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Abstract: A widely accepted prediction is that computing will move to the 
background, weaving itself into the fabric of our everyday living spaces and 
projecting the human user into the foreground. To realise this prediction, 
next-generation computing should develop anticipatory user interfaces that are 
human-centred, built for humans and based on naturally occurring multimodal 
human communication. These interfaces should transcend the traditional 
keyboard and mouse and have the capacity to understand and emulate human 
communicative intentions as expressed through behavioural cues, such as 
affective and social signals. This article discusses how far we are to the goal of 
human-centred computing and Human-Centred Intelligent Human-Computer 
Interaction (HCI2) that can understand and respond to multimodal human 
communication. 
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1 Introduction 

We entered an era of enhanced digital connectivity. Computers and internet have become 
so embedded in the daily fabric of people’s lives that they simply cannot live without 
them. We use this technology to work, to communicate, to shop, to seek out new 
information and to entertain ourselves. These processes shift human activity away from 
real physical objects, emphasising virtual over physical environments. 

It is widely believed that the next shift in computing technology will be embedding 
computers into our homes, transportation means and working spaces, emphasising once 
again physical environments. In this vision of the future, often referred to as ambient 
intelligence (Aarts, 2005) humans will be surrounded by arrays of intelligent, yet 
invisible computing devices that can anticipate every their need. Chairs and tables will be 
equipped with sensors and devices that can inform us if our sitting position can cause 
lower back pain, cars will pull over or sound an alarm if the driver becomes drowsy, and 
lights will be dimmed and our favourite background music will play when we come home 
showing signs of weariness. 

Although profoundly appealing, this vision of the digital future creates a set of novel, 
greatly challenging issues concerning the interaction between the technology and humans 
as discussed by e.g. Nijholt and Traum (2005), Streitz and Nixon (2005) and Pantic et al. 
(2007). How can we design the interaction of humans with devices that are invisible? 
How can we design implicit interaction for sensor-based interfaces? What about users? 
What does a home dweller, for example, actually want? What are the relevant parameters 
that can be used by the systems to support us in our activities? If the context is key, how 
do we arrive at context-aware systems? 

Human Computer Interaction (HCI) designs were first dominated by direct 
manipulation and then delegation. As observed by several researchers (e.g. Oviatt, 2003; 
Maat and Pantic, 2007) both styles of interaction involve usually conventional interface 
devices such as keyboard, mouse and visual displays, and assume that the human will be 
explicit, unambiguous and fully attentive while controlling information and command 
flow. This kind of interfacing and categorical computing works well for context-
independent tasks such as making plane reservations and buying and selling stocks. 
However, it is utterly inappropriate for interacting with each of the (possibly hundreds) 
computer systems diffused throughout future smart environments and aimed at improving 
the quality of life by anticipating the users needs. Clearly, ‘business as usual’ will not 
work in this case. We must approach HCI in a different way, moving away from 
computer-centred designs toward human-centred designs for HCI, made for humans, and 
based on naturally occurring human interactive behaviour. More specifically, Human-
Centred Intelligent HCI (HCI²) must have the ability to detect subtleties of and changes 
in the user’s communicative behaviour (as expressed through, e.g. affective and social 
signals), and to initiate interactions based on this information, rather than simply 
responding to the user’s commands. Sensing and understanding human communicative 
intentions including affective and social signals is a challenging task, however. How far 
are we from attaining it? 
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Figure 1 Behavioural cues such as facial expressions, gestures, vocalisations, etc. convey 
communicative intentions such as cognitive and affective states, emblems, 
manipulators, illustrators and regulators (see online version for colours) 

2 Human behaviour perception: challenges 

Machine analysis of human communicative behaviour is inherently a multi-disciplinary 
enterprise involving different research fields including psychology, linguistics, computer 
vision, signal processing and machine learning. There is no doubt that the progress in 
machine understanding of human interactive behaviour is contingent on the progress in 
the research in each of those fields (Ekman et al., 1992). The main scientific and 
engineering challenges related to realisation of machine sensing and understanding of 
human communicative intentions such as affective and social signals can be summarised 
as follows: 

Which type of communicative intention is expressed through displayed behavioural 
cues such as body postures, vocal and facial expressions (e.g. linguistic message, 
non-linguistic interactive cue, affect, attitude and mood)? 

Which human behavioural cues convey information about human communicative 
intentions such as social and emotional signals and, in turn, which modalities should 
be considered when building an automatic analyser of human communicative 
behaviours? 

What to take into account in order to understand shown behavioural cues (e.g. is the 
context important, such as the person’s identity, current task, etc.) and in turn, how to 
discern between different types of communicative intentions (e.g. emotions vs. social 
signals). 

