the human
body, these methods suffer from problems like accurate ini-
tialization, occlusion and high dimensionality.

A second category of systems uses sets of spatiotempo-
ral feature descriptors in order to represent human body
motion. The concept of spatiotemporal feature extrac-
tion for activity recognition stems from the domain of ob-
ject recognition, where static features have been success-
fully used for the detection of various objects from images
[16], [10], [1], [5]. In [9], a Harris corner detector is ex-
tended in the temporal domain, leading to a number of cor-
ner points in time, called space-time interest points. The
resulting interesting points correspond roughly to points in
space-time where the motion abruptly changes direction. In
[3], human actions are treated as three-dimensional shapes
in the space-time volume. The method utilizes properties
of the solution to the Poisson equation to extract space-time
features of the moving human body, such as local space-
time saliency, action dynamics, shape structure and orienta-
tion. In [17] a local self-similarity descriptor is extracted in
order to match areas in images or videos that share similar
geometric properties. Finally, in [7] a set of spatiotempo-
ral features inspired from the human visual cortex, called
C features, are extracted for the recognition of human and
animal motions. The method works in an hierarchical way
and the obtained features are invariant to scale changes in
space and time.

Recently a number of works used visual codebooks in
order to detect and recognize objects and/or humans. The
visual codebook creation is performed by grouping the ex-
tracted feature descriptors in the training set using, for in-

1

978-1-4244-2340-8/08/$25.00 ©2008 IEEE



stance, a clustering algorithm [12]. The resulting centers
are then considered to be codewords and the whole set of
codewords forms a ’codebook’. In a ’bag of words’ ap-
proach each instance is represented as a histogram of code-
words, and recognition is performed by histogram compari-
son. In [2] a set of SIFT-like features are hierarchically used
in order to form ’hyperfeatures’ for the purpose of object
recognition, while in [6] static and dynamic features based
respectively on gradients and optical flow are extracted in
order to detect humans in image sequences. In order to fur-
ther enhance the performance of these models, several re-
searchers have gone one step forward and encoded the spa-
tial relationships that exist between the features. In [11],
extracted features cast votes towards the center of the ob-
ject from which they are extracted. In this way the system
implicitly encodes the spatial relationships between the ex-
tracted features. In [19] a similar enhancement takes place
by considering pairs of visual words which co-occur within
local spatial neighborhoods, denoted as ’doublets’. In [13]
constellations of static and dynamic bags of features are
modeled in order to recognize human activities. Finally
in [20], SIFT descriptors are extracted from spatial video
patches and their spatial layout is encoded for the purpose
of video or image retrieval.

In this paper we extract a new set of visual descriptors
that are derived from the spatiotemporal salient points of
[14]. At each salient point location we define a spatiotem-
poral neighborhood with dimensions proportional to the de-
tected space-time scale of the point. We use the locations
of the salient points that are engulfed within this neighbor-
hood in order to approximate a three dimensional piecewise
polynomial, namely a B-spline. Our descriptors are sub-
sequently derived from the geometrical properties of each
polynomial as these are captured in their partial derivatives
of different orders. These derivatives roughly correspond
to the rate of change of the spline across space and time,
thus encoding the shape of the moving part in the scene
as well as its motion across time. At the next step, the
whole set of descriptors is accumulated into a number of
histograms, depending on the number of parameters that de-
scribe the spline and the maximum degree of its derivatives.
Since our descriptors correspond to geometrical properties
of the spline, they are translation invariant. Furthermore, the
use of the automatically detected space-time scales of the
salient points for the definition of the neighborhood ensures
invariance in space and time. Similar to other approaches,
where a codebook of visual words is created from appear-
ance descriptors, we create a codebook of visual verbs by
clustering our motion descriptors across the whole dataset.
We use the resulting codebook in a ’bag of verbs’ approach
in order to recover the pose and instantaneous motion of
subjects at a short set of successive frames and we use a
Dynamic Time Warping scheme (DTW) in order to struc-

ture in time the recovered poses. We use the similarity mea-
sure between the examples, provided by the DTW, in order
to define a kernel for a classifier based on Relevance Vector
Machines (RVM). We present our results in a well estab-
lished databse of human actions that verify the effectiveness
of our method.

