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Abstract

This paper discusses our expert system called Integrated System for Facial Expression Recognition (ISFER), which performs recognition
and emotional classification of human facial expression from a still full-face image. The system consists of two major parts. The first one is
the ISFER Workbench, which forms a framework for hybrid facial feature detection. Multiple feature detection techniques are applied in
parallel. The redundant information is used to define unambiguous face geometry containing no missing or highly inaccurate data. The
second part of the system is its inference engine called HERCULES, which converts low level face geometry into high level facial actions,
and then this into highest level weighted emotion labels.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The user interface for the computer systems is evolving
into an intelligent multi-modal interface. It is now moving
away from keyboard-given instructions to more natural
modes of interaction, using visual, audio and sensorial
means. This is the first step in achieving a human-like
communication between man and machine.

Human communication has two main aspects: verbal
(auditory) and non-verbal (visual). Words are the atomic
information units of the verbal communication. Phenomena
like facial expressions, body movements and physiological
reactions are the atomic units of the non-verbal communi-
cation. Although it is quite clear that non-verbal gestures are
not necessary for successful human interaction (e.g. phone
calls), considerable research in social psychology has shown
that non-verbal gestures can be used to synchronise dia-
logue, to signal comprehension or disagreement, to make
dialogue smoother and with fewer interruptions [3,35]. This
finding itself suggests that multi-media man-machine
communication systems could promote more efficient
performance.

At the moment there are several systems available for
automatic speech recognition. On the other hand, a
complete and accurate system for vision-based facial

gesture analysis has not been developed yet. This triggered
our interest in this topic.

1.1. Automation of non-verbal communication

Automated Systems for Non-verbal Communication is an
ongoing project at the Knowledge Based Systems depart-
ment of the TU Delft [38]. The goal of our project is the
development of an intelligent automated system for the
analysis of non-verbal communication. The system has to
provide qualitative and quantitative information about
different non-verbal signals at different levels. On the lowest
level, the system should detect a non-verbal signal shown by
the observed person. On the next level, the system should
categorise the detected signal as a specific facial action
(e.g. smile), a specific body action (e.g. shoulders shrug),
a specific vocal reaction (e.g. high speech velocity), or a
specific physiological reaction (e.g. sweating). On a higher
level the system should give an appropriate, for example an
emotional, interpretation of the recognised signal. On the
highest level the system should reason about the intentions
of the user.

Our intelligent analyser of human non-verbal communi-
cation should cope with the registration, processing and
interpretation of the non-verbal communication signals.
The multi-modal input to the system will consist of
sound-, image-, and sensor data. Then analysis of recorded
speech, facial expression, body movement, and physiologi-
cal sensor data should be performed. These analyses have to
be implemented as modules that can operate independently
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as well as the parts of a single system. The final result of the
system will be a data-fusion of the results of the modules
executed in parallel. This would represent the hypothesis
about the intentions of the observed person.

First, we investigated automatic recognition and
emotional classification of facial expressions in order to
achieve such an automatic analyser of human non-verbal
communication. This paper discusses the results of our
research implemented as Integrated System for Facial
Expression Recognition (ISFER).

1.2. Automatic facial expression analysis

Facial expressions play an essential role in human
communication. As indicated by Mehrabian [24], in face-
to-face human communication only 7% of the communica-
tive message is due to linguistic language, 38% is due to
paralanguage, while 55% of it is transferred by facial
expressions. Therefore, in order to facilitate a more-friendly
man–machine interface of new multimedia products,
vision-based facial gesture analysis is being studied world
wide in the last ten years. Numerous techniques have been
proposed.

In their early work Kato et al. [18] used isodensity maps
for the synthesis of facial expressions. They pointed out that
the change of the extracted isodensity maps, which accom-
panies the change of a facial expression, could be effectively
used for emotional classification of the facial expression.
Still, this was not investigated in detail.

The work of Terzopoulos and Waters [36] also deals
exclusively with the synthesis of facial expressions, rather
than their interpretation. Their 3D dynamic face model
combines a physically based model of facial tissue with an
anatomically based facial muscle control process. In order
to animate the human face with their face model, they use
deformable curve techniques for estimating face muscle
contraction parameters from video sequences.

Morishima et al. [26] reported on a 5-layered manual-
input neural network used for recognition and synthesis of
facial expressions. Zhao and Kearney [46] described singu-
lar emotional classification of facial expressions using a
3-layered manual-input backpropagation neural network.
Kearney and McKenzie [19] developed a manual-input
memory-based learning expert system, which interprets
facial expressions in terms of emotion labels given by
college students without formal instruction in emotion
signals.

Another facial expression recognition system that
requires a manual pre-processing is the system introduced
by Kanade et al. [5]. Their system recognises Action Units
(AUs) and AUs combinations [8] in facial image sequences
using Hidden Markov Model. After manual marking of
facial feature points around the contours of the eyebrows,
eyes, nose and mouth in the first frame of image sequence,
Kanade et al. use Lucas–Kanade optical flow algorithm [23]
to track automatically the feature points in the remaining

frames. In the case of the upper face, Wu–Kanade dense
optical flow algorithm [43] and high gradient component
detection is used to include a detailed information from
the larger region of the forehead [22].

In 1997 and 1998, each of the four most influential
research groups in the field of vision-based facial gesture
analysis published a summary of their previous work.