2.1 Types of communicative intentions 

The term behavioural signal (cue) is usually used to describe a set of temporal changes in 
neuromuscular and physiological activity that can last from a few milliseconds (a blink) 
to minutes (talking) or hours (sitting). As summarised by Ekman and Friesen (1969) 
among the types of messages (communicative intentions) conveyed by behavioural cues 
are the following (Figure 1): 

affective/attitudinal/cognitive states (e.g. fear, joy, stress, disagreement, ambivalence 
and inattention) 

emblems (culture-specific interactive signals like wink or thumbs up) 
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manipulators (actions used to act on objects in the environment or self-manipulative 
actions such as lip biting and scratching) 

illustrators (actions accompanying speech such as finger pointing and raised 
eyebrows) 

regulators (conversational mediators such as the exchange of a look, palm pointing, 
head nods and smiles). 

While there is an agreement across different theories that at least some behavioural 
signals evolved to communicate information, there is a lack of consensus regarding their 
specificity, extent of their innateness and universality, and whether they convey 
emotions, social motives, behavioural intentions or all three. For detailed discussions of 
these topics, readers are referred to Russell and Fernandez-Dols (1997) and Lewis and 
Haviland-Jones (2000). 

Arguably the most often debated issue is whether affective states are a separate type 
of messages communicated by behavioural signals (i.e. whether behavioural signals 
communicate actually felt emotions), or is the related behavioural signal (e.g. facial 
expression) just an illustrator/regulator aimed at controlling ‘the trajectory of a given 
social interaction’, as suggested by Fridlund (Russell and Fernandez-Dols, 1997). 
Explanations of human behavioural signals in terms of internal states such as affective 
states are typical to psychological stream of thought, in particular to discrete emotion 
theorists who propose the existence of six or more basic emotions (happiness, anger, 
sadness, surprise, disgust and fear; Figure 2) that are universally displayed and 
recognised from non-verbal behavioural signals, especially facial and vocal expression, 
as suggested by Ekman, Scherer and others (Lewis and Haviland-Jones, 2000). Instead of 
explanations of human behavioural signals in terms of internal states, ethologists focus on 
consequences of behavioural displays for interpersonal interaction. As an extreme within 
the ethological line of thought, social constructivists argue that emotions are socially 
constructed ways of interpreting and responding to particular classes of situations. 
According to Fridlund, facial expressions should not be labelled in terms of emotions but 
in terms of behavioural ecology interpretations, which explain the influence a certain 
expression has in a particular context. Thus, an ‘angry’ face should not be interpreted as 
anger but as back-off-or-I-will-attack. However, as proposed by Izard, one may feel 
angry without the slightest intention of attacking anyone (Russell and Fernandez-Dols, 
1997). 

Figure 2 Prototypic facial expressions of six basic emotions (disgust, happiness, sadness, anger, 
fear and surprise) 
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In summary, is social communication the sole function of behavioural signals? Do they 
never represent visible manifestation of emotion/feeling/affective states? Since in some 
instances (e.g. arachnophobia, acrophobia, object-elicited disgust and depression), 
affective states are not social, and their expressions necessarily have aspects other than 
‘social motivation’, we believe that affective states should be included into the list of 
types of messages communicated by behavioural signals. However, it is not only discrete 
emotions like surprise or anger that represent the affective states conveyed by human 
behavioural signals, as suggested by Ekman and Friesen (1969). Behavioural cues 
identifying attitudinal states like interest and boredom, via those underlying moods, to 
those representing cognitive states like agreement and disagreement, and to those 
disclosing social signals like empathy and antipathy are essential components of human 
behaviour as well. Hence, in contrast to traditional approach of Ekman and Friesen 
(1969) who list only basic emotions as the first type of messages conveyed by 
behavioural cues, we suggest that for the aims of HCI² technology, affective states should 
be treated as being correlated not only to basic emotions, but also to more complex 
mental states like depression or pain as well as to the aforementioned attitudinal states 
and social signals. 

2.2 Relevant modalities 

We speak, move, gesture, shift our gaze in an effective flow of communication. But 
which of these interactive cues convey information about human behaviours like 
affective and social signals? From the types of messages conveyed by behavioural 
signals, manipulators are usually associated with self-manipulative gestures like 
scratching or lip biting and involve facial expressions and body gestures. Emblems, 
illustrators and regulators are typical social signals, spoken and wordless messages such 
as head nods, bow ties, winks, ‘huh’ and ‘yeah’ utterances, which are sent by means of 
body gestures and postures, facial expressions and gaze, vocal expressions and speech. 
The most complex messages communicated by behavioural signals are affective and 
attitudinal states. Affective arousal modulates all human communicative signals (Lewis 
and Haviland-Jones, 2000). Hence, one could expect that automated analysers of human 
behaviour should include all human interactive modalities (audio, visual and tactile) and 
should analyse all verbal and non-verbal interactive signals (speech, body gestures, facial 
and vocal expressions, and physiological reactions). However, we would like to make a 
few comments here. 

It seems that not all behavioural cues are equally important in the human 
interpretation of the communicative intention. For instance, although the research in 
psycho-physiology has produced firm evidence that affective arousal has a range of 
somatic and physiological correlates including heart rate, skin clamminess, temperature 
and respiration velocity (Lewis and Haviland-Jones, 2000) people commonly neglect 
physiological signals, since they cannot sense them at all times. Namely, in order to 
detect someone’s clamminess or heart rate, the observer should be in a physical contact 
(touch) with the observed person. Yet, the recent advent of wearable computers, which 
promises robust physiological sensing, opens up possibilities for including tactile 
modality into automatic analysers of human behaviour (Pentland, 2005). 

