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Abstract – This paper presents an automatic system that 

we developed for automatic recognition of facial gestures 
(facial muscle activity) from static images of combined frontal- 
and profile-view of the face. For the frontal view, the face 
region is subjected to multi-detector processing which per 
facial component (eyes, eyebrows, mouth), generates a spatial 
sample of its contour. A set of 19 frontal-face feature points is 
then extracted from the spatially sampled contours of the 
facial features. For the profile view, 10 feature points are 
extracted from the contour of the face-profile region. Based on 
these 29 points, 29 individual facial muscle action units (AUs) 
occurring alone or in combinations in an input dual-view 
image are recognized using a rule-based reasoning. With each 
scored AU, the utilized algorithm associates a factor denoting 
the certainty with which the pertinent AU has been scored. A 
recognition rate of 86% is achieved. 
 

I. INTRODUCTION 

The major impulse to investigate automatic facial 
expression analysis comes from the significant role of 
facial expressions in our social and emotional lives. They 
are conversational and interactive signals that clarify our 
current focus of attention and regulate our interactions with 
the environment and other persons in our vicinity [16]. 
They are our direct and naturally preeminent means of 
communicating emotions [16], [7]. Hence, automatic 
analyzers of facial expressions seem to have a natural place 
in various vision-based man-machine systems including 
automated tools for lip reading, bimodal speech analysis, 
videoconferencing, face / visual speech synthesis, affective 
computing, and next generation human-behavior-aware 
man-machine interfaces.  

Approaches to automatic facial expression analysis 
attempt usually to recognize a small set of prototypic 
emotional facial expressions, i.e., fear, sadness, disgust, 
anger, surprise and happiness [9], [11]. This practice may 
follow from the work of Darwin and more recently Ekman 
[7], who suggested that basic emotions have corresponding 
prototypic expressions. In everyday life, however, such 
prototypic facial expressions occur relatively infrequently; 
emotions are displayed more often by subtle changes in one 
or few discrete facial features, such as raising the eyebrows 
in surprise [16]. To detect such subtlety of human emotions 

and, in general, to make the information conveyed by facial 
expressions available for the usage in various applications 
listed above, automatic recognition of facial gestures (i.e., 
atomic facial signals) is needed. 

From several methods for recognition of facial gestures, 
the FACS system [5] is the most commonly used in 
psychological research. It is a system designed for human 
observers to describe changes in the facial expression in 
terms of visually observable activations of facial muscles. 
The changes in the facial expression are described with 
FACS in terms of 44 different Action Units (AUs), each of 
which is anatomically related to the contraction of a 
specific (set of) facial muscle(s). Using the FACS’ rules for 
encoding AUs in a face image, a FACS coder (i.e., a human 
expert in using FACS) decomposes a shown facial 
expression into the AUs that produce the expression.  

Though FACS provides a good foundation for AU-
coding of face images by human observers, achieving this 
task by a computer is by no means a trivial task. A 
problematic issue is that AUs can occur in complex 
combinations, causing bulges (e.g., by the tongue pushed 
under one of the lips) and various in- and out-plane 
movements of permanent facial features (e.g., jetted jaw), 
that are difficult to differentiate from 2D face images. 
Approaches that have been reported for automatic 
recognition of AUs in images of faces are few [9]. Some 
researchers described patterns of facial motion that 
correspond to a few specific AUs, but did not report on 
actual recognition of these AUs [8], [2], [6]. Bartlett et al. 
[1] used optical flow and principal component analysis 
(PCA) to detect 6 individual AUs in portraits. Cohn et al. 
[3], [4] used optical-flow, PCA and Hidden Markov 
Models to recognize 8 individual AUs and 7 combinations 
of AUs in portraits. Tian et al. [19] used lip tracking, 
template matching and Neural Networks to recognize 16 
AUs occurring alone or in a combination in nearly frontal-
view face images. In brief, no automated system capable of 
recognizing all 44 AUs defined in FACS has been reported 
up to date. Systems presented in [12] and [14] perform the 
best in this aspect: they code 22 and, respectively, 20 AUs 
occurring alone or in a combination in frontal-view and, 
respectively, profile-view face images. 
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extracted from the contour of the segmented face-profile 
region. By performing an intra-solution consistency check, 
a certainty factor CF is assigned to each extracted point. A 
comparison of CFs assigned to frontal-face feature points 
leads to a selection of the most accurate of the redundantly 
extracted data. Subtle changes in the analyzed facial 
expression are measured next. Motivated by AUs of the 
FACS system, these changes are represented as a set of 
mid-level parameters describing the state and motion of the 
feature points and the shapes formed by certain feature 
points. Based on these parameters, a rule-based algorithm 
interprets the extracted facial information in terms of 29 
AUs occurring alone or in a combination. With each scored 
AU, the utilized algorithm associates a factor denoting the 
certainty with which the pertinent AU has been scored. 
Face and face-profile detection, feature extraction, 
parametric representation, AU coding and experimental 
results are explained in sections II, III, IV, V and VI 
respectively. 
 

