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Abstract. We present a novel framework for the recognition of facial
expressions at arbitrary poses that is based on 2D geometric features. We
address the problem by first mapping the 2D locations of landmark points
of facial expressions in non-frontal poses to the corresponding locations
in the frontal pose. Then, recognition of the expressions is performed
by using any state-of-the-art facial expression recognition method (in
our case, multi-class SVM). To learn the mappings that achieve pose
normalization, we use a novel Gaussian Process Regression (GPR) model
which we name Coupled Gaussian Process Regression (CGPR) model.
Instead of learning single GPR model for all target pairs of poses at
once, or learning one GPR model per target pair of poses independently
of other pairs of poses, we propose CGPR model, which also models the
couplings between the GPR models learned independently per target
pairs of poses. To the best of our knowledge, the proposed method is
the first one satisfying all: (i) being face-shape-model-free, (ii) handling
expressive faces in the range from −45◦ to +45◦ pan rotation and from
−30◦ to +30◦ tilt rotation, and (iii) performing accurately for continuous
head pose despite the fact that the training was conducted only on a set
of discrete poses.

1 Introduction

Facial expression recognition has attracted significant attention because of its
usefulness in many applications such as human-computer interaction, face ani-
mation and analysis of social interaction [1,2]. Most existing methods deal with
images (or image sequences) in which depicted persons are relatively still and
exhibit posed expressions in nearly frontal view [1]. However, most of real-world
applications relate to spontaneous human-to-human interactions (e.g., meeting
summarization, political debates analysis, etc.), in which the assumption of hav-
ing immovable subjects is unrealistic. This calls for a joint analysis of head pose
and facial expressions. Nonetheless, this remains a significant research challenge
mainly due to the large variation in the appearance of facial expressions in dif-
ferent views and the difficulty in decoupling these different sources of variation.

Most of the existing approaches that perform pose-invariant facial expression
recognition are based on 3D face models. For example, Chang et al. [3] built

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 350–363, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



CGPR for Pose-Invariant Facial Expression Recognition 351

a probabilistic model on the generalized expression manifold obtained from 3D
facial expression range data to recognize the prototypic facial expressions. To
the same aim and to analyze the dynamics of facial expressions, Sun and Yin
[4] applied 3D dynamic facial surface descriptors. Furthermore, several works
proposed to apply 3D Active Appearance Models (AAM) for pose-invariant facial
expression analysis (e.g. Sung and Kim [5], Cheon and Kim [6]). Zhu and Ji [7]
used 3D Point Distribution Model (3D-PDM) and normalized SVD to recover
the facial expression and pose. Wang and Lien [8] used similar 3D-PDM to
separate the rigid head rotation from non-rigid facial expressions. Kumano et al.
[9] applied a rigid face shape model to build person-dependent descriptors that
were later used to decompose facial pose and expression simultaneously. Despite
the fact that 3D face models have advantage over 2D approaches in that the
effect of head pose on the facial expression analysis can be removed (although
this usually comes at the expense of the recovered facial expression accuracy), the
main disadvantage is the use of generative models and fitting techniques that can
fail to converge. Also, most of these methods are computationally expensive and
in need of time-consuming initialization process (e.g. due to manual annotation
of more than 60 facial landmark points). Moreover, some of the aforementioned
methods such as AAM need to be trained for each person/ facial expression/
head pose separately which makes those methods difficult to apply in real-world
applications where unknown subjects/ expressions can be expected.

In contrast to increasing interest in pose-invariant facial expression analysis
based on 3D and 2D face-shape models, pose-invariant facial expression analysis
based on 2D shape-free methods has been scarcely investigated. This is mostly
due to the fact that rigid head motions and non-rigid facial expressions are
non-linearly coupled in 2D and difficult to decouple using existing algorithms
[7]. For this reason, most of the proposed 2D pose-invariant methods address
the problem of (expressionless) face recognition but not the problem of facial
expression recognition (e.g. [10]). To the best of our knowledge, the only work
that analyzed the problem of pose-invariant facial expression recognition using a
2D shape-free approach is the work by Hu et al. [11]. They proposed a set of pose-
wise facial expression classifiers that are used to discriminate simultaneously
facial expressions and horizontal head orientations at five pan angles (0◦, 30◦,
45◦, and 90◦). However, the performance of this method has not been analyzed
for unknown head poses, i.e. poses that were not used to train the classifiers.
Moreover, because the classifiers were trained pose-wise, it is not possible to
perform recognition of facial expressions that were not included in the training
dataset for the given pose (in other words, this facial expression recognition
method cannot generalize across poses).