Similarly, although speech has become the indispensable means for sharing ideas, 
spoken messages do not represent a reliable means to analyse and predict human 
behaviour. Let us explain this issue in more detail. Speech conveys affective information 
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through explicit (linguistic) and implicit (paralinguistic) messages that reflect the way the 
words are spoken. As the linguistic content is concerned, some information about the 
speaker’s affective state can be inferred directly from the surface features of words, 
which were summarised in some affective word dictionaries and lexical affinity (e.g. 
Whissell, 1989) and the rest of affective information lies below the text surface and can 
only be detected when the semantic context (e.g. discourse information) is taken into 
account. However, findings in basic research like those reported by Furnas et al. (1987) 
and Ambady and Rosenthal (1992) indicate that linguistic messages are rather unreliable 
means to analyse human (affective) behaviour, and it is very difficult to anticipate a 
person’s word choice and the associated intent in affective expressions. In addition, the 
association between linguistic content and emotion is language-dependent and 
generalising from one language to another is very difficult to achieve. 

When it comes to implicit, paralinguistic messages that convey affective information, 
basic researchers have not identified an optimal set of voice cues that reliably 
discriminate among emotions. Nonetheless, listeners seem to be accurate in decoding 
some basic emotions from prosody (Juslin and Scherer, 2005) as well as some non-basic 
affective states such as distress, anxiety, boredom and sexual interest from non-linguistic 
vocalisations, such as laughs, cries, sighs and yawns (Russell and Fernandez-Dols, 1997; 
Russell, Bachorowski and Fernandez-Dols, 2003). For a comprehensive summary of 
acoustic cues related to vocal expressions of basic emotions, readers are referred to 
Cowie et al. (2001). 

It seems that the visual channel carrying facial expressions and body gestures is the 
most important in the human judgment of behavioural cues. As indicated by numerous 
researchers, the human face is our pre-eminent means of communicating and 
understanding somebody’s affective state and intentions on the basis of the shown facial 
expression (Lewis and Haviland-Jones, 2000; Ekman and Rosenberg, 2005). Basic 
research also provides evidence that observers tend to be accurate in decoding some 
negative basic emotions such as anger and sadness from static body postures 
(e.g. Coulson, 2004) and that gestures such as head inclination, face touching and shifting 
posture often accompany social affective states such as shame and embarrassment 
(e.g. Costa et al., 2001). However, as shown by Ambady and Rosenthal (1992) human 
judges seem to be most accurate in their judgment when they are able to observe the face 
and the body. According to this study, to interpret someone’s behavioural cues, people 
usually rely on shown facial expressions, to a lesser degree on shown body gestures, and 
to an even lesser degree on displayed vocal expressions. However, note that the relative 
contributions of body gestures, facial and vocal expressions to affect judgment depend on 
the affective state and the environment where the affective behaviour occurs (Ekman, 
1982). 

In a summary, a large number of studies in psychology and linguistics confirm the 
correlation between some affective displays (especially prototypical emotions) and 
specific audio and visual signals (e.g. Lewis and Haviland-Jones, 2000). The human 
judgment agreement is typically higher for facial expression modality than it is for vocal 
expression modality. However, the amount of the agreement drops considerably when the 
stimuli are spontaneously displayed expressions of affective behaviour rather than posed 
exaggerated displays. In addition, facial expression, body postures/gestures and vocal 
expression of emotion are often studied separately. This precludes finding evidence of the 
temporal correlation between them. On the other hand, numerous studies have 
theoretically and empirically demonstrated the advantage of integration of multiple 
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modalities (at least audio and visual) in human affect perception over single modalities 
(e.g. Russell, Bachorowski and Fernandez-Dols, 2003). 

Finally, a growing body of research in cognitive sciences argues that the dynamics of 
human behaviour are crucial for its interpretation (e.g. Russell, Bachorowski and 
Fernandez-Dols, 2003; Ekman and Rosenberg, 2005). For instance, it has been shown 
that temporal dynamics of facial behaviour represents a critical factor for distinction 
between spontaneous and posed facial behaviour as well as for categorisation of complex 
behaviours such as pain, shame and amusement (e.g. Cohn and Schmidt, 2004; Ekman 
and Rosenberg, 2005). Based on these findings, we may expect that temporal dynamics 
of each modality separately and temporal correlations between the modalities play an 
important role in interpretation of human naturalistic, audiovisual affective behaviour. 
However, these are virtually unexplored areas of research. 