II. FACE AND FACE-PROFILE DETECTION 

The first step in automatic facial gesture analysis is to 
locate the face in the scene. This is addressed as a 
segmentation problem in two objects: the Face and the 
Background. For its low computational complexity and its 
good localization properties we choose the watershed 
segmentation with markers as the segmentation means.  

For each input face image (either in frontal or in profile 
view), the markers of the two objects are extracted as 
follows. First, a color-based segmentation extracts the skin 
region as the largest connected image component with Hue, 
Saturation and Value within the range [5, 35], [0, 0.7] and 
[0.1, 0.9] respectively (Fig. 2) [13]. A binary erosion of the 
skin region with a small structuring element (3×3) yields 
the Face marker. In the absence of a similar model for the 
color of the Background, its marker is extracted as the 
bounding box of the skin region. Once the markers of the 
two objects are extracted, we apply watershed segmentation 
on the morphological gradient of the input color image. The 
gradient is estimated as the color difference between the 
morphological opening and closing operators, each of 
which is applied separately to each of the three components 
of the color image. We choose the Euclidian distance in the 
Lu*v* color space as a metric of the color difference, since 
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Fig. 2. Dual-view face image, HSV color-based segmentation for Face 
markers and segmented face and face-profile regions 



the Lu*v* space is perceptually uniform under this metric 
[18].  

A typical result of the application of the utilized 
algorithm is shown in Fig. 2. The algorithm yields a good 
localization of the face given that the most prominent color 
edge between the two markers is indeed the face contour. 
 

III. FEATURE EXTRACTION 

The face region and the face-profile region, extracted 
from an input dual-view face image as described above, are 
used for further analysis of shown facial gestures. We 
proceed with feature extraction under the assumption that 
input face images are non-occluded, scale and orientation 
invariant, and that profile-images are in right profile view 
(e.g., Fig 1). 

 
A. Profile Face Feature Extraction 

The contour of the segmented face-profile region is 
treated as the face profile contour in further processing.  

To extract the feature points from the face profile 
contour, we move from image to function analysis and treat 
the right-hand side of the face profile contour (up to the 
point P1, Fig. 3) as a profile contour function. We extract 
the extremities of this function (the zero-crossings of the 
function’s 1st order derivative) as the feature points (Fig. 3). 
To ascertain correct extraction of the feature points when 
the tongue is visible (P7’ and P7’’ exist), we extract the 
feature points in the particular order (i.e., P1, P4, P2, P3, 
P10, P5, P9, P7 or P7’ and P7”, P6, P8).  

To handle inaccuracies in feature points’ detection (i.e., 
to handle false positives), we exploit both the knowledge 
about facial anatomy and the information extracted from 
the image of a neutral facial expression of the observed 
subject. A standard “search” window WP has been defined 
for each fiducial P with respect to anatomically possible 
directions and magnitudes of the motion on the skin surface 
affecting the temporal location of P. Fiducial PI is 
determined further for face profile image I such that it 

represents a specific zero crossing (Fig. 3) of the 1st order 
derivative of the profile contour function defined for image 
I and belongs to the WP set around the location of PN 
discerned for the face-profile image N of a neutral 
expression of the observed subject. 