One of the main contributions of the method presented
in this paper is the sparsity of the extracted descriptors,
since they are extracted at spatiotemporal regions that are
detected at sparse locations within the image sequence. This
is contrary to the work of Blank et al [3], where a whole
image sequence is represented as a space-time shape. Fur-
thermore, the use of DTW adds structure to the recovered
short-term motions of the subjects, as opposed to [3], [7],
where features are matched based on the maximum similar-
ity accross a whole video sequence. Our results are compa-
rable [3], [7] or show improvement [13] with state of the art
methodologies for the same sequences.

The rest of the paper is organized as follows: in section 2
we describe our feature extraction process. In section 3 we
present our recognition method, that includes the DTW and
RVM steps. In section 4 we present our experimental results
and finally, in section 5 our final conclusions are drawn.

2. Representation

In this section we introduce the visual descriptors that
we use in order to represent an image sequence. We will
initially give some basics on B-splines and we will subse-
quently describe their usage in extracting local spatiotem-
poral image sequence descriptors. Finally, we will briefly
explain the process that we followed in order to create a
codebook from these descriptors.

2.1. B-spline Surfaces

Let us define an M ×N grid of control points {Pij}, i =
1 . . . M and j = 1 . . . N . Let us also define a knot vector of
h knots in the u direction , U = {u1, u2, . . . , uh} and a knot
vector of k knots in the v direction, V = {v1, v2, . . . , vk}.
Then, a B-spline surface of degrees p,q in the u and v direc-
tions respectively is given by:

F (u, v) =
m∑

i=1

n∑
j=1

Ni,p(u)Nj,q(v)Pij , (1)

where Ni,p(u) and Nj,q(v) are B-spline basis functions of
degree p and q, respectively, defined as:

Ni,0(u) = { 1,
0,

if ui < u < ui+1 and ui < ui+1

otherwise

Ni,p(u) = u−ui
ui+p−ui

Ni,p−1(u) +
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

(2)



The set of control points is referred to as the control net,
while the range of the knots is usually [0, 1]. The knots
essentially determine how coarse is the approximation, that
is, the larger the number of knots the more the points on
which the spline is evaluated. For this work we assume 4th

degree polynomials, that is, p = q = 4.

2.2. Spatiotemporal Descriptors

In order to approximate a B-spline polynomial we need
to initially define its control net, that is, Pij . Formally, for
each salient point location we want to approximate a poly-
nomial having as control net the points within a small neigh-
borhood O around the point in question. For a good approx-
imation, however, ordering of the control points in terms of
their spatiotemporal location is an important factor in order
to avoid loops. In order to make this more clear, let us con-
sider a set of points L = {li} sampled uniformly from a
circular curve. Ideally, a polynomial having the set L as its
control net would approximate the circular curve. In order
for this to happen, however, the points in L should be given
in sequence, that is, L = {l1, l2, . . . , ln}. If this is not the
case, then the polynomial will attempt to cross the points in
a different order, creating unwanted loops. Furthermore, it
is clear that any points enclosed by the circle will also de-
grade the approximation and should not be accounted for.
In order to overcome these problems, we perform two pre-
processing steps on the set S of the detected salient points,
both performed frame-wise.

In the first step, we eliminate points that are enclosed
within the closed surface defined by the boundary. In our
implementation, a point lies in the boundary if it lacks any
neighbors within a circular slice shaped neighborhood of
radius r, minimum angle a and having the point as origin.
For our implementation we selected a radius of 10 pixels
and an angle of 70 degrees. In the second step, we order the
selected boundary points. We do this by randomly selecting
a point on the boundary as a seed and by applying an itera-
tive recursive procedure that matches the seed point with its
nearest neighbor in terms of Euclidean distance. This pro-
cess repeats itself having as seed the nearest neighbor se-
lected until there are no nearest neighbors left, that is, either
an edge has been reached or all points have been accessed.

One could argue that the procedure described above
would select points in the convex hull of the motion, cre-
ating problems in the case of non-stationary background or
if there are more than one subjects performing activities in
the same scene. This however, is not true, as the whole pro-
cedure is performed locally. In effect, the amount of locality
is determined by the radius r.