In this paper we propose a 2D face-shape-free method for pose-invariant fa-
cial expression recognition. We address the problem by mapping 2D facial points
(e.g., mouth corners) from non-frontal poses to the frontal pose where the recog-
nition of facial expressions can be performed by using any state-of-the art facial
expression recognition method. The proposed three-step approach is illustrated
in Fig. 1. In the first step, we perform head pose estimation by projecting the



352 O. Rudovic, I. Patras, and M. Pantic

Fig. 1. The overview of the proposed three-step approach. Legend: p∗ are the 2D
locations of facial landmarks from the input facial image, P (ki|pLDA

∗ ) is the probability
of p∗ belonging to the pose ki, where k0 is the frontal pose. The bidirectional lines in
the pose normalization step represent the coupled head poses, and the directed lines
represent the CGPR models learned per pair of poses (ki, k0). p̂0

∗ is the prediction of p∗
in the frontal pose obtained as a linearly weighted combination of the aforementioned
CGPR models where the weights are proportional to P (ki|pLDA

∗ ).

input datum (i.e. 2D facial points locations) to a low-dimensional manifold (at-
tained by the means of multi-class LDA) and by estimating the probability of it
belonging to each of the discrete poses for which training data are available. In
the second step, we use the novel Coupled Gaussian Process Regression (CGPR)
model to perform pose normalization, that is, to learn mappings between the 2D
locations of landmark points of the facial expressions in non-frontal poses and
their locations in the frontal pose. Instead of using single Gaussian Process Re-
gression (GPR) model for all target pairs of poses at once, or using only one
GPR model per target pair of poses, we propose CGPR models, which also
model the couplings between the GPR models learned independently per tar-
get pairs of poses. To enable accurate performance for continuous head pose
(i.e. for unknown poses), the predictions of the facial landmark locations in the
frontal pose obtained by CGPR models from different poses are linearly com-
bined (where the weights are based on head-pose probabilities obtained by the
pose estimator in the first step of the proposed approach). The last step in our
approach is facial expression classification in the frontal pose attained using the
multi-class Support Vector Machine classifier.

The contributions of the proposed methodology are summarized as follows.

1. We propose a 2D face-shape-model-free approach to pose-invariant facial ex-
pression recognition that can handle expressive faces in the range from −45◦
to +45◦ pan rotation and from −30◦ to +30◦ tilt rotation. The proposed
approach performs accurately for continuous head pose despite the fact that
the training was conducted only on a set of discrete poses. It can also han-
dle successfully the problem of having an unbalanced training dataset (i.e.,
when examples of certain facial expression categories are not included in the
training dataset for a given discrete pose).

2. We propose a novel head pose normalization approach based on the lin-
early weighted combination of the newly proposed Coupled Gaussian Process
Regression (CGPR) models, which model the couplings between the GPR
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models learned per target pairs of poses. We employ GPR model since it
provides not only the predictions of the facial landmark points in the frontal
pose but also the uncertainty in these predictions (obtained through its co-
variance function) [12]. Moreover, the couplings between the GPR models
can be embedded in their covariance structure in a very natural and straight-
forward manner. Although CGPR is a multiple-output GPR model, it does
not model the dependences between its outputs (as done by the dependent-
output GPR model such as the one proposed in [13]). Instead, CGPR models
the dependences between the predictions obtained by different GPR mod-
els (i.e., GPR models learned for different poses). For these newly proposed
CGPR models, we show experimentally that the proposed scheme outper-
forms a linearly weighted combination of GPR models learned per target
pairs of poses which, in turn, outperforms baseline methods for pose nor-
malization as 2D- and 3D-PDM.

The rest of the paper is organized as follows. In Section 2 we present our approach
to pose-invariant facial expression recognition. In Section 3 we describe the newly
proposed CGPR model. Experimental studies are discussed in Section 4, while
Section 5 concludes the paper.

