CLASSIFYING LAUGHTER AND SPEECH USING AUDIO-VISUAL FEATURE PREDICTION
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ABSTRACT

In this study, a system that discriminates laughter from speech
by modelling the relationship between audio and visual fea-
tures is presented. The underlying assumption is that this
relationship is different between speech and laughter. Neu-
ral networks are trained which learn the audio-to-visual and
visual-to-audio features mapping for both classes. Classifica-
tion of a new frame is performed via prediction. All the net-
works produce a prediction of the expected audio / visual fea-
tures and the network with the best prediction, i.e., the model
which best describes the audiovisual feature relationship, pro-
vides its label to the input frame. When trained on a simple
dataset and tested on a hard dataset, the proposed approach
outperforms audiovisual feature-level fusion, resulting in a
10.9% and 6.4% absolute increase in the F1 rate for laughter
and classification rate, respectively. This indicates that classi-
fication based on prediction can produce a good model even
when the available dataset is not challenging enough.

Index Terms— laughter-vs-speech discrimination, audio-
visual speech / laughter feature relationship, prediction-based
classification

1. INTRODUCTION

Recently, few efforts have been reported aiming to discrimi-
nate laughter from speech combining audio and visual infor-
mation [1, 2, 3]. These works use either feature-level fusion,
where audio and visual features are concatenated and then
fed to a classifier, or decision-level fusion where the outputs
of the audio- and video-only classifiers are fused. In the for-
mer case, the correlation between audio and visual features is
taken into account by the classifier whereas in the latter case
the correlation is lost. In this study, we present a system that
discriminates laughter from speech by explicitly modelling
the relationship between audio and visual features and based
on the reasonable assumption that this relationship is different
between speech and laughter.

There has been a lot of research in examining the rela-
tionship between acoustic and visual speech features [4, 5, 6].
Most of the studies are focused only on the audio-to-visual
features mapping. On average visual features are predicted
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with a correlation of 0.7, when linear models are used [4, 6],
although measures as high as 0.8 have been reported [5] and
0.85 when nonlinear models are used, like neural networks
(NNs), [4]. Of course the correlation varies depending on
the features and datasets used. To the best of our knowledge
there is no work which performs such correlation analysis for
laughter. However, it is reasonable to believe that the correla-
tion between audio and visual features are different in speech
and laughter.

Driven by those results we would like to build a system
that uses this difference in correlation to discriminate be-
tween laughter and speech. Towards this direction we train
four NNs, which learn the audio-to-visual and visual-to-audio
feature mappings for speech and laughter. It is expected that
laughter networks will produce a better prediction than speech
networks when the input is laughter, since they have learnt the
audiovisual feature relationship for laughter, and vice versa.
When a new frame comes then its audio and visual features
are fed to all 4 networks, and the network which produces
the best audio and visual feature prediction is the winner in
the video-to-audio and audio-to-video case, respectively. The
audio-to-video and video-to-audio mapping systems can be
combined in order to take advantage of the bidirectional re-
lationship between audio and visual features (see Section 4).
The input frame is labelled based on the winner network. In
other words, the frame is labelled based on the network /
model which best describes the audiovisual feature relation-
ship. It does not matter if the prediction is good or bad, just
that it is better than the other network’s prediction.

The present study is inspired by the memory-prediction
framework [7]. The key idea is that an audio input can make
a prediction for an expected visual input and vice versa. Our
implementation is much simpler and very different from the
proposed framework, but it is based roughly on the same idea.
The networks make an audio prediction based on video, i.e.,
they predict what they expect to “hear” based on what they
“see”, and a video prediction based on audio, i.e., they predict
what they expect to “see” based on what they “hear”. Then
the winner is the network with the best prediction. Depend-
ing on which class the winner network belongs to, laughter
or speech, the input frame is labelled accordingly.
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The proposed approach is compared to feature-level au-
diovisual fusion [1] on cross database experiments using one
challenging dataset, AMI and one easy dataset, SAL. Both
systems perform similarly when trained on AMI, however
when trained on SAL the proposed system outperforms the
feature-level fusion, leading to a 10.9% and 6.4% absolute
increase in F1 rate for laughter and classification rate, respec-
tively. This is an indication that the prediction system is able
to learn a good model even when a less diverse and challeng-
ing dataset is used for training.

2. DATABASES

AMI: We used the AMI Meeting Corpus [8] where peo-
ple show a huge variety of spontaneous expressions. We
only used the close-up video recordings of the subject’s face
and the related individual headset audio recordings. For our
experiments we used seven meetings (IB4001 to 1B4011)
and the relevant recordings of ten participants. Laughter
segments were selected based on the annotations provided
with the AMI Corpus and those that co-occur with speech or
laughter is not clearly audible were discarded. Speech seg-
ments were also determined by the annotations provided with
the AMI Corpus. In total, we used 124 audio-visual laughter
segments (149.1 sec), and 154 audio-visual speech segments
(290.2 sec).