 
B. Frontal Face Feature Extraction 

Multi-detector processing of the face region segmented 
from an input frontal-view face image is used to spatially 
sample the contours of the facial components.  

First, we apply a simple analysis of image histograms to 
locate 6 regions of interest (ROI): two eyebrows, two eyes, 
nose, and mouth. Then, to spatially sample the contour of a 
certain facial component, we apply one or more facial-
feature detectors to the pertinent ROI. For example, the 
contours of the eyes are localized in the ROIs of the eyes 
by using a single detector representing an adapted version 
of the method for hierarchical-perceptron feature 
localization (Fig. 4) [20]. On the other hand, the contour of 
the mouth is localized in the mouth ROI by applying both a 
4-parameters deformable template and a method that fits 
three 2nd degree parabolas (Fig. 4) [13]. For further details 
about these and other detectors employed to spatially 
sample the contours of the facial components, readers are 
referred to [10]. 

We proceed with feature points’ extraction. For the 
cases where multiple detectors were used to localize the 
contour of a certain facial component, a relevant set of 
fiducial points is extracted from each spatially sampled 
contour of the pertinent facial component. For instance, 
from each localized mouth contour, we extract 4 feature 
points (Fig. 3). In total, we extract 19 different feature 
points corresponding to the vertices and/or the apices of the 
contours of the facial components (Fig. 3).  

 
C. Data Certainty Evaluation and Feature Selection 

We utilize an “intra-solution consistency check” to 
assign a certainty factor to each of the extracted feature 
points. For example, to assign a certainty factor CFA = CFF 

Fig. 3. Feature points (fiducial points of the face components’ contours and of the profile contour) 



= CFG =CFB ∈ [0, 1] to the fiducials of the right eye, we 
measure first the distance between the currently detected 
inner corner Bcurrent and point Bneutral detected in the neutral 
expression image of the observed subject. Then we 
calculate the pertinent CFB by using the following 
functional form:  

CFB = sigm(d(Bcurrent, Bneutral); 7; 3.5) 
where d(p1, p2) is the distance between points p1 and p2 
and sigm(x; µ; σ) is a Sigmoid function whose parameters 
are determined under the assumption that there are 60 to 80 
pixels across the width of the subject’s eye. The major 
impulse for the usage of the inner corners of the eyes as the 
referential points for calculating CFs of the fiducial points 
of the eyes comes from the stability of these points with 
respect to non-rigid facial movements: facial muscles’ 
contractions do not cause physical displacements of these 
points. For the same reason, the referential features used for 
calculating CFs of the fiducial points of the profile contour, 
eyebrows, nose/ chin and mouth are the tip of the nose 
(point P4, Fig. 3), the size of the relevant eyebrow area, the 
inner corners of the nostrils, and the medial point of the 
mouth, respectively. 

Eventually, in order to select the best of sometimes 
redundantly available solutions (e.g., for the fiducial points 
belonging to the mouth), we perform an inter-solution 
check. We compare, namely, the CFs of the feature points 
extracted from the contours spatially sampled by different 
detectors of the same facial component. The feature points 
having the highest CF are used for further analysis of 
shown AUs. 
 

IV. PARAMETRIC REPRESENTATION 

Each AU of the FACS system is anatomically related to 
the contraction of a specific facial muscle [5]. Contractions 
of facial muscles induce motion in the skin surface and 
deform the shape and location of the facial components. 
Some of these changes in facial expression are observable 
from the changes in the position of the feature points. To 
classify detected changes in the position of the feature 
points in terms of facial muscle activity, the pertinent 
changes should be represented first as a set of suitable mid-
level parameters.  

We defined 6 mid-level parameters in total: 2 describing 
the motion of the feature points, 2 describing their state, 
and 2 describing shapes formed by certain feature points. 
The definitions of the parameters are given in Fig. 5. They 
are calculated for various feature points by comparing the 

currently extracted points with the related points extracted 
from the dual-view image of a neutral expression.  