Essa and Pentland [10] presented the results on recog-
nition and singular emotional classification of facial
expressions based on an optical flow method coupled
with geometric, physical and motion-based face models.
They used 2D motion energy and history templates that
encode both, the magnitude and the direction of motion.
By learning the “ideal” 2D motion views for four
emotional expressions (anger, disgust, happiness and
surprise), they defined spatio-temporal templates for
those expressions. Although the approach proposed by
Essa and Pentland has not been still fully validated, it
should be noted that spatio-temporal templates of facial
expressions form a unique method for facial expression
emotional classification.

Black and Yacoob [2] also utilised an optical flow model
of image motion for facial expression analysis. Their work
explores the use of local parameterised optical flow models
for the recognition of the six basic emotional expressions
(sadness, happiness, anger, disgust, fear and surprise [7,9]).

Kobayashi and Hara [20] reported on real-time recogni-
tion, singular emotional classification and synthesis of the
six basic emotional expressions. They worked on realisation
of an animated 3D face-robot that can recognise and repro-
duce the emotional expressions. They use brightness distri-
bution data of facial image and a 3-layered backpropagation
neural network for classification and synthesis of facial
expressions.

The researchers of MIRALab [37] reported on recogni-
tion, singular emotional classification and animation of
human facial expressions. To construct a 3D virtual (cloned)
face they use discrete snakes and two 2D point-based face
templates. To reproduce the observed facial expression on
the virtual face, a mapping is carried out from the tracked
points of the face templates to 21, from a total of 65 minimal
perceptible actions (similar to AUs of FACS [8]). A rule-
based approach is employed to categorise the observed
expression in one of the six basic emotional classes.

Each of the methods described above has some limita-
tions. They either deal with the synthesis of facial expres-
sion which do not attempt to give an interpretation of it
[18,36], or they give a low level of interpretation [5].
They use some semi-automatic or completely manual proce-
dures for tracking facial features [5,19,26,46]. They either
use AUs-coded description of the six basic emotional
expressions that cannot be validated against the linguistic
description given by Ekman [2,20,26], or do not explain the
rules for emotional classification of expressions at all [37].
Except for JANUS [19], all of the described systems
perform only singular emotional classification of facial
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expressions. None of the approaches deals with the issue of
blended emotional expression [9].

As explained in the next section, our approach to auto-
matic facial expression analysis attempts to cope with the
issues listed above.

1.3. Integrated system for facial expression recognition

The aim of our research is to design and implement a
completely automated system for recognition and emotional
classification of facial expressions. The project is still
ongoing. At the moment, ISFER has the following function-
ality:

1. automatic extraction of the facial features from digitised
facial images;

2. automatic encoding of face actions (described in terms of
Action Units (AUs) [8]);

3. automatic classification of face actions in six basic
emotion categories (happiness, anger, surprise, fear,
sadness, and disgust [7,9]).

In contrast to the existing facial feature detectors (e.g.
[10,18,20]) which utilise single image processing technique,
ISFER represents a hybrid approach to facial feature detec-
tion. Each of the existing methods is based either on discrete
snakes and template matching [37], or on optical flow
models of image motion [2,5,10], or on 3D wireframe
face models [36,37], or on brightness distribution data of
facial image combined with a neural network approach [20].
Our approach to recognition of facial expression combines
multiple feature detection techniques, which are applied in
parallel. So instead of fine-tuning and completing existing
facial feature detectors or inventing new ones, we propose to
combine known techniques.

The motivation for combining detectors is the increase in
quality of the combined detector. All feature-tracking
algorithms have circumstances under which they perform
extremely well. Also, they all have facial features that they
can detect better. A combined detector will have less weak
properties and perform better than the best single detector.
Introducing redundancy by applying multiple detectors per
facial feature and then choosing the best of the acquired
results will finally yield in a more complete set of detected
facial features. The ISFER Workbench has been implemen-
ted according to this multi-detector paradigm.

ISFER deals with a static face action. This means that
only the end-state of the facial movement is measured in
comparison to the neutral facial position. The movement
itself is not measured. In addition, ISFER does not deal
with a continuous tracing of someone’s face. It deals with
still facial images, not with image sequences. In other
words, the system recognises and emotionally classifies
stable patterns of facial expressions.

To avoid the problem of rigid head motions, that is to
achieve successful acquisition of full-face and profile
images, we explicitly specified the camera setting. Two

digitised cameras should be mounted on two holders
attached to a headphone-like device. One camera holder
should be placed in front of the face (frontal-view) and
the other on the right side of the face (side-view). By this,
the cameras will move together with the head. Each facial
view will be without any change in size and orientation of
the face compared to the previously acquired images.

Current expression classifiers [2,10,20,37] have the
limitation of categorising the examined expressions exclu-
sively into one of the emotion categories. In turn, they are
not capable of performing recognition and classification of
non-prototypic expressions (such as a blend of emotional
expressions [7,9]). To overcome this problem and develop
a system that can recognise complex non-prototypic expres-
sions, face actions should be recognised. Except for JANUS
[19], which is partially a manual system, and the vision-
based system introduced by Kanade et al. [5], which does
not deal with emotional classification of facial expressions,
none of the existing systems deals with the recognition of
face actions. ISFER represents a completely automated
system that has been developed to convert the face geometry
(localised facial features) into a description of face actions,
and then this into weighted emotion labels.