2 Pose-Invariant Facial Expression Recognition

In this section we describe a novel 2D face-shape-model-free approach to pose-
invariant facial expression recognition given the 2D locations p ∈ Rd of L = d/2
facial landmarks of a face at an arbitrary pose. The proposed approach consists
of three main steps: (i) head pose estimation by using a pose classifier on p, (ii)
pose normalization by mapping the positions p of the facial landmarks from a
non-frontal pose to the corresponding 2D positions p0 in the frontal pose, and
(iii) facial expression classification in the frontal pose. These steps are described
in detail in the following sections and are summarized in Alg. 1. The theory
behind the second step, that is the proposed CGPR model, is described in detail
in Section 3.

In what follows, we assume that we have training data for each of P discrete
poses and the correspondences between the points for each target pair of poses
(non-frontal and frontal pose). In our case, we discretized the head pose space
which resulted in P = 35 poses evenly distributed across the range from −45◦
to +45◦ pan rotation and from −30◦ to +30◦ tilt rotation. We denote by Dk =
{pk

1 , ..., p
k
Nk

} the data set from pose k, and by D =
{
D0, ..., Dk, ..., DP−1

}
the

whole training data set, where Nk represents the number of training data in the
pose k.

2.1 Head Pose Estimation

Various head pose estimation methods based on appearance and/or geometric
features are proposed in the literature [14]. We propose to estimate the probabil-
ity of each head pose belonging to a discretized head-pose space represented by



354 O. Rudovic, I. Patras, and M. Pantic

a low-dimensional manifold attained by means of multi-class LDA. Firstly, we
normalize all examples from D (2D locations of facial landmarks in P poses), to
remove the scale and translation components, as described in [15]. Secondly, to
learn the manifold from such normalized data, we employ multi-class LDA since
it is a simple linear transform that, given a training set with known pose labels,
finds a low dimensional manifold which best represents pose variations while ig-
noring variations due to facial expressions. The estimated probability of input 2D
facial points locations p being in pose k is given by P (plda|k) = G(plda; µk,Σk),
where G is a normal density centered at µk and with covariance Σk. plda is the
projection of p onto the low dimensional manifold. By applying Bayes’ rule, we
obtain the probability of being in pose k as P (k|plda) ∝ P (plda|k)P (k), where
we assume a uniform prior P (k) = 1/P .

2.2 Head Pose Normalization

Given input data p∗ containing the 2D locations of the facial points in an un-
known head pose, our goal is to predict the location of these points in the frontal
pose p̂0

∗. To this end, we learn the functions f (k)
C (p∗) (1 ≤ k ≤ P ) which are

later used to make predictions for input data p∗. These functions are modeled
by the proposed CGPR models described in detail in Section 3. Thus, given
p∗, P (k|plda

∗ ) and f (k)
C (p∗), we obtain the locations of the frontal facial land-

marks p̂0
∗ as a linearly weighted combination of f (k)

C (p∗) for all k which satisfy
P (k|plda

∗ ) > Pmin, where the weights are proportional to the head pose prob-
abilities P (k|plda

∗ ). The mathematical formulation of this is given in Step 2 in
Alg. 1. Let us mention here that before f (k)

C is applied to p∗, it is registered to
a reference face in pose k using a simple affine transform. The latter is calcu-
lated using five referential points: the nasal spine point and the inner and outer
corners of the eyes (because they are stable facial points and the contractions of
the facial muscles do not affect them).

2.3 Facial Expression Classification in Frontal Pose

We address the problem of pose-invariant facial expression recognition by per-
forming pose normalization first, and subsequently applying any 2D-geometric-
feature-based facial expression recognition method to the normalized input data
(see [1]). In this paper, we use the multi-class SVM with decision function is
given by

l = arg max
z

(
∑

i:p0
i ∈Tz

αiK(p0
i , p̂

0
∗) + bz), z = 1...Z, (1)

where αi and bz are the weight and bias parameters, and K(p0
i , p̂

0
∗) is a vector of

inner products between the training data p0
i ∈ D0, containing Z facial expres-

sions, and an estimate of p∗ in the frontal pose, p̂0
∗. The set Tz contains data

points that depict facial expression z.
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Algorithm 1. Pose-Invariant Facial Expression Recognition
Input: Positions of facial landmarks in an unknown pose (p∗)
Output: Facial expression label (l)
1. Apply the pose estimation (Sec. 2.1) to obtain P (k|plda