2.3 Context-sensitive interpretation 

A smile can be a display of politeness (social signal), joy (affective state), irony/irritation 
(affective state), empathy (emotional response/social signal), greeting (social signal), etc. 
In other words, behavioural cues do not usually convey exclusively one type of 
communicative intention, but may convey any of the types listed above. For instance, a 
frown may be a sign of short-sightedness if this action is a reflex (a manipulator), a sign 
of anger/dislike if this action is displayed unintentionally when seeing someone passing 
by (affective cue), a sign of posed anger if this action is displayed deliberately as a 
response on friendly teasing (illustrator), or a sign of rapt attention and understanding if 
this action occurs during a conversation (regulator), to mention just a few possibilities. 
From this example, it is obvious that in order to determine the communicative intention 
conveyed by an observed behavioural cue, one must know the context in which the 
observed signal has been displayed – where the expresser is (outside, inside, in the car, in 
the kitchen, etc.) what his or her current task is, are other people involved, when the 
signal has been displayed (i.e. what is the timing of displayed behavioural signals with 
respect to changes in the environment), and who the expresser is (i.e. it is not probable 
that each of us will express a particular affective state by modulating the same 
communicative signals in the same way). 

However, note that while W4 (where, what, when and who) methodology is dealing 
only with the apparent perceptual aspect of the context in which HCI takes place, 
human-centred computing is about W5 + (where, what, when, who, why and how) 
methodology, where the why and how are directly related to recognising communicative 
intention including social signals, affective and cognitive states of the user. Hence, W5+ 
designs for HCI will yield the transition from HCI to HCI², where people and computers 
with embodied/embedded cognition can augment each other’s capabilities and display 
collaborative team behaviour. However, since the problem of context-sensing is 
extremely difficult to solve, especially for a general case (i.e. general-purpose W4 
technology does not exist yet; see also Section 3.2), answering the why and how 
questions in a W4-context-sensitive manner is virtually unexplored area of research. In 
turn, we also need to recognise the likelihood that W5 + designs for HCI and human-
centred computing, in general, still linger in the relatively distant future. 
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3 Machine analysis of human behaviour: the state of the art 

Modelling human behaviour and understanding displayed patterns of behavioural signals, 
involve a number of tasks. 

Sensing and analysing displayed behavioural cues including facial expressions, body 
gestures, non-linguistic vocalisations and vocal intonations. 

Sensing the perceptual aspects of the context in which the observed behavioural cues 
were displayed (W4-context sensing). 

Understanding the observed behaviour by translating the sensed behavioural and 
context cues into a description of communicative intentions (W5+-context sensing). 

3.1 Sensing human behavioural cues methodology 

Computer vision technology applied to detect, track and recognise human behavioural 
signals such as face, hand and body gestures has some notable success to date. 

Because of their relevance to face recognition and, in turn, security, face detection, 
tracking and facial expression analysis attracted the interest of many researchers. 
Numerous techniques have been developed for face detection, i.e. identification of all 
regions in the scene that contain a human face. For surveys of the past efforts in the field, 
the readers are referred to Yang, Kriegman and Ahuja (2002), Li and Jain (2005) and 
Sato et al. (2005). Most of these methods emphasise statistical learning techniques and 
use appearance (skin texture based) features. However, virtually all of them can detect 
only (near-) upright faces in (near-) frontal view. 

Head, face and facial feature tracking are essential steps for human motion analysis, 
since they provide data for recognition of face/head pose and facial expression. Optical 
flow has been widely used for head, face and facial feature tracking (Pantic and Bartlett, 
2007). To omit the limitations inherent in optical flow techniques such as the 
accumulation of error and the sensitivity to occlusion, clutter and changes in illumination, 
researchers in the field started to use sequential state estimation techniques such as 
Kalman and particle filtering schemes (Haykin and de Freitas, 2004). Some of the most 
advanced approaches to head tracking and head-pose estimation are based on Kalman and 
particle filtering frameworks (e.g. Smith et al., 2008). Similarly, the most advanced 
approaches to facial feature tracking are based on Kalman and particle filtering tracking 
schemes (Pantic and Bartlett, 2007). Although face pose and facial feature tracking 
technologies have improved significantly in the recent years with sequential state 
estimation approaches that run in real-time, tracking multiple, possibly occluded, 
expressive faces, their poses and facial feature positions simultaneously in unconstrained 
environments is still a difficult problem. 

Most of the facial expressions analysers developed so far attempt to recognise a small 
set of prototypic emotional facial expressions such as happiness or sadness displayed on 
command. For comprehensive surveys of the past efforts in the field, readers are referred 
to Pantic and Rothkrantz (2003), Tian et al. (2005) and Zeng et al. (2008). To facilitate 
detection of subtle facial signals like a frown or a smile and to make facial expression 
information available for usage in HCI² applications like face-based assessment of 
consumer’s satisfaction, several research groups begun research on machine analysis of 
facial muscle actions (i.e., atomic facial cues, Action Units (AUs)) defined by Ekman and 



      

      

    Human-Centred Intelligent Human–Computer Interaction 177    

      

      