The reasoning of the system is person-independent. This
means that the process of facial expression recognition and
emotional classification does not depend on physiognomic
variability of the observed persons. The generic face model,
described further in the text, facilitates person-indepen-
dence of ISFER reasoning.

ISFER consists of three major parts (see Fig. 1), namely
image data extraction, data evaluation, and data analysis.
The first part of the system is the ISFER Workbench,
which represents a collection of facial feature detection
algorithms. The second part of the system is the Facial
Data Evaluator, which represents a connection between
the data generator and the inference engine of the system.
This part of the system makes a best possible selection from
the redundantly detected facial features so that the resulting
face geometry does not contain missing and highly inaccu-
rate data. The obtained face geometry forms the input to the
system’s reasoning mechanism called HERCULES.

Dealing with ambiguous information encountered in the
examined facial expression is partially based on the knowl-
edge about the neutral facial expression. The first step in
performing automatic analysis of someone’s facial expres-
sion is, therefore, the analysis of his/her neutral facial
expression. To ensure correct extraction of the facial
features from someone’s neutral facial expression, it is
highly recommended that the results of automatic feature
detection are visually inspected and if necessary, that the
choice of facial feature detectors is further manually made.
Analysis of each next expression of the observed person is
performed in a completely automatic way.

The theoretical background of face action recognition and
facial expression emotional classification is given in Section
2. Our face model is explained in Section 3. The framework
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for hybrid facial feature detection is explained in Section 4.
Section 5 describes dealing with ambiguous facial expres-
sion information. The process of facial data analysis is
explained in Section 6. The concluding remarks are given
in Section 7.

2. Theoretical background

One of the fundamental issues about the recognition of
prototypic emotional facial expressions is the categorisation
of the visual information that the examined faces might
reveal [4]. According to Yamada [44], this process of
categorisation has two stages. The first one is to define the
set of categories we have to deal with in classifying expres-
sions. The second one is to define the mechanism of
categorisation.

Most psychological studies on facial expression classifi-
cation have been related to the first step. Probably the most
known and the most commonly used study on classification
of facial expressions is the cross-cultural study on existence
of universal categories of emotional expressions
[7,9,12,16]. Ekman defined six such categories, calledsix
basic emotions: happiness, sadness, surprise, fear, anger and

disgust [7]. He described each of the basic emotions in terms
of a facial expression that universally and uniquely charac-
terises that emotion. Although some psychologists like
Russell [33] doubt the universality of the six basic emotions,
most of the researches of vision-based facial gesture analy-
sis rely on Ekman’s emotional categorisation of facial
expressions [2,20,37]. The production rules of ISFER infer-
ence engine, which perform emotional classification of
facial expressions, are also based on Ekman’s description
of the six basic emotions.

In contrast to the first stage of the process of expression
categorisation, there have been rather few studies on the
second stage. So, which kind of information from the face
we use in order to classify a certain facial expression into a
particular emotional category is still an open question [4].
Probably the most known study on the subject is FACS [8].

Facial expressions represent a visible consequence of
facial muscle activity. FACS represents a system that
describes facial expressions in terms of codes of this facial
muscle involvement. The activation of the muscles is
described by the system as the activation of 44 Action
Units (AUs). Each AU corresponds with the contraction
produced by one or a group of related muscles. Activation
of an AU is described in terms of facial appearance change,
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i.e. change of the facial features such as eyebrows, eyes and
mouth caused by activity of the underlying muscle(s). With
FACS all visually distinguishable facial movements can be
described as AUs-codes.

On the other hand, FACS has been developed for human
observers. So, neither facial muscle activity nor AUs-codes
can be extracted directly from a digital image. What is
necessary for resolving of this problem is to define auto-
matically extractable visual properties of facial expressions.
The results of Johansson’s point-light display experiments
gave a clue to this problem.

Bassili [1], and later Bruce [4], requested the stimulus
person to make various facial expressions while having
white marks placed on the face at random. The subjects
observed only the movements of the white marks through
a monitor. They were quickly aware of seeing a face and
they could easily say what kind of facial expression the
movement of the white marks represented. Johansson’s
point-light display experiments suggest that the visual
properties of the face, regarding information on facial
expressions, could be made clear by describing the move-
ments of points belonging to the facial features (eyebrows,
eyes, nose, mouth, and chin) and then by analysing the
relationships between those movements.

This triggered the researchers of vision-based facial
gesture analysis to make different attempts to determine
point-based visual properties of facial expressions. This
concerns defining some point-based face model (e.g.
[19,20,26,37]), defining a mechanism for automatic extrac-
tion of these points from digital facial image, and establish-
ing a relation between the movement of the extracted points
and the AUs. Then some AUs-coded description of the six
basic emotional expressions is used to categorise AUs-
coded description of the shown facial expression.

We followed the same process when defining automa-
tically extractable visual properties of facial expressions.
Our face model as well as the relationship between the
face model and the AUs is defined in the next section.
The mechanism for automatic extraction of the model
features is described in Section 4. The used AUs-coded
description of the six basic emotions and the mechanism
for emotional classification of facial expressions are
explained in Section 6.