∗ ), k = 0 .. P − 1
2. Register p∗ to poses k ∈ K which satisfy P (k|plda

∗ ) > Pmin (Sec. 2.2), and predict
the locations of the facial landmarks points in frontal pose

p̂0
∗ = 1∑

k∈K
P (k|plda

∗ )

∑
k∈K

P (k|plda
∗ )f (k)

C (pk
∗)

3. Facial expression classification in frontal pose (Sec. 2.3)
l ← arg max

z
(

∑

i:p0
i ∈Tz

αiK(p0
i , p̂

0
∗) + bz)

3 Coupled Gaussian Process Regression (CGPR)

In this section we describe a novel methodology for learning functions that map
the 2D locations of facial points p in non-frontal poses to the corresponding 2D
locations in the frontal pose. We learn a set of such functions, denoted by f (k)

C ,
each one of which is associated with a certain pose k, where k is one of the
discrete poses P for which training examples are available (i.e. 0 ≤ k ≤ P − 1).
Roughly speaking, f (k)

C (p∗) is expected to provide good mappings for p∗ obtained
at an arbitrary pose that is relatively close to the pose k.

In order to learn f (k)
C , we learn a set of P−1 mapping functions {f (1), .., f (P−1)}

first, where the function f (k) maps the positions of the landmark points pk in
pose k to the corresponding points p0 in the frontal pose. f (k) is learned using a
GPR model for the target pair of poses (k, 0) based on the datasets Dk and D0,
i.e., the sets that contain landmark points p in pose k and in the frontal pose
denoted by 0.

3.1 Gaussian Process Regression (GPR)

In this section we describe the base GPR model for learning the mapping func-
tions fk. Formally, given a set of Nk examples of facial images containing the
landmark locations in pose k, and the corresponding landmark locations in the
frontal pose 0 (i.e. {Dk, D0}), we learn the function f (k): Rd → Rd that maps
pk

i ∈ Dk to p0
i ∈ D0, where i = 1..Nk. Assuming Gaussian noise εi with zero

mean and covariance matrix σ2
nI, this is expressed by p0

i = f (k)(pk
i )+εi. In GPR

model, a zero mean Gaussian process prior is placed over the function f (k), that
is f (k) ∼ GP (0, K + σ2

nI), where K(Dk, Dk) denotes Nk × Nk matrix of the
covariances evaluated at pairs (pk

i , pk
j ) by applying the kernel

k(pk
i , pk

j ) = σ2
s exp(−1

2
(pk

i − pk
j )T W (pk

i − pk
j )) + σlp

k
i pk

j + σb, (2)

where i, j = 1..Nk. σs and W = diag(w1, ..., wd) are the parameters of the
radial basis function with different length scales for each input dimension (each
coordinate of each landmark point), σl is the process variance which controls
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the scale of the output function f (k), and σb is the model bias. This kernel has
been widely used due to its ability to handle both linear and non-linear data
structures [16]. During inference, we obtain the predictive mean f (k)(pk

∗) and
the corresponding variance V (k)(pk

∗) for a new input pk
∗ as

f (k)(pk
∗) = kT

∗ (K + σ2
nI)−1D0 (3)

V (k)(pk
∗) = k(pk

∗ , p
k
∗) − kT

∗ (K + σ2
nI)−1k∗ (4)

where k∗ = k(Dk, pk
∗), and k(·, ·) is given by Eq.( 2). The kernel parameters

θ = {σs, W,σl,σb,σn} are found by maximizing the log marginal likelihood of
the training outputs using the conjugate gradient algorithm [12]. We assume
here that the output dimensions (each coordinate of each landmark point in p0

i )
are a priori identically distributed [12]. This allows us to easily handle multiple
outputs by applying the same covariance matrix to each output.

