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ABSTRACT 

Past research on automatic laughter detection has focused 
mainly on audio-based detection. Here we present an 
audiovisual approach to distinguishing laughter from speech 
and we show that integrating the information from audio and 
video leads to an improved reliability of audiovisual 
approach in comparison to single-modal approaches. We 
also investigated the level at which audiovisual information 
should be fused for the best performance. When tested on 96 
audiovisual sequences depicting spontaneously displayed (as 
opposed to posed) laughter and speech episodes, the 
proposed audiovisual feature-level approach achieved a 
86.9% recall rate with 76.7% precision. 

Index Terms— Audiovisual data processing, laughter 
detection, data fusion, nonlinguistic information processing. 

1. INTRODUCTION 

Laughing, smiling, and talking are arguably our most 
prominent social signals [1]. Laughs are also very good
predictors of affective states such as joy, humour, distress, 
and anxiety [2]. It is therefore not strange that laughter is 
reported to be the most often annotated paralinguistic event 
occurring in recorded natural speech [3]. 

Automatic laughter detection can be used as a tool for 
detecting the user’s affective state and facilitating affect-
sensitive human-computer interfaces [4]. It can be used to 
identify semantically meaningful events in meetings such as 
topic change or jokes. Also, such a detector can be useful for 
the detection of non-speech in automatic speech recognition 
as well as for content-based video retrieval.  

Little work has been recently reported on automatic 
laughter detection. The main characteristic of these studies is 
that only audio information is used, i.e., visual information 
carried by facial expressions of the observed person is 
ignored. Most of these studies use Hidden Markov Models 
(HMMs) as the classification tool (just as is the case in 
automatic speech recognition). This is mainly due to the 
ability of HMMs to represent the temporal characteristics of 
the phenomenon. Existing approaches to laughter detection 
include the work of Lockerd & Mueller [5], who used 
HMMs and spectral coefficients, the work of Cai et al. [6], 
who used HMMs with Mel-Frequency Cepstral Coefficients 
(MFCCs) and perceptual features, and the work of Campbell 

et al. [7], who used phonetic features and HMMs to detect 
four types of laughter. Another approach is that of Kennedy 
& Ellis [8], who trained Support Vector Machines (SVM) 
with MFCCs and delta MFCCs. The most extensive study in 
this area was made by Khiet & Leeuwen [3], who compared 
the performance of different auditory frame and utterance 
level features using different classifiers and different 
combination schemes. To the best of our knowledge, the 
only approach that uses audiovisual information is the work 
of Ito et al. [9]. They built an image-based laughter detector 
based on spatial locations of facial feature points and an 
audio-based laughter detector based on MFCC features. The 
output of the two detectors are combined with an AND 
operator to yield the final classification for an input sample. 
They attained 80% average recall rate using 3 sequences of 
3 subjects in a person dependent way.  

In this paper, we present an audiovisual approach to 
discriminating laughter episodes from speech episodes. Our 
research on an audiovisual approach rather than an audio-
only approach to laughter recognition is mainly driven by 
research on audiovisual speech recognition that reported 
improved performance over audio-only speech recognition 
[10]. At this point we would like to remark that we only use 
spontaneous (as opposed to posed) displays of laughter and 
speech episodes from the audiovisual recordings of the AMI 
meeting corpus [11]. We focus on person-independent 
recognition which makes the task of laughter detection even 
more challenging. We compare the performance of audio- 
and video-only laughter detection with that of audiovisual 
laughter detection. Finally, we also investigate two different 
kinds of multimodal data fusion: feature and decision level 
fusion. Independently of the type of data fusion, audiovisual 
laughter detection outperforms single-modal (audio/video 
only) laughter detection, attaining on average 84% recall. 

2. DATASET 

The AMI Meeting Corpus consists of 100 hours of meeting 
recordings. We only used the close-up video recordings of 
the subject’s face (720 x 576 pixels, 25 frames per second) 
and the individual headset audio recordings (16 kHz). The 
language used in the meetings is English and the speakers 
are mostly non-native. For our experiments we used seven 
meetings (IB4001 to IB4011) and the relevant recordings of 
eight participants (6 young males and 2 young females) of 
Caucasian origin with or without glasses and no facial hair. 
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All laughter and speech segments were pre-segmented 
based on audio. Initially, laughter segments were selected 
based on the annotations provided with the AMI Corpus. 
After examining the extracted laughter segments we only 
kept those that do not co-occur with speech and laughter is 
clearly audible, i.e. only harmonic, acoustically symmetric 
laugh episodes were kept [2]. Speech segments were also 
determined by the annotations provided with the AMI 
Corpus. We selected those that do not contain long pauses 
between two consecutive words. In total, we used 40 audio-
visual laughter segments, 5 per person, with a total duration 
of 58.4 seconds (with mean duration μ = 1.46 seconds and 
standard deviation σ = 1.09 seconds) and 56 audio-visual 
speech segments with a total duration of 118.08 seconds 
(with mean duration μ = 2.11 seconds and standard 
deviation σ = 1.09 seconds). 