3. Face model

Currently, facial expression recognition systems use
either complicated 3D wireframe face models [36,37] or
consider only averaged optical flow within local regions
(e.g. forehead, eyes, and mouth) [2]. Using currently
available vision techniques, it is difficult to design a 3D
face model that accurately represents facial geometric
properties. The initial adjustment between the 3D wire-
frame and the surface images is usually manual, which
affects the accuracy of the recognition results. Similarly,

accurate and dense information on facial expression get
lost when only averaged optical flow within local facial
regions is estimated.

There are also several existing 2D face models. An exam-
ple is the Facial Landmarks model [19], which is not suita-
ble for an automatic extraction of facial points. Another
example is the model of 18 facial characteristic points
proposed by Kobayashi and Hara [20]. In their face model
none of the points belongs to the lower eyelid or to the upper
lip. Facial movements, however, do effect displacement of
both, the lower eyelid and the upper lip. The model of 22
facial points used by Morishima et al. [25] is the same as our
frontal-view face model except for the points of the
eyebrows. They use the centre of both, the lower eyebrow
border and the upper eyebrow border, which form redundant
information when used together.

We choose to define our face model as a point-based
model composed of two 2D facial views, namely the frontal-
and the side view. There are a number of motivations for
this choice. As shown by Bassili [1] and Bruce [4], a point-
based graphical face model resembles the model used by
human observers when judging a facial expression. Conse-
quently, expression-classification rules used by human
observers (e.g. the rules of FACS) can be converted straight-
forwardly into the rules of an automatic classifier based on a
point-based face model. Another motivation is the simpli-
city of validating a point-based face model. The changes in
the position of the points in the face model are directly
observable. By comparing the changes in the model and
the changes in the modelled expression, the validity of the
model can be visually inspected. Finally, combining a dual
facial view into a single model yields a more realistic repre-
sentation of 3D face and avoids inaccuracy and manual
initialisation of a 3D wire-frame model.

The frontal-view model and the side-view model, consid-
ered separately, do not contain redundant information about
the facial features. When coupled together, however, two
facial views reveal redundant information about facial
expression. Depending on success of the facial feature
detection algorithms, this redundancy is used further to
encode unambiguously the facial geometry in terms of
AUs-codes (see Section 3.3 and Section 5).

Our model has the following characteristics.

1. The features defined by the model are extracted auto-
matically from the still full-face images in the case of
frontal-view and from the still profile images in the case
of side-view.

2. The deformations of the features defined by the frontal-
view model reveal changes in the appearance of eyes,
eyebrows, nose, mouth and chin. The deformations of the
features defined by the side-view model reveal changes in
the appearance of forehead, nose, mouth, jaw and chin.

3. It is possible to establish a simple and unique relation
between changes of the model features and separate AUs.

The frontal- and the side-view face model, as well as the
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description of the AUs in terms of the model features, are
described in the following two sections.

3.1. Frontal-view face model

The frontal-view face model is composed of 30 features
that can be divided into two groups. The first group is
formed by 25 features, which are defined in correspondence
with a set of 19 facial points. These points are illustrated in
Fig. 2 and described in Table 1. The features of the first
group are given in Table 2. The second group is formed
by five features, which represent four specific shapes of
the mouth and one specific shape of the chin. Those features
are described in Table 3, Figs. 3–6. Automatic extraction of
the facial features defined by the frontal-view model is
described in Section 4.

The frontal-view model has been generated and then
validated through analysis, and respectively synthesis, of
linguistic labels used to describe the visual properties of
AUs [8]. For example, the analysis of the labelupward
pull of the inner portion of the eyebrows, which describes
activation of AU1, caused the addition of the features f1

and f2 to the model. An observed increase of f1 and f2
will cause trained FACS coders [8] to conclude that AU1
is activated.

From a total of 44 AUs defined in FACS, 27 AUs can be
uniquely described using our frontal-view face model. The
importance of a unique representation of AUs-codes, and
our way of achieving it in terms of our face model, can be
explained using an example. In FACS, the activation of
AU9 as well as the activation of AU10 is described with
the labelupward pull of the upper lip. It is also stated,
however, that activation of AU9 obscures the activation of
AU10. On the other hand, the labelwrinkled root of the nose
describes AU9 exclusively. To obtain uniquely defined
AU10-code with our model, we are describing it as
decreased f11 and non-increased f20.

FACS description of AUs and the representation of AUs-
codes, using an informal reader-oriented pseudo-code, are
given in Table 4.
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Fig. 2. Facial points of the frontal-view.

Table 1
Facial points of the frontal-view

Point Point description

B Left eye inner corner, stable point
B1 Right eye inner corner, stable point
A Left eye outer corner, stable point
A1 Right eye outer corner, stable point
H Left nostril centre, non-stable
H1 Right nostril centre, non-stable
D Left eyebrow inner corner, non-stable
D1 Right eyebrow inner corner, non-stable
E Left eyebrow outer corner, non-stable
E1 Right eyebrow outer corner, non-stable
F Top of the left eye, non-stable
F1 Top of the right eye, non-stable
G Bottom of the left eye, non-stable
G1 Bottom of the right eye, non-stable
K Top of the upper lip, non-stable
L Bottom of the lower lip, non-stable
I Left corner of the mouth, non-stable
J Right corner of the mouth, non-stable
M Tip of the chin, non-stable