3.2 Learning Couplings

The mapping functions {f (1), ..., f (k), ..., f (P−1)} are learned independently for
each target pair of poses; however, they need not be independent. Moreover,
if the outputs obtained by different mapping functions are correlated, inferring
the couplings between them may help obtain better predictions [17]. We model
the coupling between two functions, f (k1) and f (k2), for pose k1, using Gaussian
distribution on the differences of their predictions obtained by evaluating these
functions on the training data Dk1 . It is expressed by

P (f (k1), f (k2)|k1) ∝ exp(−1
2
dTΣ−1d), (5)

where d = f (k1)(pk1
∗ ) − f (k2)(pk1

∗ ), and Σ = σ2
(k1,k2)I. The variance σ2

(k1,k2)

measures the extent to which f (k2) is coupled (i.e., similar) to f (k1). Alternatively,
this can be seen as an independent noise component in the predictions made by
f (k2) because it is evaluated on data from different pose, i.e., pose k1. Since we
assume that this noise is Gaussian and independent of the noise process modeled
by f (k2), their covariances can simply be added [12]. Accordingly, we update the
mean and variance given by Eq.(3) and Eq.(4), respectively, to obtain the mean
and variance of CGPR model, that is

f (k1,k2)(pk1
∗ ) = kT

∗ (K2 + (σ2
n + σ2

(k1,k2)
)I)−1D0 (6)

V (k1,k2)(pk1
∗ ) = k(pk1

∗ , pk1
∗ ) − kT

∗ (K2 + (σ2
n + σ2

(k1,k2))I)−1k∗, (7)

where k∗ = k(Dk2 , pk1
∗ ). It is clear that the smaller the coupling between the

functions f (k1) and f (k2), the higher the uncertainty in the predictions obtained
by f (k1,k2). In the case of perfect coupling (when σ2

(k1,k2)
→ 0), we do not increase

the uncertainty in the predictions obtained by f (k1,k2) (which converges to f (k2)).
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On the other hand, when there is no coupling (σ2
(k1,k2) → ∞), we obtain the prior

mean and covariance of f (k2) (f (k1,k2)(pk1
∗ ) → 0 and V (k1,k2)(pk1

∗ ) → k(pk1
∗ , pk1

∗ )).
Because the variance of such prediction is the highest possible (learned by the
model), this prediction will be suppressed by the covariance intersection rule
described in Sec 3.4. Finally, the covariance matrix of CGPR model is guaranteed
to be positive definite (the covariance matrix of the base GPR models learned
in Sec. 3.1 is positive definite) since we only add a positive term to the diagonal
of the covariance matrix in Eq.(6)&(7) [12].

3.3 Pruning CGPR Models

The couplings between all functions pairs (f (k1), f (k2)) can be easily learned.
Nevertheless, inference utilizing all them would be slow. Also, not all of the
coupled functions f (k1,k2) contribute significantly in reducing the uncertainty in
the predictions. As a pruning criterion, we propose using a measure based on the
number of effective degrees of freedom of a GP [18]. In the framework of CGPR
model, it has the following form

C(k1,k2)
eff =

Nk2∑

i=1

λi

λi + σ2
n + σ2

(k1,k2)

(8)

where λi are the eigenvalues of the matrix K2. If σ2
(k1,k2) is large, C(k1,k2)

eff → 0
and the predictions made by f (k1,k2) can be neglected. We compare the ra-
tio C(k1,k2)

eff /C(k1)
eff to a threshold Cmin to decide which coupled functions are

relevant.

3.4 Covariance Intersection (CI)

In this section we describe how to fuse the predictions obtained by different
mapping functions f (k1) and f (k1,k2) in order to obtain a single prediction f (k1)

C
associated with pose k1. A straightforward solution would be to select weighting
functions inversely proportional to the variance of the predictions obtained by
the individual functions. However, this fusion rule is optimal only if the pre-
dictions (i.e. their errors) are uncorrelated [17]. Since for a query point p∗ we
do not a priori know whether the predictions are correlated or not, the above
fusion rule may not be optimal. Recently, a fusion rule, called Covariance Inter-
section (CI), for combining predictions in the presence of unknown cross covari-
ance, has been proposed in [19]. To illustrate this, consider two GPR models,
f (k1) and f (k1,k2), with the mean and covariance pairs, {f (k1)(p∗), V (k1)(p∗)}
and {f (k1,k2)(p∗), V (k1,k2)(p∗)}. The CI yields the mean and covariance pair
{f (k1)

C (p∗), V
(k1)
C (p∗)} obtained as

V (k1)
C

−1
(p∗) = ω(V (k1)(p∗))−1 + (1 − ω)(V (k1,k2)(p∗))−1 (9)

f (k1)
C (p∗)=V k1

C (p∗)(ω(V (k1)(p∗))−1f (k1)(p∗)+(1−ω)(V (k1,k2)(p∗))−1f (k1,k2)(p∗))
(10)
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where ω ∈ [0, 1] is a scalar that minimizes some criterion of uncertainty. In all
our experiments we minimize the trace of V k1

C (p∗) that we use as the uncertainty
criterion, as proposed in [19].