      

colleagues (2002). The focus of the research efforts in the field was first on automatic 
recognition of AUs in either static face images or face image sequences picturing facial 
expressions produced on command. Several promising prototype systems were reported 
that can recognise few deliberately produced AUs in either (near-) frontal view face 
images (see Tian et al., 2005) or profile view face images (Pantic and Patras, 2006). 
These systems employ different approaches including expert rules and machine learning 
methods such as neural networks, and use either feature-based image representations 
(i.e. use geometric features like facial points; e.g. see Figure 3) or appearance-based 
image representations (i.e. use texture of the facial skin including wrinkles and furrows). 
One of the main criticisms that these works received, is that the methods are not 
applicable in real-life situations, where subtle changes in facial expression typify the 
displayed facial behaviour rather than the exaggerated changes that typify posed 
expressions. Hence, the focus of the research in the field started to shift to automatic 
(non-basic-) emotion and AU recognition in spontaneous facial expressions (produced in 
a reflex-like manner). Several works have recently emerged on machine analysis of 
non-basic emotions or AUs in spontaneous facial expression data. For comprehensive 
overviews of the efforts in the field, see Pantic and Bartlett (2007) and Zeng et al. (2008). 
These methods employ probabilistic, statistical and ensemble learning techniques, which 
seem to be particularly suitable for automatic facial expression analysis in video 
recordings. However, the present systems for facial expression analysis typically depend 
upon accurate head, face and facial feature tracking as input and are still very limited in 
performance and robustness. 

Figure 3 Outline of a geometric-feature-based system for detection of facial AUs and their 
temporal phases (onset, apex, offset and neutral) (see online version for colours) 

Source: Valstar and Pantic (2006) 
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Vision-based analysis of hand and body gestures is nowadays one of the most active 
fields in computer vision. Tremendous amount of work has been done in the field in the 
recent years. For exhaustive surveys of the past efforts in the field, readers are referred to 
Wang and Singh (2003), Ong and Ranganath (2005), Mitra and Acharya (2007) and 
Poppe (2007). Most of the proposed techniques are either model-based (i.e. use geometric 
primitives such as cones and spheres to model head, trunk, limbs and fingers) or 
appearance-based (i.e. use colour or texture information to track the body and its parts). 
Most of these methods emphasise Gaussian models, probabilistic learning and particle 
filtering framework (e.g. Bray, Koller-Meier and van Gool, 2007). However, body and 
hands detection and tracking in unconstrained environments where large changes in 
illumination and cluttered or dynamic background may occur still pose significant 
research challenges. Also, in casual human behaviour, the hands do not have to be always 
visible (they may be in pockets, under the arms in a crossed arms position, on the back of 
the neck and under the hair), they may be in a cross fingered position, and one hand may 
be (partially) occluded by the other. Although some progress has been made to tackle 
these problems using the knowledge on human kinematics, most of the present methods 
cannot handle such cases correctly. 

In contrast to the linguistic part of a spoken message (what has been said), the 
non-linguistic part of it (how it has been said) carries important information about the 
speaker’s affective state and attitude (Russell, Bachorowski and Fernandez-Dols, 2003; 
Juslin and Scherer, 2005). This finding instigated the research on automatic analysis of 
vocal non-linguistic expressions. The vast majority of present work is aimed at basic 
emotion recognition from prosodic features (e.g. pitch, intensity and speech rate) and 
spectral features (e.g. Mel Frequency Cepstral Coefficients (MFCC) and cepstral 
features). For comprehensive surveys in the field, the readers are referred to Section 3.3 
of this article, and to Cowie et al. (2001), Pantic and Rothkrantz (2003) and Zeng et al. 
(2008). More recently, few efforts towards automatic recognition of non-linguistic vocal 
outbursts such as laughs, cries and coughs have been also reported (Pantic et al., 2007). 
Most of these efforts are based only on audio signals (e.g. Truong and van Leeuwen, 
2007). However, since it has been shown by several experimental studies in either 
psychology or signal processing that integrating the information from audio and video 
leads to an improved performance of human behaviour recognition (e.g. Russell, 
Bachorowski and Fernandez-Dols, 2003) few pioneering efforts towards audiovisual 
recognition of non-linguistic vocal outbursts have been recently reported including 
audiovisual analysis of infants’ cries proposed by Pal, Iyer and Yantorno (2006) and 
audiovisual laughter recognition proposed by Petridis and Pantic (2008). Since, the 
research in cognitive sciences provided some promising hints that vocal outbursts and 
non-linguistic vocalisations such as yelling, laughing and sobbing, may be very important 
cues for decoding someone’s affect/attitude (Russell, Bachorowski and Fernandez-Dols, 
2003), we suggest a much broader focus on machine recognition of these non-linguistic 
vocal cues. 

3.2 W4 methodology 

Context plays a crucial role in understanding of human behavioural signals, since they are 
easily misinterpreted if the information about the situation in which the shown 
behavioural cues have been displayed is not taken into account. Hence, the so-called W4 
(who, where, what and when) technology is essential for interpreting human behaviour. 
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Because of its relevance for the security, the who context question has received the 
most attention from both funding agencies and commercial enterprises and, in turn, it has 
seen the most progress. The biometrics market has increased dramatically in recent years, 
with multiple companies selling biometric systems (Pantic et al., 2007). The problem of 
face recognition has been tackled most often. For comprehensive surveys of past works in 
the field, see Zhao et al. (2003) and Bowyer, Chang and Flynn (2006). However, due to 
their reliability and robustness, multimodal biometric systems based on multiple 
biometric traits including face, voice, iris, retina, fingerprints, gait, ear, hand, brainwaves 
and facial thermogram, have recently become a research trend (Bowyer et al., 2006). 