Table 2
First group of the features of the frontal-view model

Feature Feature description

f1 Angle /BAD
f2 Angle /B1A1D1
f3 Distance AE
f4 Distance A1E1
f5 Distance 3F, 3 is the centre of AB
f6 Distance 4F1, 4 is the centre of A1B1
f7 Distance 3G
f8 Distance 4G1
f9 Distance FG
f10 Distance F1G1
f11 Distance CK, C is 0.5HH1 (f0)
f12 Distance IB
f13 Distance JB1
f14 Distance CI
f15 Distance CJ
f16 Distance IJ
f17 Distance KL
f18 Distance CM
f19 Image intensity in circle (r(0.5BB1), C(2)) above line (D, D1)
f20 Image intensity in circle (r(0.5BB1), C(2)) below line (D, D1)
f21 Image intensity in circle (r(0.5AB), C(A)) left from line (A, E)
f22 Image intensity in circle (r(0.5A1B1), C(A1)) right from line

(A1, E1)
f23 Image intensity in the left half of the circle (r(0.5BB1), C(I))
f24 Image intensity in the right half of the circle (r(0.5BB1), C(J))
f25 Brightness distribution along the line (K, L)

Table 3
Second group of the features of the frontal-view model

Feature Feature description

f26 Lower lip shape shown in Fig. 3
f27 Mouth shape shown in Fig. 4
f28 Mouth shape shown in Fig. 5
f29 Circular shape of the furrows on the chin shown in Fig. 6
f30 Mouth shape when the upper lip is sucked in (mirrored shape

of that shown in Fig. 4)



3.2. Side-view face model

The side-view face model is composed of 10 face profile
points. The profile points correspond with the peaks and the
valleys of the curvature of the profile contour function.
Transforming the contour into a function graph offers the
possibility to use mathematical tools such asMatlab to
locate automatically maximum and minimum points of
extreme curvature [42]. The profile points are illustrated
in Fig. 7 and described in Table 5. The features of the
side-view face model are given in Table 6.

All of the profile points are located as extremities of the
curvature of the profile contour function (Table 5). Usually,
many extremities are found. By using a priori knowledge,
we delete false positive/negative extremities (see descrip-
tion of the Find Profile Contour module, Table 10). The
order of the selected extremities, however, can be changed
if the tongue is visible. In that case a valley representing the
attachment of the upper lip with the tongue, a peak repre-
senting the tip of the tongue, and a valley representing the

attachment of the tongue with the bottom lip, would be
detectable between the points P6 and P8. In the case of
the lips sucked into the mouth, only the valley of P7
would be detectable while peaks P6 and P8 would not
exist. Therefore it is important to track the profile points
in a particular order. The points P1 to P5 should be located
first. Then the points P10 and P9 should be located. After
excluding all of the extreme cases, such as visible tongue,
the points P8, P7 and P6 should be located.
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Fig. 3. Shape of the lower lip when pulled downwards.

Fig. 4. Mouth shape when lower lip is sucked in.

Fig. 5. Mouth shape when cheeks are sucked in.

Fig. 6. Shape of the chin furrows when chin is raised.

Table 4
Representation of AUs with our frontal-view model

AU FACS description Mapped on model

1 Raised inner brows increased f1 & f2
2 Raised outer brow increased f1 or f2
4 Lowered brows or Frowned

brows
non-increased f20, (decreased f1
& f2) or increased f19

5 Raised upper lid increased f5 or f6
6 Raised cheek increased f21 or f22
7 Raised lower lid non-increased f20, non-

increased f21, non-increased
f22, f9 . 0, f10. 0, f5. 0,
f6 . 0, decreased f7 or f8

8 Lips towards each other (teeth
visible, lips tensed and less
visible)

decreased f25, increased f11,
f17 . 0

9 Wrinkled nose increased f20
10 Raised upper lip non-increased f20, decreased f11
12 Mouth corners pulled up decreased f12, decreased f13,

increased f14, increased f15
13 Mouth corners pulled sharply up decreased f12, decreased f13,

decreased f14, decreased f15
14 Mouth corner pulled inwards increased f23 or f24
15 Mouth corner pulled downwards increased f12 or f13
16 Depressed lower lip (see Fig. 4) present f26
17 Raised chin (see Fig. 7) present f29
18 Lips puckered (as pronouncing

the word “fool”)
decreased f16, absent f28

20 Mouth stretched increased f16, non-increased
f12, non-increased f13

23 Lips tightened but not pressed absent f27 & f30, decreased f17,
f17 . 0, non-decreased f25,
non-decreased f16, non-
increased f12, non-increased f13

24 Lips pressed together absent f27 & f30, decreased f17,
f17 . 0, non-decreased f25,
decreased f16, absent f28

25 Lips parted threshold.f18 . 0 increased
f17, or non-increased f18,
increased f17, non-decreased f25

26 Jaw dropped f18 between two thresholds
27 Mouth stretched f18. threshold
28 Lips sucked in f17� 0
28b Bottom lip sucked Present f27
28t Top lip sucked in Present f30
35 Cheeks sucked in Present f28
38 Nostrils widened absent AUs: 8, 9, 10, 12, 13, 14,

15, 18, 20, 24, 28, increased
HH1

39 nostrils compressed decreased HH1
41 Lid dropped non-decreased f7, decreased f9,

decreased f5, or decreased f10,
decreased f6, non-decreased f8



From a total of 44 AUs defined in FACS, 20 AUs can be
uniquely described using our side-view face model. The
representation of AUs-codes with our side-view face
model is given in Table 6.