3. DATA PROCESSING 

3.1. Video Processing 

To capture the facial expression dynamics, we track 20 
facial points (Fig. 1) in the video segments. These points are 
the corners / extremities of the eyebrows (2 points), the eyes 
(4 points), the nose (3 points), the mouth (4 points) and the 
chin (1 point).  To track these facial points we used Patras – 
Pantic particle filtering tracking scheme [12], applied for 
tracking color-based templates centered around the facial 
points to be tracked. The points were manually annotated in 
the first frame of an input video and tracked for the rest of 
the sequence. Hence, for each video segment containing K 
frames, we obtain a set of K vectors containing 2D 
coordinates of 20 points tracked in K frames. 

While speaking and especially while laughing, people 
tend to exhibit large head movements. It is even more so in 
the case of our data since we use recordings of naturalistic 
(spontaneous) rather than deliberately displayed episodes of 
speech and laughter. Since we are interested in facial 
expression configuration (relevant to speech and laughter 
episodes) rather than in head movements, we need to 
distinguish changes in the location of facial points caused by 
changes in facial expression from those caused by rigid head 
movements. To do so we use Principal Component Analysis 
(PCA). PCA is defined as an orthogonal linear 
transformation that transforms the data to a new coordinate 
system such that the greatest variance by any projection of 
the data comes to lie on the 1st coordinate (i.e., 1st PC), the 
2nd greatest variance on the 2nd coordinate, and so on. Given 
that in our dataset head movements account for most of the 
variation in the data, lower-order PCs are expected to reflect 
rigid-movement aspects of the data while higher-order PCs 
are expected to retain non-rigid-movement (facial 
expression) aspects of the data. To test this assumption, we 
computed the PCs for the whole dataset and then 
reconstructed the position of the points in each frame by 

using different combinations of the PCs. As can be seen 
from Fig. 1, it seems that indeed the lower-order PCss reflect 
rigid-movement aspects of the data, while the higher-order 
PCs reflect facial expression aspects of the data.  

In our evaluation studies, we use PCs 7 to 10 to 
reconstruct the position of 20 facial points in each frame. 
Then we calculate all the distances between all these points. 
Hence, we end up with 190 distances per frame. We use 
only spatial features (rather than using temporal features as 
is often the case in automatic facial expression analysis) 
since the facial expression configuration during laughter 
episodes is significantly different than that occurring during 
speech episodes [1]. 

3.2. Audio Processing 

Spectral or cepstral features, such as Perceptual Linear 
Prediction coding features (PLP) [13], have been 
successfully used for speech recognition. They have been 
successfully used for laughter detection as well. Truong & 
Leeuwen [3], for example, reported a higher success rate in 
automatic laughter detection when using PLP features than 
when using prosodic features like pitch and energy. Hence, 
we adopt this approach as well and compute, for each 
window, 13 PLP features and their temporal derivatives 
resulting in 26 features per window. All the features are z-
normalized to a mean μ = 0 and standard deviation σ = 1. 

We also experimented with different frame rates in order 
to find an optimum for this application. Fig. 2 shows the 
Receiver Operating Characteristic (ROC) curves for four 
different frame rates, 25, 50, 75, and 100 frames per second 
(FPS) respectively. These correspond to a step-size of 40, 
20, 13.3, and 10 ms respectively. The length of the window 

Fig. 1: PCA analysis of facial point tracking. Upper row: actually 
tracked facial points. Bottom row: (left) 20 facial points after they 
have been reconstructed using the first 6 principal components, 
(right) 20 facial points after they have been reconstructed using 
principal components 7 to 10.
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is the double of the step-size. As can be seen from Fig. 2, the 
worst results in audio-only classification between laughter 
and speech are obtained when the frame rate is 25FPs. 
However, there are no significant differences in results when 
the other three frame rates are used. In turn, and in order to 
keep the number of feature vectors computed for each 
segment relatively small, we set the frame rate to 50 FPS. 

4. LAUGHTER DETECTION 

To recognize whether an input audio and / or visual sample 
is an episode of speech or an episode of laughter we use 
either a neural network classifier or a combination of 
AdaBoost and neural networks, where AdaBoost is used as 
the feature selector rather than a classifier. 

Neural Networks were used as the classifier since they 
are able to learn non-linear function from examples but any 
learning algorithm which can learn complex functions from 
examples such as SVM is expected to perform equally well. 
We used feed-forward neural networks where the number of 
training epochs varied from 50 to 100 depending on the 
amount of data that were fed to the network.  

AdaBoost creates an ensemble of T weak classifiers, by 
resampling the data in T rounds, which are combined using a 
combination rule with the goal of improving the accuracy of 
any given learning algorithm. AdaBoost can be used either 
as a classification method or as a feature selector (a feature 
set of the T best features will be available after T rounds, 
[14]). In this study, AdaBoost is used as a feature selector. 
The video channel results in a large amount of features 
which has the potential to significantly degrade the 
performance of a learning algorithm unless a large amount 
of training data is available. Hence, we use AdaBoost to 
reduce the number of visual features by selecting the most 
discriminative features, which are then fed to a neural 
network. We found that good results can be obtained by 
keeping just the first 18 visual features selected by 
AdaBoost (from a total of 190 features computed for each 

frame, see section 3.1). It is interesting to note that in all the 
experiments described in section 5, AdaBoost always 
selected the distance between the lower lip and the right lip 
corner as the most informative feature. The next most 
commonly selected informative feature is the distance 
between the lower lip and the lower left eyebrow. While the 
first feature is related to the extent to which the mouth 
corner is raised (which is larger for smiles than for speech), 
both features are directly related to the extent to which the 
mouth is open (which is much larger for laughter than for 
speech, [1]). 