Similarly to the who context question, security concerns also drive the research 
tackling the where context-sensing problem, which is typically addressed as a computer-
vision problem of surveillance and monitoring. The work in this area is based on one or 
more unobtrusively mounted cameras used to detect and track people. Most of the current 
approaches base their analysis on scene (background) modelling, motion segmentation, 
object classification and object tracking (Wang and Singh, 2003; Poppe, 2007). In turn, 
these present methods are adequate when a priori knowledge is available (e.g. scene 
model, human-silhouette-based shape to be tracked), but they are weak for unconstrained 
environments (e.g. gym and a house party), in which dynamic scene changes, multiple 
occlusions, and clutter may be present. For such cases, methods that perform analysis at 
the lowest semantic level (i.e. consider only temporal pixel-based behaviour; e.g. see 
Elgammal and Lee, 2007) and use unsupervised learning (e.g. Bicego, Cristani and 
Murino, 2006) will represent a better solution. 

In desktop computer applications, the user’s task identification (i.e. the what context 
question) is usually tackled by determining the user’s current focus of attention by means 
of gaze tracking, finger pointing or simply based on the knowledge of current events such 
as keystrokes, mouse movements and active software (e.g. Maat and Pantic, 2007). 
However, as traditional HCI and usability-engineering applications involve relatively 
well-defined user tasks, many of the methods developed for user task analysis in typical 
HCI domains are inappropriate for task analysis in the context of ubiquitous, anticipatory, 
HCI² interfaces, where the tasks are often ill-defined due to uncertainty in the sensed 
environmental and behavioural cues. Analysis of tasks that human may carry out in the 
context of HCI² require adaptation and fusion of existing methods for behavioural cues 
recognition (e.g. hand/body gesture recognition, focus of attention identification) and 
those machine learning techniques that can be applicable to solving ill-structured 
decision-making problems (e.g. Markov decision processes and hidden-state models). 
However, only a very limited research has been directed to multimodal user’s task 
identification in the context of anticipatory ambient interfaces (Pantic et al., 2007). 
Current methods for human activity recognition typically identify the task of the observed 
person in an implicit manner, by recognising different tasks as different activities. The 
main shortcoming of these approaches is the increase of the problem dimensionality – for 
the same activity, different recognition classes are defined, one for each task (e.g. for the 
sitting activity, categories such as watching TV, dining and working with desktop 
computer, may be defined). 

As we have already mentioned above, temporal dynamics of behavioural cues (i.e. 
their timing, co-occurrence, speed, etc.) are crucial for the interpretation of the observed 
behaviour (Ekman and Rosenberg, 2005). However, present methods for human 
activity/behaviour recognition do not address the when context question – dynamics of 
displayed behavioural signals is usually not taken into account when analysing the 
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observed behaviour, let alone analysing the timing of displayed behavioural signals with 
respect to changes in the environment. Exceptions of this rule include few recent studies 
such as that by Tong, Liao and Ji (2007) on modelling semantic and temporal 
relationships between AUs forming a facial expression, that by Valstar, Gunes and Pantic 
(2007) on discrimination between spontaneous and posed smiles based on temporal 
dynamics of AUs, head and shoulder gestures (2007), and few studies on multimodal 
analysis of audio and visual dynamic behaviours for emotion recognition (Zeng et al., 
2008). In general, present methods cannot handle longer time scales, model grammars of 
users’ behaviours, and take temporal and context-dependent evolvement of observations 
into account for more robust performance. When it comes to the timing of shown 
behavioural signals with respect to changes in the environment, current methods typically 
approach the when question in an implicit way, by recognising user’s reactions to 
changes in the environment as different activities. 

Overall, context questions are usually addressed separately and often in an implicit 
manner. Yet, they may be more reliably answered if they are answered in groups of two 
or three using the information extracted from multimodal input streams. For example, as 
shown by Nock, Iyengar and Neti (2004) simultaneous speaker identification (who) and 
location (where), combining the information obtained by multiple microphones and 
surveillance cameras, had an improved accuracy in comparison to single-modal and 
single-aspect approaches. They suggested further that a key to successful realisation of 
multimodal multi-aspect context-sensing is to automatically determine whether observed 
behavioural cues share a common cause – e.g. whether the mouth movements and audio 
signals complement to indicate an active known or unknown speaker (who and where) 
and whether his or her focus of attention is another person or a computer (what). The 
main advantages of such an approach are effective handling of uncertainties due to noise 
in input data streams and the problem-dimensionality reduction. Therefore, we suggest a 
much broader focus on spatial and temporal, multimodal multi-aspect context-sensing. 