Harmon has developed a similar model of the profile
points for a face identification system [15]. However, facial
expression emotional classification and face identification
are different tasks. Personal characteristics such as the
length of the nose are considered as unimportant data in
facial expression categorisation as well as the opening of
the mouth is considered as noise in face identification. Our
side-view face model is developed to be suitable for facial
expression emotional classification and, therefore, merely
resembles Harmon’s model.

3.3. Combined face model

The motivation for combining the frontal- and the side-
view model is the increase in quality of the face model. With
the frontal- and the side-view model separately, we can
uniquely describe the activation of 27 and 20 different
AUs respectively. When the two views are combined in a
single face model, 29 different AUs can be uniquely
described (see Table 7).

Also, each facial view is more suitable for observing
some AUs activation. For example, the frontal-view
model is more suitable for the description of the AUs that
effect the eyes, while the side-view model is more suitable
for the description of the AUs that effect the jaw and the
chin. Furthermore, it is wiser to use the AUs description that
does not depend on tracking some noisy image feature. For
example, the curvatures of the profile contour function are
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P

Fig. 7. Face profile points.

Table 5
Facial points of the side-view

Point Point description

P1 Top of the forehead, joint point of the hair and the forehead
P2 Eyebrow arcade, first peak of the curvature of the contour

function
P3 Root of the nose, first valley of the curvature of the contour

function
P4 Tip of the nose, absolute maximum of the curvature of the

contour function
P5 Upper jaw, first valley after the P4 peak of the curvature of

the contour f-on
P6 Upper lip, first peak after the P4 peak of the curvature of the

contour f-on
P7 Lips attachment, first valley after the upper lip (the P6 peak)
P8 Lower lip, first peak after the tip of the chin (the P10 peak)
P9 Lower jaw, first valley after the tip of the chin (the P10 peak)
P10 Tip of the chin, first peak starting from the end of curvature of

the contour f-on

Table 6
Representation of AUs with our side-view model

AU Movement of profile points

1 P2 upwards, curvature between P1 and P2 contains a row of
peaks and valleys

1 1 2 P2 upwards, curvature between P1 and P2 remains without local
extremities

4 P2 downwards, curvature between P2 and P3 is not increased
8 Distance P5-P6 increased, P6 outwards, P8 outwards, curvature

between P6 and P8 is more straight and angular ([), distance P8-
P10 increased

9 Curvature between P2 and P3 increased
10 P6 upwards and outwards, distance P5-P6 decreased, curvature

between P2 and P3 is not increased
12 Distance P5-P6 decreased, P6 inwards, P8 inwards, distance P6-

P8 increased
13 Distance P5-P6 decreased, P6 inwards, P8 inwards, distance P6-

P8 remains same
15 Distance P5-P6 increased, curvature between P5 and P6 is not

increased, P6 downwards, P8 downwards, distance P6-P8 not
decreased

16 P8 downwards and outwards, distance P8-P10 decreased
17 P10 inwards
18 P6 outwards, P8 outwards, curvature between P6 and P8 is not [
19 Tongue showed, curvature between P6 and P8 contains two

valleys and a peak
20 Distance P5-P6 increased, curvature between P5 and P6 is not

increased, P6 inwards, P8 inwards, distance P6-P8 not decreased
23 Distance P5-P6 increased, curvature between P5 and P6 is not

increased, P6 downwards and inwards, P8 upwards and inwards,
distance P6-P8 decreased but it is.0 and.threshold_1

24 Distance P5-P6 increased, curvature between P5 and P6 is not
increased, P6 downwards and inwards, P8 upwards and inwards,
distance P6-P8 decreased but it is.0 and,threshold_1

25 Distance P6-P8 is increased, distance P4-P10, threshold_2
26 Distance P4-P10 between threshold_2 and threshold_3
27 Distance P4-P10. threshold_3
28 Points P6 and P8 are absent
28b Point P8 is absent
28t Point P6 is absent
36t Bulge above the upper lip produced by the tongue, curvature

between P5 and P6 is increased
36b Bulge under the lower lip produced by the tongue, P9 is absent



less noisy than the image intensity that increases when
wrinkles are present (or shadows, birthmarks and obstacles).
Consequently, activation of AU4, AU9 and AU17 is
detected more reliably from the side-view than from the
frontal-view. Combining the two views yields a face
model with fewer weaknesses and fewer complicated
AUs-descriptions than a single-view model.

When processed in parallel, the two facial views reveal
redundant information about the facial expression. The way
of reducing this redundancy depends on a twofold, namely
the successfulness of localising the model features and the
suitability of describing an AU with the particular facial
view model. Analysing the suitability of each facial view
model for the description of a particular AU-code, resulted
in the rules of Table 7. In the case that all of the model
features are successfully tracked the rules of Table 7 will
be applied for a final generation of face geometry. In the
case that the contour of the profile is not successfully
detected, the facial expression will be AUs-encoded using
the rules given in Tables 4 and 5. If some frontal-view
model feature is not located successfully, the related rules
of Table 7 will be substituted with the appropriate rules of
Table 6. A detailed description of genera-ting unambiguous
face geometry is given in Section 5.