Let us denote by S′ = {(�s′i,�c′i, y′
D,i)} the set of spa-

tiotemporal salient points located on the motion boundary,
obtained from the procedure of the previous section. For
each salient point position within S′ we define a spatiotem-
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(a) (b)
Figure 1. (a) A set of points within a spatiotemporal neighborhood
N and (b) their B-spline approximation

poral neighborhood N of dimensions proportional to �s′i. Let
us denote by O′ the set of points in N . Then, for each N ,
we approximate a B-spline polynomial as in eq. 1. The grid
of control points Pij in eq. 1 corresponds to the set O′, that
is, each Pij is a point in space-time. We should note that the
grid is not and does not need to be uniform, that is, the pair-
wise distances of the control points can be different. The
knot vectors U and V are a parameterization of the B-spline,
and essentially encode the way the B-spline surface changes
with respect to its control points. More specifically, the knot
vector U encodes the way the x coordinates change with re-
spect to y, while the knot vector V encodes the way both x
and y change with respect to time t.

Using this process, any given image sequence is rep-
resented as a collection of B-spline surfaces, denoted as
{Fi(u, v)}. The number of surfaces per sequence depends
on the number of points in S′, since we fit one surface per
salient point position. An example of a spline fitted to a set
of points is presented in Fig. 1. Each member of the set
{Fi(u, v)} is essentially a piecewise polynomial in a three
dimensional space. This means that we can fully describe
its characteristics by means of its partial derivatives with re-
spect to its parameters u, v. That is, for a grid of knots of
dimensions k × h we calculate the following matrix Ri of
dimensions ((p − 1)(q − 1) − 1) × (hk):

Ri =




∂Fi(u1,v1)
∂u

. . .
∂Fi(uh,vk)

∂u

...
. . .

...
∂(p−1)(q−1)Fi(u1,v1)

∂up−1∂vq−1 · · · ∂(p−1)(q−1)Fi(uh,vk)

∂up−1∂vq−1




(3)

Returning to eq. 1, for specific values of u, v, Fi(u, v) ex-
presses the approximated value of the spline at u, v, that is,
Fi(u, v) is a 3 × 1 vector. Consequently, each element of
the matrix of eq. 3 is a vector of the same dimensions, and
more specifically a vector that specifies the direction of the
corresponding derivative. In Fig. 2 an illustration of the first
derivatives with respect to u and v is given. The derivatives
are drawn as three dimensional vectors, superimposed on
the spline from which they were extracted.
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(a) (b)
Figure 2. First derivatives with respect to (a) u and (b) v, drawn as
three dimensional vectors

Our goal is to be able to represent each Fi with a single
descriptor vector. For this reason, we bin each row of Ri

into a single histogram of partial derivatives and we con-
catenate all the resulting (pq − 1) histograms into a single
descriptor vector. This vector constitutes the descriptor of
Fi and consequently the descriptor of a specific region in
space and time of the image sequence. By repeating this
process for each Fi, we end up with a set of descriptors for
the whole sequence.

2.3. Codebook Creation

In order to create a codebook, applying a clustering al-
gorithm to the whole set of descriptors is usually very time
and memory consuming. According to the authors of [11],
the way a vocabulary is constructed has little to the final
classification results. We therefore follow their approach
and randomly subsample our descriptor set. Subsequently,
we cluster our randomly selected features using K-means
clustering. The resulting cluster centers are our codewords
and the whole set of codewords constitutes our codebook.
For this work we used a total number of 1000 clusters, as a
compromise between representation accuracy and speed.

3. Classification

Having constructed our codebook, our goal is to be able
to represent and classify any test image sequence to one of
the available classes in our training set. A conventional ap-
plication of a ’bag of verbs’ approach would dictate that
each image sequence in the dataset is represented as a his-
togram of visual codewords drawn from the codebook. Us-
ing the codebook in this way for our specific set of de-
scriptors resulted in recognition rate of about 60%, in the
Weizmann dataset and using a 1-NN classifier based on the
χ2 distance between the histograms of the test and train-
ing sequences. We follow instead a different approach and
use the codebook in order to recover the pose and instan-
taneous motion of the subjects performing the actions at a
short set of successive frames. By doing this, we essentially
encode each video as a collection of instantaneous motions.