3.3 W5+ methodology 

The past work in translating the sensed human behavioural signals and context 
descriptors into a description of the shown behaviour, that is, answering the question why 
and how in the context of human-centred computing and W5 + (where, what, when, who, 
why and how) methodology, can be roughly divided into the methods for understanding 
human affective/attitudinal states and those for understanding human social signals (i.e. 
emblems, regulators and illustrators). 

The existing body of literature in machine analysis of human affect is immense. For 
exhaustive reviews of the past work in the field, the readers are referred to Cowie et al. 
(2001), Pantic and Rothkrantz (2003) and Zeng et al. (2008). Most of these works attempt 
to recognise a small set of prototypic expressions of basic emotions such as happiness 
and anger from either face images/video or speech signal (e.g. Figure 4). They achieve an 
accuracy of 64–98% when detecting 3–7 emotions deliberately displayed by 5–40 
subjects. However, the capabilities of these current approaches to human affect 
recognition are rather limited: 

Only a small set of deliberately displayed prototypic facial or vocal expressions of 
six basic emotions can be handled. 
Context-sensitive analysis (user-, or environment-, or task-dependent analysis) of the 
sensed signals cannot be performed. 
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Extracted facial or vocal expression information cannot be analysed on different time 
scales (i.e. short videos or vocal utterances of a single sentence are handled only). 
Consequently, inferences about the expressed mood and attitude (larger time scales) 
cannot be made by current human affect analysers. 

Strong assumptions are usually adopted. For example, facial affect analysers can 
typically handle only portraits or nearly-frontal views of faces with no facial hair or 
glasses, recorded under constant illumination and displaying exaggerated prototypic 
expressions of emotions. Similarly, vocal affect analysers assume usually that the 
recordings are noise free, contain exaggerated vocal expressions of emotions, 
i.e. sentences that are short, delimited by pauses and carefully pronounced by 
non-smoking actors. 

The main criticism that these works receive is that the methods are not applicable in 
real-life situations, where the displayed behaviour is typified by subtle rather than 
exaggerated changes in facial and vocal expressions and other behavioural cues. Hence, 
the focus of the research in the field started to shift to automatic (non-basic-) emotion 
recognition in recordings of spontaneous human behaviour (produced in a reflex-like 
manner). Several efforts have been recently reported on a automatic analysis of volatile 
facial affect data (e.g. Littlewort, Bartlett and Lee, 2007), few studies investigated 
automatic, vision-based discrimination between spontaneous and deliberate affective 
behaviour (e.g. Valstar, Gunes and Pantic, 2007), several efforts have been reported on 
automatic emotion analysis from spontaneous vocal affect data (e.g. Neiberg, Elenius and 
Laskowski, 2006), and few studies have been reported on audiovisual analysis of 
spontaneously produced affect data (e.g. Fragopanagos and Taylor, 2005). For a 
comprehensive overview of the current efforts in the field, see Zeng et al. (2008). 
However, many improvements are needed if these systems are to be used for context-
sensitive analysis of subtle (unexaggerated) human behavioural signals where a clean 
input from a known actor/announcer cannot be expected and a context-independent 
processing and interpretation of audiovisual data do not suffice. Of these, we would like 
to stress the importance of two issues: using information of language and achieving 
temporal multimodal data fusion. 

Figure 4 Outline of the facial affect recognition system (see online version for colours) 

Source: Littlewort et al. (2006) 
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The importance of the former became obvious with the research shift towards analysis of 
spontaneous human behaviour – analysis of acoustic information only, does not suffice 
for identifying subtle changes in vocal expression. In turn, several recent studies 
investigated the combination of acoustic features and linguistic features (language and 
discourse) to improve recognition of emotions from speech signal (e.g. Fragopanagos and 
Taylor, 2005). However, these systems typically depend upon both accurate recognition 
of verbal content of emotional speech, which still cannot be reliably achieved by existing 
automatic speech recognition systems, and on accurate extraction of semantic discourse 
information, which is attained manually in the present systems. Hence, we suggest a 
much broader focus on solving these issues which will enable the use of linguistic 
features for attaining more accurate and robust vocal affect analysis. 

Most of the present audiovisual and multimodal systems in the field perform 
decision-level data fusion (i.e. classifier fusion) in which the input coming from each 
modality is modelled independently and these single-modal recognition results are 
combined at the end. Since humans display audio and visual expressions in a 
complementary and redundant manner, the assumption of conditional independence 
between audio and visual data streams in decision-level fusion is incorrect and results in 
the loss of information of mutual correlation between the two modalities. To address this 
problem, a number of model-level fusion methods have been proposed that aim at making 
use of the correlation between audio and visual data streams, and relax the requirement of 
synchronisation of these streams (e.g. Fragopanagos and Taylor, 2005; Zeng et al., 2006). 
However, how to model multimodal fusion on multiple time scales and how to model 
temporal correlations within and between different modalities is largely unexplored. 
Hence, we suggest a much broader focus on the issues relevant to multimodal temporal 
fusion including the optimal level of integrating these different streams, the optimal 
function for the integration, how estimations of reliability of each stream can be included 
in the inference process. In addition, how to build context-dependent multimodal fusion 
is another open and highly relevant issue. 