4. Hybrid facial feature detection

In contrast to the existing facial feature detectors
that utilise a single image processing technique
([2,5,10,18,20]), ISFER represents a hybrid approach to
facial feature detection. The ISFER Workbench, which
represents the first part of our system (see Fig. 1), combines
multiple feature detection techniques that are applied in
parallel. Instead of fine-tuning the existing facial feature
detectors, we are combining known techniques. The
ISFER Workbench is a Java-implemented tool that has
been designed according to this multi-detector paradigm.
The overall structural design of the ISFER Workbench
and its GUI are explained in Rothkrantz et al. [32]. We
are giving an overview of the workbench design in Section
4.1 where we include a description of all facial feature
detectors integrated into the ISFER Workbench. Sections
4.2 and 4.3 provide a detailed description of newly devel-
oped facial feature detectors, namely the NN-based eye
detector and the fuzzy classifier of mouth expressions.

4.1. ISFER workbench

The structure of the ISFER Workbench can be illustrated
as shown in Fig. 8. The modules of the ISFER Workbench
can be classified into three groups. The modules for gener-
ating digital dual-view face images, for filtering the image
data and for feeding other modules with this information
belong to the pre-processing group. The modules of the
pre-processing group are explained in Table 8. The modules
that perform detection of facial regions (e.g. mouth region)
belong to the detection group. The modules of the detection
group are also described in Table 8. The modules that loca-
lise the facial features belong to the extraction group. The
modules that perform tracking of the upper face features
(eyebrows, eyes and nose) are given in Table 10. The
modules that localise the mouth and the profile are described
in Table 10.

The ISFER Workbench operates in two modes, namely,
single-detector mode and multi-detector mode. In the
single-detector mode the user can select and then connect
an arbitrary number of modules in order to form a network
of modules that performs a desired detection of the facial
features (e.g. Fig. 9). At any moment the current network is
displayed to the user in a form of a directed graph where the
nodes of the graph depict the modules and the branches of
the graph depict the connections between the modules. Two
modules can be connected in a network when the output of
one module forms the input to the other module. Each time
when a connection is made, it will be checked if the data
types of the modules match. Only if they match, the connec-
tion between the modules will be allowed.

The workbench modules used in the example of Fig. 9 are
not the only algorithms used for localising the eyes,
eyebrows and mouth. For each facial feature, several detec-
tors have been integrated into the ISFER Workbench (see
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Table 7
Representation of AUs with the combined face model

AU Recognition

1 Based on frontal-view model
2 Based on frontal-view model
4 Based on side-view model
5 Based on frontal-view model
6 Based on frontal-view model
7 Based on frontal-view model
8 Based on side-view model
9 Based on side-view model

10 Based on side-view model
12 Based on frontal-view model
13 Based on frontal-view model
14 Based on frontal-view model
15 Based on frontal-view model
16 Based on side-view model
17 Based on side-view model
18 Based on frontal-view model
19 Based on side-view model
20 Based on frontal-view model
23 Based on frontal-view model
24 Based on frontal-view model
25 Based on side-view model
26 Based on side-view model
27 Based on side-view model
28 Based on side-view model
28b Based on side-view model
28t Based on side-view model
35 Based on frontal-view model
36t Based on side-view model
36b Based on side-view model
38 Based on frontal-view model
39 Based on frontal-view model
41 Based on frontal-view model



Tables 9 and 10). In the multi-detector mode, the user does
not interact with the workbench; each and every facial
feature detector integrated into the workbench is invoked
automatically. The result of each detector is stored in a
separate file. Those files form the input to the next stage
of the system’s processing—processing of redundant,
missing and inaccurate data that will result finally in
unambiguous face geometry. The Facial Data Evaluator is
described in Section 5.

4.2. Neural network approach to eye detection

Neural networks have an excellent capability to recognise
specific patterns. This property is exploited here to extract
graphical patterns from digital images. In our case the
graphical patterns that we are searching for are combina-
tions of pixel values (grey values). Due to its robustness and
generalisation power, a neural network can also recognise
patterns that resemble the original pattern. This is in contrast
to the conventional image processing techniques, which are
usually not capable of performing such an approximation.

The eye detector, implemented as the Eye NN workbench
module, utilises a 81× 4 × 1 backpropagation neural
network with a sigmoid transfer function. To detect the
eyes in a digitised image (320× 240 pixels; 256 grey
levels), the detector processes in two stages, coarse and fine.

For each of the eyes, a 9× 9 pixels box enclosing just the
eye is located in the coarse stage. The eye region is first
segmented from the input image using the workbench module
MRP to RFM. Then, a 9× 9 pixels scan window is scanned
over the obtained eye region. Each pixel of the scan window is
attached to an input neuron of the neural network, which has
been trained to recognise the iris of the eye. The location

where the highest neural response has been reached is
assumed to be the centre of the iris. In the next step, the
scan window is set around this point. If the location where
the highest neural response has been reached remains the
same as in the previous step, the position of the iris is
found. Otherwise, this step is repeated until the iris is found.
A 9 × 9 pixels scan window that will be used in the fine stage
of the algorithm is then set around the iris.