5. EXPERIMENTAL STUDIES 

In order to investigate: (i) whether integrating audio and 
visual information on laughter/ speech episodes leads to an 
improved classification performance, and (ii) on which level 
the fusion of audiovisual information should be carried out 
for the best performance, we conducted several experimental 
studies including feature- and decision-level-based 
audiovisual laughter detection, audio-only-based, and video-
only-based laughter detection. In all the experiments we 
performed leave-one-subject-out cross validation, using in 
every validation fold all samples of one subject as test data 
and all other samples as training data. The results given in 
Table 1 and Fig. 3 represent an average of the results 
obtained for each fold. In this way it is guaranteed that the 
obtained results are subject independent. The training and 
testing of the classifiers is performed on a video / audio 
frame-level basis. ROC curves, recall and precision rates are 
used as the performance measures. 
Single-modal laughter detection: As explained in previous 
sections, audio-based detector of laughter vs. speech utilizes 
a neural network trained using 26 PLP features per window 
at 50FPS. Video-only-based detector uses a neural network 
trained using 18 visual features (distances between the facial 
points) selected by AdaBoost in each frame of an input 
video. Fig. 3 and Table 1 summarize the classification 
results attained by these detectors. These results clearly 

Fig. 2: ROC curves for audio-only classification using 
different frame rates

Fig. 3: ROC curves for audio-, video-only, feature 
level and decision level fusion
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indicate that laughter detection based on visual information 
significantly outperforms the one based on audio 
information only. Given that the results obtained for audio-
only-based laughter detection are comparable to those 
obtained by other researchers in the field (e.g., [3], [7]), we 
can conclude that visual information is very important for 
distinguishing laughter from speech. This is a significant 
finding, especially since visual information has been largely 
neglected so far in studies on non-linguistic vocal outbursts 
(e.g., [2], [3], [8]). 
Audiovisual laughter detection: While all agree that multi-
sensory fusion including audiovisual data fusion would be 
highly beneficial for machine analysis of human behavior 
(e.g., analysis of affective states), it remains unclear how the 
fusion should be accomplished [4]. Studies in neurology on 
fusion of sensory neurons are supportive of early data fusion 
(i.e., feature-level fusion) rather than late data fusion (i.e., 
decision-level fusion). However, it is an open issue how to 
construct suitable joint feature vector composed of features 
from different modalities with different time scales, different 
metric levels and different time scales. We approach the 
problem in a very simple (arguably oversimplified) manner. 
To achieve decision-level fusion, the input coming from 
each modality (audio and video) is modeled independently 
by a neural network, and these single-modal recognition 
results are combined at the end using the SUM function. To 
achieve feature-level fusion, we concatenate audio and video 
features into a single feature vector. To do so, we up-sample 
the video modality so that the video frame rate (originally 25 
FPS) equals the audio frame rate of 50 FPS. As suggested by 
research in audiovisual speech recognition [10], up-sampling 
is done by copying each frame. The resulting feature vector 
is then used to train the target classifier. Fig. 3 and Table 1 
summarize the classification results attained for feature- and 
decision-level laughter vs. speech detection. These results 
clearly indicate that integrating the information from audio 
and video leads to an improved reliability of audiovisual 
approach in comparison to single-modal approaches. Yet, 
the results are inconclusive when it comes to the level at 
which the two data streams should be integrated. Although 
the feature-level fusion attains significantly higher recall 
rates, the precision decreases. More experimental results 
using more data are needed if this issue is to be properly 
investigated.  

6. CONCLUSIONS 

In this paper we proposed a (semi-)automated audiovisual 
system for distinguishing laughter from speech episodes. To 
the best of our knowledge, this is the first study investigating 
both (i) whether integrating audio and visual information on 
laughter/ speech episodes leads to an improved classification 
performance, and (ii) on which level audiovisual information 
should be fused for the best performance. Initial results 
suggest that visual information is more important than audi- 

Table 1: Recall and precision for audio-, video-only, feature 
level and decision level fusion 

 Recall Precision 
Audio-Only 66.04% 61.54% 
Video-Only 82.55% 78.16% 
Decision Level Fusion 81.66% 82.28% 
Feature Level Fusion 86.87% 76.67% 

tory information for distinguishing laughter from speech. 
This is a significant finding, especially since visual 
information has been largely neglected so far in studies on 
non-linguistic vocal outbursts. The results also indicate that 
integrating the information from audio and video leads to an 
improved reliability of audiovisual approach in comparison 
to single-modal approaches. However, the results are 
inconclusive when it comes to the level at which the two 
data streams should be integrated. Further research using 
more data samples is needed on this topic.  
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