Messages conveyed by behavioural cues such as emblems, illustrators and regulators, 
can be interpreted in terms of social signals such as turn taking, mirroring, empathy, 
interest, engagement, agreement, disagreement, etc. Although each one of us understands 
the importance of social signals in everyday life situations, and although a firm body of 
literature in cognitive sciences exists on the topic (e.g. Chartrand and Bargh, 1999) and in 
spite of recent advances in sensing and analysing behavioural cues such as blinks, smiles, 
winks, thumbs up, yawns, laughter, etc. the research efforts in machine analysis of human 
social signals are few and tentative. Important works in the field include efforts to discern 
social signals such as activity level, stress, engagement and mirroring by analysing the 
engaged persons’ tone of voice, efforts towards analysis of interest, agreement and 
disagreement from facial and head movements, and efforts towards analysis of the level 
of interest from tone of voice, head and hand movements. For an overview of efforts in 
the field, see Pantic et al. (2007). Overall, present approaches to understand social signals 
are multimodal and based on either statistical or probabilistic reasoning methods 
(e.g. Schuller et al., 2007). However, most of these methods are context insensitive 
(W4 context issues are either implicitly addressed, i.e. integrated in the inference process 
directly, or they are ignored altogether) and incapable of handling unconstrained 
environments correctly. Thus, although these methods represent promising attempts 
toward encoding of social variables such as status, interest, determination and 
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cooperation, which may be an invaluable asset in the development of HCI² and social 
networks formed of humans and computers, in their current form, they are not 
appropriate for general-purpose anticipatory interfaces. 

4 How to attain HCI²: guidelines 

Human behavioural actions or simply human behaviour, are high-level semantic events, 
which typically include interactions with the environment and causal relationships. An 
important distinction between the analysis of these high-level semantic events and the 
analysis of low-level semantic events like the occurrence of an individual behavioural cue 
like the blink, is the degree to which the context, different modalities and time must be 
explicitly represented and manipulated, ranging from simple spatial reasoning to context-
constrained reasoning about multimodal events shown in temporal intervals. However, 
most of the present approaches to machine analysis of human behaviour are neither 
multimodal, nor context-sensitive, nor suitable for handling longer time scales. Hence, 
the focus of future research efforts in the field should be primarily on tackling the 
problem of context-constrained analysis of multimodal behavioural signals shown in 
temporal intervals. As suggested throughout the text, this problem should be treated as 
one complex problem rather than a number of detached problems in human sensing, 
context sensing and human behaviour understanding. 

Besides this critical issue, there are a number of scientific and technical challenges 
that we consider essential for advancing the state of the art in the field. 

Modalities: which behavioural channels such as the face, the body and the tone of the 
voice, are minimally needed for realisation of robust and accurate human behaviour 
analysis? Does this hold independently of the target communicative intention to be 
recognised? No comprehensive study on the topic is available yet. 

Fusion: how to model temporal multimodal fusion which will take into account 
temporal correlations within and between different modalities? What is the optimal 
level of integrating these different streams? Does this depend upon the time scale at 
which the fusion is achieved? What is the optimal function for the integration? 

Fusion and context: do context-dependent fusion of modalities and discordance 
handling, which are typical for fusion of sensory neurons in humans, pertain in 
machine context sensing? Note that context-dependent fusion and discordance 
handling were never attempted within an automated system. 

Learning vs. education: what are the relevant parameters in shown human behaviour 
that an anticipatory interface can use to support humans in their activities? How this 
should be (re-) learned for novel users and new contexts? Instead of building 
machine learning systems that will not solve any problem correctly unless they have 
been trained on similar problems, we should build systems that can be educated, that 
can improve their knowledge, skills and plans through experience. Lazy and 
unsupervised learning can be promising for realising this goal. 
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Technical aspects: most methods for human sensing, context sensing and human 
behaviour understanding work only in (often highly) constrained environments. 
Noise, fast movements, changes in illumination, etc. cause them to fail. Also, many 
of the methods in the field do not perform fast enough to support interactivity. 
Researchers usually choose for more sophisticated processing rather than for 
real-time processing. The aim of future efforts in the field should be the realisation of 
more robust, real-time systems, if they are to be deployed in anticipatory interfaces 
defused throughout smart environments of the future. 

In summary, although the research in sensing and understanding human communicative 
intentions including affective and social signals has witnessed a good deal of progress in 
recent years, there remain significant scientific and technical challenges to be addressed. 
However, we are optimistic about the future progress in the field. The main reason is that 
W5+ methodology and HCI² technology are likely to become the single most widespread 
research topic of AI (if not of the whole computing) community. This is aided and 
abetted by large and steadily growing number of research projects concerned with the 
interpretation of human behaviour at a deeper level for the purposes of ambient 
intelligence applications, independent living and personal wellness technologies, 
educational tools, etc. (e.g. EC FP6 AMI and AMIDA, EC FP7 CoFRIEND, LIREC, 
PROMETHEUS, SEMAINE and CHRIS). 
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