(a) (b) (c)
Figure 3. Pose recovery using our codebook. (a) Query pose, (b)
1st nearest, (c) 2nd nearest

Some preliminary results of pose recovery are displayed in
Fig. 3, where the nearest pose was selected as the one with
the smallest χ2 distance to the query.

As we will show in the experimental results section, even
though pose recovery and subsequent classification using
just a chamfer distance based nearest neighbor approach
works quite well, this is not sufficient, as we would like to
be able to add some structure and order in the instantaneous
motions that are being recovered. A possible solution would
be to use a temporal model like a Hidden Markov Model
in order to encode the temporal relationships between the
poses. This solution however is not practical, as the high
dimensionality of the codebook would make the training
of such a model cumbersome, especially in estimating the
emission probabilities of the model. The use of a classifi-
cation method that would be able to automatically provide
these probabilities is not very practical either, as this would
require manual annotation of similar poses between differ-
ent examples of the same class. In order to deal with these
issues, we decided to use Dynamic Time Warping (DTW) to
align our sequences and apply a discriminant classifier like
a Relevance Vector Machine (RVM) [21] for classification.

3.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is a well established
technique for aligning any two sequences. The sequences
are ”warped” non-linearly in time in order to determine
a measure of their similarity independent of certain non-
linear variations in the time dimension. In order to use
DTW for our problem, we consider as a sequence the series
of the recovered instantaneous motions of each example,
each being represented as a histogram of codewords. Since
we are dealing with histograms, a suitable distance metric to
use would be the χ2 distance. Using this distance, we align
our test sequences with every sequence in our training set.
This procedure results in a similarity measure between the
testing and training sequences, which is subsequently used
in an RVM classification step.

3.2. Relevance Vector Machine

A Relevance Vector Machine Classifier (RVM) is a prob-
abilistic sparse kernel model identical in functional form to



the Support Vector Machine Classifier (SVM). In their sim-
plest form, Relevance Vector Machines attempt to find a hy-
perplane defined as a weighted combination of a few Rele-
vance Vectors that separate samples of two different classes.
In contrast to SVM, predictions in RVM are probabilistic.
Given a dataset of N input-target pairs {(Fn, ln), 1 ≤ n ≤
N}, an RVM learns functional mappings of the form:

y(F ) =
N∑

n=1

wnK(F, Fn) + w0, (4)

where {wn} are the model weights and K(., .) is a Kernel
function. Gaussian or Radial Basis Functions (RBF) have
been extensively used as kernels in RVM and can be viewed
as a distance metric between F and Fn. For our work, we
use the similarity measure provided by the DTW of the pre-
vious section in order to define a kernel for the RVM. More
specifically, we apply the logistic sigmoid function to the
DTW similarity measure in order to obtain a distance mea-
sure instead. Subsequently, we use a Gaussian RBF to de-
fine the kernel, that is,

K(F, Fn) = e−
D(F,Fn)2

2η , (5)

where D is the logistic sigmoid function of the DTW sim-
ilarity measure and η is the width of the kernel. In the two
class problem, a sample F is classified to the class l ∈ [0, 1]
that maximizes the conditional probability p(l|F ). For L
different classes, L different classifiers are trained and a
given example F is classified to the class for which the con-
ditional distribution pi(l|F ),1 ≤ i ≤ L is maximized:

Class(F ) = arg max
i

(pi(l|F )). (6)

4. Experimental Results

We conducted our experiments on the Weizmann dataset,
in order for our results to be comparable to the ones reported
in [3], [7] and [13]. This dataset includes 9 different actions
like walking, jumping, waving and running.