SAL: The Sensitive Artificial Listerner (SAL) technique as
described in [9] “focuses on conversation between a human
and an agent that either is or appears to be a machine and it
is designed to capture a broad spectrum of emotional states”.
The subjects interact with 4 different agents that have differ-
ent personalities and the audiovisual response of the subjects
while interacting is recorded. For our experiments we used
15 subjects in total. We used the close-up video recordings of
the subjects face and the related audio recording. In total, we
used 94 audio-visual laughter segments (139.7 sec) and 177
audio-visual speech segments (382.8 sec).

3. FEATURES

Audio Features: Cepstral features, such as MFCCs, have
been widely used in speech recognition and have also been
successfully used for laughter detection [10]. In addition, it
has been shown that cepstral coefficients are more correlated
to visual features than prosodic features [5]. Only the first
6 MFCCs are used, given the findings in [10], and they are
computed every 10ms over a window of 40ms, i.e. the frame
rate is 100 frames per second (fps).

Visual Features: Changes in facial expression are captured
by tracking 20 facial points. These points are the corners
of the eyebrows (2 points), the eyes (4 points), the nose (3
points), the mouth (4 points) and the chin (1 point) [1]. For
each video segment containing K frames, we obtain a set of
K vectors containing 2D coordinates of the 20 points. Using a
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Point Distribution Model (PDM), by applying prinicpal com-
ponent analysis to the matrix of these K vectors, head move-
ment can be decoupled from facial expression. Using the
approach proposed in [11], the facial expression movements
are encoded by the projection of the tracking points coordi-
nates to the IV principal components of the PDM which corre-
spond to facial expressions. N depends on the diversity of the
dataset, so for AMI which contains large head movements and
a lot of different facial expressions N = 4, whereas for SAL
which is less diverse N = 3. These 4 or 3 visual features are
extracted at the video frame rate, i.e., 25 fps. Further details
of the feature extraction procedure can be found in [1, 2].

4. METHODOLOGY

For both speech and laughter we train two NNs, one that
learns the audio-to-visual features mapping and one that
learns the visual-to-audio features mapping. Training is done
per frame and the goal is to minimize the error between the
actual and the predicted visual/audio features. In other words,
the first / second network takes as inputs the audio / visual
features per frame and predicts the corresponding visual /
audio features at the same frame. Therefore the relationship
between the audio (AZ, A%) and visual (VZ, VS) features in
speech and laughter is modelled by (NN%,,), (NN{ ) for
laughter and (NNEV), (NN&A) for speech.

NNy« fhy(Af) =VE = VE )
NNEa: fra(VE) = A = AT ©)
NNSy : f5,(A% =V~ VS (3)
NNy, ffa(VE) = AS = A5 @

Once training is complete and the mapping functions
(f%, %) are learned then classification is performed based on
the network that produces the lowest prediction error. When a
new frame is available the audio and visual features are com-
puted and then they are fed to all networks from eq. 1 - 4, and
4 errors are produced, eq. 5 - 8. The error metric used is the
mean squared error (MSE). Then we can also combine the er-
rors in order to generate a new error which takes into account
the bidirectional relationship of audio and visual features as
shown in eq. 9 and 10, where w is a weighting factor.

ek, = MSE(VE VE) (5)
eb = MSE(A", A%) (6)
eSy = MSE(VS,V9) (7)
ev 4 = MSE(AS, A%) (8)
el =wxely +(1-w)xek, )
ed=wxedy + (1 —w)xey, (10)

For the audio-to-video system a frame is labelled as laugh-
ter or speech depending on which network produced the best



estimate, i.e., the lowest prediction error, eq. 5, 7. The same
prinicpal applies for the video-to-audio and the combined sys-
tems. In other words, a frame is assigned based on the follow-
ing three rules:

A—V: IF ¢35, > ¢4, THEN L ELSE S (11
V—A: IF ey, >eb, THEN L ELSE S (12

A—V+V—oA: IF ¢ >el THEN L ELSE S
(13)

5. EXPERIMENTAL STUDIES

In order to assess the performance of the method presented
in section 4, cross database experiments between AMI and
SAL were performed. AMI is a challenging dataset since the
subjects rarely have a frontal view and there are large head
movements. On the other hand, SAL is an easy dataset since
subjects almost always look straight at the camera and there
are only small head movements. In the first experiment, a
system is trained on AMI and tested on SAL and in the second
one it is trained on SAL and tested on AMI.

As mentioned in section 3, 4 and 3 visual features are used
when training on AMI and SAL, respectively. In both cases
6 audio features (MFCCs) are used. Before training, the au-
dio and visual features are synchronised by upsampling the
visual features, to match the frame rate of the audio features,
by linear interpolation. All the audio and visual features are
z-normalized per subject, to a zero mean and unity standard
deviation. Subject normalisation helps removing subject and
recording variability.