We assign a certainty factor CF ∈ [0, 1] to each 
calculated mid-level parameter. We do so based on the CFs 
associated with the selected feature points (see section 3.3), 
whose state or motion are described by the pertinent mid-
level parameter. For example: 

CFup/down(P6) = CFin/out(P6) = CFP6 (= CFP4), 
CFincrease/decrease(BD) = min (CFB, CFD), 
CFangular(P6P8) = CFincreased_curvature(P5P6) = CFP6 (= CFP4). 

 
V. ACTION UNIT RECOGNITION 

The last step in automatic facial expression analysis is 
to translate the extracted facial information (i.e., the 
calculated mid-level parameters) into a description of 
displayed facial changes such as an AU-coded description 
of shown facial expression. To achieve this, we apply the 
fast direct chaining inference process [17] to two separate 
sets of rules. 

1) A set of 21 rules for encoding 21 AUs (AU1, 
AU4, AU8, AU9, AU10, AU12, AU13, AU15-AU20, 
AU23-AU29, AU36) occurring alone or in a combination 
in an input face-profile image. A full list of the utilized 
rules can be found in [10].  

2) A set of 22 rules for encoding 22 AUs (AU1, 
AU2, AU4-AU8, AU12, AU13, AU15, AU18, AU20, 
AU23-AU28, AU35, AU38, AU39, AU41) occurring alone 
or in a combination in an input frontal-face image. For a 
full list of the used rules, see [12]. 

Motivated by the FACS system, each rule is defined in 
terms of the predicates of the mid-level representation and 
each encodes a single AU in a unique way according to the 

Fig. 4. Curve fitting on eye micro-features, mouth template matching,  
fitting three 2nd degree parabolas to the mouth 
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Fig. 5. Mid-level feature parameters for AU recognition 



relevant FACS rule. For example, the rule used for coding 
AU12 in a face-profile image, which is described in the 
FACS system as an oblique upward pull of the lip corners 
(i.e., smile), is the following:  

IF in/out(P6) < 0 AND in/out(P8) < 0 AND 
increase/decrease(P5P6) > 0 THEN AU12. 

Similarly, the rule utilized for coding AU12 in a frontal-
view face image is the following: 
IF (increase/decrease(IB) > 0 AND increase/decrease(C1I) < 0) 

OR(increase/decrease(JB1) > 0 AND increase/decrease(CJ) < 0) 
THEN AU12. 

With each scored AU, the utilized algorithm associates 
a factor CF ∈ [0, 1] denoting the certainty with which the 
pertinent AU has been scored. Its value equals the overall 
certainty factor CFp of the premise p of the rule whose 
firing caused the AU in question to be scored. The certainty 
factor CFp of the premise p of a fired rule is calculated as 
follows. 
1) If p contains c1 AND c2, then CFp = min (CFc1, CFc2). 
2) If p contains c1 OR c2, then CFp = max (CFc1, CFc2). 
3) If p contains just clause c, then CFp = CFc.  
4) (∀c) CFc = CFfp, where fp is the feature parameter to 
which clause c is related. 

Some AUs could be scored twice due to the existence of 
the related rules in each of the two employed sets of rules 
(e.g., AU12). Hence, the last processing step of the utilized 
algorithm deals with those redundantly available scores. 
For each such pair of the redundantly inferred conclusions, 
it discards the one with which a lower CF has been 
associated. 
 

VI. EXPERIMENTAL EVALUATION 

Most of the existing approaches to facial expression 
analysis assume that the presence of the face in the input 
image is ensured [9], [11]. However, in most of the real-life 
situations where such automated systems are to be 
employed (e.g., videoconferencing) the location of the face 
in the scene is not known a priori. The presence of a face 
can be ensured either by employing an existing method for 
automatic face detection in arbitrary scenes or by using a 
camera setting that will ascertain the assumption at issue. 
The method proposed here does not perform face detection 
in an arbitrary scene; it operates on dual-view face images 
acquired by two head-mounted CCD digital PAL cameras 
(Fig. 6). The camera set in front of the face acquires 
frontal-view images while the second camera, placed on the 
right side of the face, acquires face-profile images. The 
utilized camera setting ascertains the assumption that the 
examined images are orientation and scale invariant and 
that the face-profile-images are in right profile view (e.g., 
Fig 1, Fig. 2). 