4 Experiments

The experimental evaluation of the proposed methodology has been carried out
using two datasets: the BU-3D Facial Expression (BU3DFE) database [20] con-
taining 3D range data and the CMU Pose, Illumination and Expression Database
(MultiPie) [21] containing multi-view facial expression data. BU3DFE contains
3D scans of 7 facial expressions, Angry, Disgust, Fear, Happy, Sad, Surprise and
Neutral, performed by 100 subjects (60% female of various ethnic origin). All
facial expressions except Neutral were sampled in four different levels of inten-
sity. We generate 2D multi-view images of facial expressions from the available
3D data by rotating 39 facial landmark points provided by the database creators
(see Fig. 3), which were used further as the features in our study. The data in
our experiments include images of 50 subjects (54% female) at ±15◦,±30◦ and
±45◦ pan angles, and ±15◦ and ±30◦ tilt angles (see Fig. 1), with 5◦ increment,
resulting in 1250 images for each of 247 poses. The training data are subsampled
from this dataset to include images of expressive faces in 35 poses (15◦ increment
in pan and tilt angles). These data (referred to as BU-TR dataset in the text
below) as well as the rest of the data (referred to as BU-TST dataset and used
to test the performance of the proposed methods) were partitioned into five folds
in a person-independent manner for use in a 5-fold cross validation procedure.
To evaluate the performance of the method in case of real data (as opposed to
synthetic BU-TR/TST data), we used a subset of MultiPie containing images
of 50 subjects (22% female) displaying 4 expressions (neutral, disgust, surprise,
and happy) captured at 4 pan angles (0◦,−15◦,−30◦ and −45◦), resulting in 200
images per pose. All images were hand labeled in terms of 39 landmark points
and the dataset was partitioned in a person-independent manner for use in a
5-fold cross validation procedure.

The rest of this section is organized as follows. First we present the experi-
ments aimed at evaluation of the accuracy of the proposed head pose normal-
ization method. To measure the accuracy of the method, we used the root-mean
squared (RMSE) distance between the predicted image positions of the facial
landmarks in the frontal pose and the ground truth (the manually annotated
facial landmarks in frontal pose). As suggested by the results attained when
testing on BU-TST dataset (see Fig. 2), the proposed CGPR-based method
outperforms both GPR-based method and the ‘baseline’ methods for pose nor-
malization, namely, 2D-PDM [22] and 3D-PDM [7]. The superior performance
of the proposed CGPR-based method is also shown in the case of noisy data (see
Table 1). Secondly, we evaluate the performance of the proposed pose-invariant
facial expression recognition method. Testing was performed on faces from BU-
TST images in (i) frontal pose (FP), (ii) non-frontal training poses (tp), and
(iii) unknown poses (ntp), where the pose normalization was achieved using
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Fig. 2. Comparison of head pose normalization methods CGPR, GPR, 3D-PDM and
2D-PDM, trained on BU-TR (35 head poses) and tested on BU-TST (247 head poses)
in a person-independent manner in terms of RMSE

(a) (b) (c) (d)

Fig. 3. Prediction of the facial landmarks in the frontal pose for an BU3DFE image of
Happy facial expression in pose (−45◦,−30◦) obtained by using (a) CGPR (b) GPR
(c) 3D-PDM and (d) 2D-PDM. The blue $ represent the ground truth and the black
! are the predicted points. As can be seen, the alignment of the predicted and the
corresponding ground truth facial landmarks is far from perfect in case of 3D/2D-
PDM.