Following the approach of section 4, 4 NNs are trained,
eq. | - 4, and the frames of each sequence are labelled us-
ing rules 11 - 13. Then the majority of the frame labels is
assigned to the sequence. The NNs used in this study have
one hidden layer with 15 neurons, using sigmoid activation
funtions, and they are trained for 100 epochs. For compari-
son we also report the results of an audiovisual feature-level
fusion approach based on NNs [1, 12]. This approach is
based on concatenating the audio and visual at each frame,
and then feeding them to a NN. The output of the network
is binary, labelling each frame as either speech or laughter.
Again, the majority of the frame labels is assigned to the se-
quence. It has been shown that this approach can outperform
Coupled Hidden Markov Models for discriminating laughter
from speech [12].

Since NNs, which are initialised randomly, are used for
both approaches all experiments are repeated 5 times and the
mean values for the performance measures are reported. The
performance measures used in this study are the classification
rate and the F1 rate. Therefore, in both approaches, exactly
the same audio / visual features are used, and the same clas-
sification protocol is followed. The only difference is how
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Fig. 1. Classification rate for laughter-vs-speech discrimi-
nation plotted for different weights used to combine the er-
rors from eq. 9 and 10. Classification is performed using
eq. 13. The solid / dashed line shows the classification rate
for AMI / SAL. Both results were computed using a subject-
independent cross validation within each dataset, i.e. cross
validation is performed on AMI and SAL separately using
examples only from one dataset at a time.

classification is performed, in the first approach via prediction
and in the second case using the standard feature-level fusion.
By running two subject-independent cross validation ex-
periments, one using the AMI dataset only and one using the
SAL dataset only, we find the optimal weight, w, which is
used in eq. 9 and 10 to combine the prediction errors from the
two systems. From Fig. 1 we see that the optimal weight for
AMI is 0.4 and for SAL 0.3. This means that in both cases
the system which predicts the audio feature values is weighted
more. So for the cross database experiments the weight is set
to 0.4 and 0.3 when training on AMI and SAL respectively.
Table 1 shows the performance for each system. For
the first experiment (train AMI — test SAL) we see that
feature-level fusion outperforms both the audio-to-video and
video-to-audio prediction systems. However, the difference
is marginal when compared to the combination of the two
prediction systems (max absolute difference: 0.3%). For the
second experiment (train SAL — test AMI) feature-level fu-
sion is much inferior to the combination of the two prediction
systems. The absolute difference is 10.9%, 4.3% and 6.4%
for F1 Laughter, F1 Speech and classification rate, respec-
tively. Even the visual-to-audio prediction system performs
better than feature-level fusion. Only the performance of the
audio-to-video system is comparable, although still the F1
obtained for laughter is much lower in feature-level fusion.
Overall, we see that when we train on a challenging
dataset (AMI) then both feature-level fusion and the predic-
tion system lead to similar performance. But when we train
on a less challenging dataset (SAL) then the prediction sys-
tem is able to generalize much better on an unseen difficult
dataset than feature-level fusion. This remark can be of great
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Table 1. F1 and classification rates (CR) for the feature-level
fusion (FF) system and the prediction based system on cross
database experiments

Classification F1 F1 CR
System Laughter ~ Speech
Train AMI — Test SAL
A+V (FF) 954 97.6 96.8
A—V Pred. 88.0 93.1 91.2
V—A Pred. 92.2 95.8 94.5
A—V + V—A Pred. 95.2 97.3 96.5
Train SAL — Test AMI
A+V (FF) 65.4 81.4 75.8
A—V Pred. 70.0 80.3 76.2
V—A Pred. 72.2 83.0 78.9
A—V + V—A Pred. 76.3 85.7 82.2

practical importance since it implies that in order to train
a good system we do not depend so much on the available
dataset. However, further experiments are needed in order to
verify this claim.

The main advantage of the prediction system is that it does
not explicitly rely on the actual values of the features as in the
case of feature-level fusion. The problem is converted in com-
petition between two models, a laughter and a speech model.
It does not matter if the prediction is good or bad, what mat-
ters is if it is closer to the actual values than the competitor
model. And since the audio-visual feature relationship is dif-
ferent in laughter than in speech, it is expected that the right
model will be closer to the real feature values.

The performance of the combination of the two prediction
system is better than the individual system. This was expected
since we take into account the bidirectional relationship be-
tween audio and visual features. It is also interesting that
the audio-to-video prediction system is worse than the video-
to-audio system. This was obvious also in the case of cross
validation within the two datasets, since the weight for the
former system is lower than then for the second one. This
might imply that the video-to-audio relationship is more dif-
ferent between laughter and speech than the video-to-audio
relationship. However, this is an issue that requires further
investigation.

6. CONCLUSIONS

A new classification approach based on prediction was pre-
sented for the problem of audiovisual laughter-vs-speech dis-
crimination. This approach outperforms feature-level fusion
when both are trained on a simple dataset and tested on a
hard dataset which indicates that classification based on pre-
diction can produce a good model even when the available
dataset is not challenging enough. Training and testing was
performed frame-by-frame resulting in a memoryless system,
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in this proof-of-concept work. Therefore, in future work we
aim to include memory in the system which is expected to
further benefit the system’s performance.
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