The test data set has been created in office environments 
with the help of 8 certified FACS coders drawn from 
college personnel. The subjects of both sexes (60% female) 
                                                           
1 C is the middle point between the feature points H and H1. 

differed in age (20 to 35 years) and ethnicity (European, 
Asian and South American). The subjects were asked to 
display series of expressions that included single AUs and 
combinations of those. A total of 560 dual-view images of 
subjects’ faces were recorded during sessions which began 
with displaying a neutral expression. Metadata were 
associated with the acquired test images given in terms of 
AUs scored by two FACS coders. As the actual test data 
set, we used 454 images for which the coders agreed about 
the displayed AUs. The human judgments of these 454 test 
images were compared further to those generated by our 
method. The result of the comparison is given in Table 1. It 
is interesting to note that, if we consider only the images in 
which the AUs were encoded with a CF > 0.3 (there are in 
total 423 such images), agreement between the generated 
conclusions and the pertinent human judgments is even 
91%. 

TABLE I 
The results of facial action coding of 454 test images measured for the 
upper face AUs (AU1, AU2, AU4-AU7, AU41), the AUs affecting the nose 
(AU9, AU38, AU39), the AUs affecting the jaw (AU17, AU26, AU27, 
AU29), the AUs affecting the mouth (AU8, AU10, AU12, AU13, AU15, 
AU16, AU18-AU20, AU23-AU25, AU28, AU35, AU36), and overall:  

C denotes the number of images for which the generated conclusions 
where identical to those scored by human coders,  

PC denotes the number of images coded partially correct (some AU-
codes were missing or were recognized additionally),  

IC denotes the number of incorrectly coded images. 

 C PC IC Rate 
upper face 422 32 0 93.0% 

nose 443 10 1 97.6% 
mouth 423 28 3 93.2% 

jaw 436 17 1 96.0% 
overall (all AUs) 392 58 4 86.3% 

 
 

VII. CONCLUSION 

In this paper, we proposed a novel, automatic method 
for analyzing subtle changes in facial expression based 
upon changes in contours of facial components and face 
profile contour detected in a dual-view face image. The 
significance of this contribution is in the following:  

1) The presented approach to automatic AU 
recognition extends the state of the art in automatic facial 
gesture analysis in several directions, including the number 
of AUs (29 in total), the difference in AUs, and the data 
certainty propagation handled. Namely, the previously 
reported automatic AU analyzers do not assign certainty 

Fig. 6. Head-mounted two-cameras device 



measures to the inferred conclusions (let alone varying 
them in accordance with the certainty of the input data), 
cannot detect out-plane non-rigid movements such as the 
jetted jaw (AU29) and, at the best, can detect 22 AUs.  

2) This paper provides a basic understanding of how 
to achieve automatic AU coding in both frontal-face and 
face-profile images. It exemplifies how, based on such 
knowledge, procedures of greater flexibility and improved 
quality can evolve (e.g., inaccurate/partial data from one 
facial view can be substituted by data from the other view). 
Hereupon further research on facial gesture analysis from 
multiple facial views can be based.  

Nonetheless, the presented algorithm has some 
drawbacks. It assumes the usage of a head-mounted camera 
device, which reduces the freedom with which the subject 
can move around. It cannot analyze face images of subjects 
having facial hair or wearing glasses. Finally, it does not 
take into account the temporal nature of facial gestures. 
Yet, when discussing the later, it is interesting to note that 
the proposed method could greatly speed up the time-
consuming (manual) process of acquiring AU-labeled data 
on which models that can capture the temporal nature of 
facial gestures could be trained (e.g., HMM for AU 
recognition). Devising such a generative probability model 
for temporal reasoning about AUs occurring in a face 
image sequence represents the main focus of our further 
research on this topic. 
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