the CGPR-based method (Table 2). Finally, to evaluate the performance of the
method in case of real data and in case of unbalanced data (i.e. when the method
is trained on data where some of facial expression categories are missing in certain
poses), we carry out experiments on MultiPie dataset (Table 3). For all experi-
ments carried out on BU-TR/TST datasets, we did the following: the head pose
estimator was trained on BU-TR dataset and when tested on BU-TST data, it
predicted the correct (closest) head pose in 95% of cases. The base GPR mod-
els in Alg. 2 were trained on BU-TR dataset for each of the 34 target pairs of
poses. Furthermore, we set Pmin in Alg. 1 and Cmin in Alg. 2 to experimentally
found optimal values that are 0.1 and 0.75, respectively. The 2D-PDM and 3D-
PDM were trained using the frontal data from BU-TR dataset (for 3D-PDM,
the corresponding 3D data were used), retaining 15 modes of non-rigid shape
variation.
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Table 1. Comparison of head pose normalization methods CGPR, GPR, 3D-PDM
and 2D-PDM, trained on BU-TR (35 head poses) and tested on BU-TST (247 head
poses) corrupted with different levels of Gaussian noise with standard deviation σ, in
a person-independent manner, in terms of RMSE

σ = 0 σ = 0.5 σ = 1 σ = 2 σ = 3
tp ntp tp ntp tp ntp tp ntp tp ntp

3D-PDM 3.1±0.9 3.2±0.6 3.1±0.8 2.9±0.6 3.2±0.7 2.9±0.6 3.7±0.9 3.3±0.6 4.0±0.5 3.8±0.5
2D-PDM 5.2±1.2 4.9±1.1 5.4±1.4 5.3±1.3 5.7±1.4 5.4±1.3 6.0±1.3 5.8±1.3 6.3±1.2 6.1±1.1

GPR 1.1±0.2 1.6±0.3 1.3±0.3 1.5±0.3 1.6±0.2 1.8±0.3 2.4±0.2 2.5±0.2 3.3±0.1 3.4±0.1
CGPR 1.1±0.3 1.4±0.4 1.2±0.3 1.4±0.2 1.5±0.2 1.6±0.2 2.3±0.2 2.4±0.2 3.2±0.2 3.3±0.1

Table 2. Facial expression recognition results using 7-class-SVM trained on frontal-
pose expressive images from BU-TR and tested on BU-TST images in (i) frontal pose
(FP), (ii) non-frontal training poses (tp), and (iii) unknown poses (ntp), where the pose
normalization was achieved using the CGPR-based method. The best results reported
by Hu et al. [11] for BU3DFE are reported for comparison purposes. All results are
given in terms of correct recognition rate percentages.

Disgust Angry Fear Happy Sad Surprise Neutral
FP+SVM 74.5±2.1 69.9±1.8 58.3±1.2 80.4±2.1 76.3±2.0 91.1±1.4 73±2.5

CGPR+SVM (tp) 71.0±3.1 72.8±1.6 58.0±1.7 81.9±2.9 73.8±2.7 89.9±1.9 73±3.0
CGPR+SVM (ntp) 70.1±3.4 71.1±2.2 56.2±2.2 80.2±1.8 72.1±2.9 88.1±2.0 72±2.4
Hu et al. [11] (tp) 69.3 71.3 52.5 78.3 71.5 86.0 -

Evaluation of the accuracy of the proposed head pose normaliza-
tion method – Fig. 2 shows the comparative results in terms of RMSE of the
tested head pose normalization methods along with the results obtained when no
pose normalization is performed and only the translation component has been
removed. As can be seen, both GPR- and CGPR-based methods significantly
outperform the 2D/3D ‘baseline’ methods for pose normalization. Judging from
Fig 3, this is probably due to the fact that the tested 2D/3D deformable face-
shape-based models were not able to accurately model the non-rigid facial move-
ments present in facial expression data. The performance of the aforementioned
models in the presence of noise in test data was evaluated on BU-TST data
corrupted by adding four different levels of noise. As can be seen from Table 1,
even in the presence of high levels of noise the performance of GPR/CGPR-
based methods is comparable to that of 2D/3D-PDM achieved for noise-free
data. The performance of GPR- and CGPR-based methods is highly compa-
rable in the aforementioned experiments where the utilized data were balanced
(i.e. when the method is trained on data containing examples of all facial expres-
sion categories in all target poses). However, the results shown in Table 1 (i.e.
when no noise is present in the data) suggest that the proposed CGPR-based
method slightly outperforms the GPR-based method when tested on unknown
poses (ntp).
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Table 3. Facial expression recognition results using 4-class-SVM trained and tested on
unbalanced data from MultiPie, where the pose normalization was achieved using GPR-
or CGPR-based method. The unbalanced dataset was prepared by removing all exam-
ples of one facial expression category from one of the non-frontal poses. The testing was
performed on the removed examples in a cross-validation person-independent manner
for each expression and each pose. The performance of the classifier trained/tested on
frontal-pose expressive images from MultiPie is also reported for the purposes of base-
line comparison. All results are given in terms of correct recognition rate percentages.