We performed our experiments in the leave-one-subject-
out manner. That is, in order to classify a test exercise per-
formed by a specific test subject, we created a codebook
and trained the respective classifiers using all available data
except for those belonging to the same class and performed
by the same subject as the test exercise. We present three
different sets of classification results. In the first set, each
frame of a test sequence is matched with the closest frame
of a training sequence in terms of their χ2 distance and an
overall distance measure is calculated as the sum of the min-
imum calculated frame distances. The test example is then
classified to the class of the training example with the small-
est overall distance (Chamfer distance). In the second set,

Table 1. Recall and Precision rates for the kNN and RVM classi-
fiers on the Weizmann dataset

Class R/P (NN) R/P (DTW) R/P (RVM)
bend 1.0/1.0 0.88/1.0 1.0/0.9
jack 1.0/0.9 1.0/1.0 1.0/1.0
jump 0.67/0.67 0.56/1.0 0.78/0.88

pjump 0.89/1.0 1.0/1.0 1.0/1.0
run 1.0/0.71 1.0/0.56 1.0/0.9
side 0.89/1.0 0.89/1.0 0.78/1.0
walk 0.5/0.71 1.0/0.83 1.0/0.83

wave1 1.0/1.0 0.78/1.0 0.78/1.0
wave2 1.0/1.0 0.78/1.0 1.0/0.9
Total 0.88/0.88 0.89/0.93 0.93/0.93

Table 2. Confusion Matrix for the RVM classifier on the Weiz-
mann dataset

bend 9 0 0 0 0 0 0 1 0
jack 0 9 0 0 0 0 0 0 0
jump 0 0 7 0 0 1 0 0 0

pjump 0 0 0 9 0 0 0 0 0
run 0 0 1 0 10 0 0 0 0
side 0 0 0 0 0 7 0 0 0
walk 0 0 1 0 0 1 10 0 0

wave1 0 0 0 0 0 0 0 7 0
wave2 0 0 0 0 0 0 0 1 9

each test example is classified to the class of the training ex-
ample with the highest similarity, as this is calculated by the
DTW procedure. Finally, we present results using an RVM
classifier according to eq. 6. In Table 1 we present our clas-
sification results for the Weizmann dataset, in the form of
recall and precision rates.

As we can see from Table 1, there is a slight increase in
classification performance in the Weizmann dataset using
DTW, while there is a considerable increase of almost 5%
by additionally using RVM. Although the increase is small,
the use of DTW adds structure and consistency to the rep-
resentation. In general, introduction of structure is impor-
tant and expected to show benefits in datasets with larger
number of classes. Using DTW, frames that are far apart
from each other in terms of time cannot be matched. In the
case of a classification method with no temporal structure,
these kind of restrictions do not exist, and a frame in the
beginning of a sequence can be matched with any frame of
another sequence, as long as their χ2 distance is small.

As we can see from Table 1, the average recall rate for
the Weizmann dataset is about 93%. From the confusion
matrix of Table 2, we notice that there are reasonable con-
fusions between similar classes like jump, run, walk and
side, as well as wave1 and wave2, while classes like bend
and jack are perfectly recognized by our system.

Compared to the work of [3] and [7], our classification
results are almost 4% lower. The use of DTW from our sys-



tem, however, introduces structure to the recovered short-
term motions and classification is performed based on this
structure. On the contrary, in [3], [7] features are matched
based on maximum similarity across whole sequences. In
addition, our system uses a sparse representation as opposed
to [3], where a whole image sequence is represented as a
space-time shape. Sparse, local representations, are shown
to be significantly better in dealing with clutter and occlu-
sions for object detection and recognition in comparison to
global representations. Similar observations are expected
to hold in the problem of action recognition. A sparse and
structured representation is used in [13], where a recogni-
tion rate of 72.8% is reported on the Weizmann dataset, by
far inferior to the 93% achieved by our method.

5. Conclusions

In this paper we presented a feature based method for
human activity recognition. The features that we extract
stem from automatically detected salient points and contain
static information concerning the moving body parts of the
subjects as well as dynamic information concerning the ac-
tivities. We used the extracted features in order to recover
the pose and the short-term motion of the subject in a ’bag
of verbs’ approach. Our results show that our representation
is able to recover in a consistent way the kind of motion per-
formed in a variety of different classes.

Our future directions include additional experiments in
order to determine the robustness of the proposed method in
more challenging scenarios, like in the presence of dynamic
background or moving camera. In addition, we intend to
conduct experiments on the generality of our descriptors,
that is, their ability to represent unknown classes that are
not used for the creation of the codebook and compare them
with descriptors that are currently the state of the art in the
field, like the ones of [3], [7] and [13]. Finally, we intend to
implement different, more efficient methods for codebook
creation, like the ERC forests of [12].
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