Disgust Happy Surprise Neutral
FP+SVM RR[%] 94.2±2.3 95.6±1.3 97.4±0.9 93.7±1.9

GPR+SVM
RR[%] 68.9±6.2 74.2±4.5 69.4±5.2 73.8±3.9
RMSE 3.10±0.7 3.21±0.9 3.62±0.9 2.80±0.7

CGPR+SVM
RR[%] 85.2±4.3 90.2±3.1 89.8±3.2 88.2±3.1
RMSE 1.95±0.3 1.80±0.4 2.40±0.3 1.90±0.4

Algorithm 2. Learning and inference with CGPR
OFFLINE: Learning base GPR models and coupling parameters
1. Learn P − 1 base GPR models {f (1), ..., f (P−1)} for target pairs of poses (Sec. 3.1)
2. Perform coupling of base GPR models learned in Step 1

for k1=1 to P-1 do
for k2=1 to P-1 & k1 %= k2 do

estimate σ(k1,k2) (Sec. 3.3)

if C(k1,k2)
eff > Cmin then σk1

C = [σk1
C , σ(k1,k2)] end if

end for
store σk1

C

end for

ONLINE: Inference of the facial landmarks pk1
∗ in pose k1

Sk1 : number of the functions coupled to f (k1)

1. Evaluate base GPR model for pose k1 (Sec. 3.1): Pr(0) = {f (k1)(pk1
∗ ), V (k1)(pk1

∗ )}
2. Evaluate CGPR models for pose k1 (Sec. 3.3)

for i=1 to Sk1 do σ(k1,i) = σk1
C (i) , Pr(i) = {f (k1,i)(pk1

∗ ), V (k1,i)(pk1
∗ )} end for

3. Combine estimates using CI (Sec. 3.4): {f (k1)
C (pk1

∗ ), V (k1)
C (pk1

∗ )} = CI(Pr)

Evaluation of the proposed pose-invariant facial expression recog-
nition method – The results presented in Table 2 clearly suggest that the pro-
posed pose-invariant facial expression recognition method performs accurately
for continuous head pose (i.e. for unknown poses; ntp-case in the Table 2) de-
spite the fact that the training was conducted only on a set of discrete poses
(i.e. on BU-TR). As can be seen further from Table 2, even in case of un-
known poses, the proposed method outperforms the method reported by Hu
et al. [11], where pose-wise SVM classifiers were trained and tested only on known
poses. While the aforementioned experiments suggest that the performance of
GPR- and CGPR-based methods is highly comparable when the utilized data
are balanced, the same is not the case when the utilized data are unbalanced.
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Specifically, the results presented in Table 3 clearly suggest that the proposed
CGPR-based pose-invariant facial expression recognition method significantly
outperforms the GPR-based method in case of unbalanced data, i.e., when one
facial expression category is missing in a certain pose. Judging from Table 3,
RMSE rows, the reason for this is that the CGPR-based head pose normaliza-
tion is significantly better than that obtained by the GPR-based method. In
turn, this can be explained by the non-parametric nature of the GPR-based
method due to which it cannot generalize well beyond the training data. On the
contrary, the CGPR-based method overcomes this by employing the knowledge
(training data) provided by the underlying CGPR models.

5 Conclusion

We presented a novel 2D-shape-free method for the recognition of facial ex-
pressions at arbitrary poses that is based on pose normalization of 2D geometric
features. For pose normalization, we proposed Coupled Gaussian Process Regres-
sion (CGPR) model that learns direct mappings between the facial positions at
an arbitrary pose and the positions in the frontal pose. Experimental results
demonstrate the advantages of the proposed pose normalization in comparison
to generative methods and its robustness to incomplete training data (i.e. expres-
sions and poses that do not belong to the training dataset). For the problem of
expression recognition, the proposed method is shown to demonstrate classifica-
tion performance comparable to the ones obtained by pose-specific classification
schemes for the significantly more difficult problem of expression recognition at
an unknown pose.
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