In the fine stage, the eye sub-features are located. The
idea about searching the characteristic points of the eye by
applying a neural network originates from the Hierarchical
Perceptron Feature Location method of Vincent et al. [39].
A difference between the two methods is in the choice of the
eye micro-features. The micro-features located by our eye-
detector are illustrated in Fig. 10. These micro-features are
invariant with respect to the size of the eye, with respect to
the shown facial expression, and with respect to the person
whom the eye belongs to. In correspondence with the iris of
the eye (located in the coarse stage of the algorithm), a 9× 9
pixels search area is set for each micro feature. Each pixel of
a search area is attached to an input neuron of a neural
network that has been trained to recognise the related
micro-feature. The location of the highest neural response
that is reached represents the location of the micro-feature.
A priori knowledge such as the symmetrical position of the
features is used to discard false positives.

The micro-features lie in fact on the border between the
eyelids and the eye. The algorithm ends by approximating
this border by two third-degree curves drawn through the
locations of the micro-features (see Fig. 10).

For the experiments 252 full-face images of nine different
persons were used. The pictures were divided into two
groups of 126 images. Each group consists of two times
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Fig. 8. Algorithmic representation of the ISFER workbench.



seven basic emotional expressions (happiness, anger, fear,
surprise, disgust, sadness, and neutral) shown by nine differ-
ent persons. One group of images has been used as a training
set and the other as the testing set of images. The images
were taken at a resolution of 320× 240 pixels and a colour
depth of 24 bits, which was reduced to 256 grey levels.

First, all of the images have been given to a human
observer. Using Adobe Photoshop and a mouse device,
the observer pointed the exact location of the eye
micro-features. Per image and for each micro-feature the
training pattern has been obtained by extracting (row by
row) 81-dimensional vector of the grey levels of the
pixels in 9× 9 pixels window, which has been set around
the micro-feature pointed out by the user. Per micro-
feature a 81× 4 × 1 backpropagation neural network has

been trained. Each network was trained using 126 input
vectors until a small mean squared error (,0.01) was
reached for the training vectors (after approximately
1000 training epochs).

The performance of the detection scheme is evaluated by
calculating the block distance (maximal difference inx and
y directions) between the estimated micro-features and the
manually located micro-features. If we denote the estimated
position of a micro-feature byp� �x; y� and the manually
assigned point bypM � �xM ; yM� then the performance indi-
cator is expressed byd�p;pM�:

The performance of the algorithm has been measured first
for the training set of images. The results of this test are
shown in Table 11. From this table one can see that the
localisation error, for all of the micro-features in all 126
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Table 8
The modules of the ISFER Workbench belonging to the pre-processing group and the detection group

Module Module description

Image to colour (pre-processing) Conversion of JavaImagedata to a flat array of pixels

Colour to grey (pre-processing) Conversion of the colour picture to a grey picture

Convolution filter (pre-processing) Noise removal and smoothing of the image by applying linear convolution filtering with Gaussian or a
Uniform filter [13].

Median filter (pre-processing) Enhancement of the continuous areas of constant brightness in the image and slight sharpening of the edges
by applying non-linear Median filter [13].

Grey to MRP implemented in C (detection) Creation of the layers of the Multi Resolution Pyramid by calculating the half of the current image
resolution (rounded to higher integer value) and averaging squares of 2× 2 to one, which half the image in
both directions. The routine is performed recursively until both image sizes equal 1 (see the illustration
hereunder).

MRP to RFM implemented in C (detection) The module reads the given Multi Resolution Pyramid and locates, on the given layer (the default layer is
2), the Raw Feature Map that represents a rough approximation of the locations of the facial features. First
the head is located by applying sequentially the analysis of the vertical histogram (showing the colour-
differences between the successive rows, pixel-wise) and then the horizontal histogram (showing the
colour-differences between the successive columns, pixel-wise). The peaks of the vertical histogram of the
head box correspond with the border between the hair and the forehead, the eyes, the nostrils, the mouth and
the boundary between the chin and the neck. The horizontal line going through the eyes goes through the
local maximum of the second peak. The x co-ordinate of the vertical line going between the eyes and
through the nose is chosen as the absolute minimum of the contrast differences found along the horizontal
line going through the eyes. The box bounding the left eye is first defined to have the same size as the upper
left face quadrant (defined by the horizontal and the vertical line) and to lie so that the horizontal line
divides it in two. By performing the analysis of the vertical and the horizontal histogram, the box is reduced
so that it contains just the local maximums of the histograms. The same procedure is applied to define the
box that bounds the right eye. The initial box bounding the mouth is set around the horizontal line going
through the mouth, under the horizontal line going through the nostrils and above the horizontal line
representing the border between the chin and the neck. The initial box bounding the nose is set around the
horizontal line going through the nostrils, under the horizontal line going through the eyes and above the
horizontal line going through the mouth. By analysing the vertical and the horizontal histogram of an initial
box, the box is reduced to contain just the tracked facial feature.

Find Head Contour, implemented in C
(detection)

The algorithm is based on the HSV colour model. The first step is to define the value of the parameter
Hue[ [260,300]. Analysis of 120 full-face images of different people results in the conclusion that the
Hueof the face colour seldom exceeds the interval of [240,60]. These experimental results also yield the
fact that the range ofHuenever exceeds 40 for the images of a single face, irrespective of change in the
lightning conditions. TheHue is defined as [240, averageHue2 20,averageHue1 20, 60] where the
averageHue is calculated as the average of theHue in the box containing a horizontal middle of the face.
The box is defined by analysing the vertical and the horizontal histogram of the input image. The face is
then extracted as the biggest object in the scene having theHuein the defined range. A similar method, but
more general across the human specie and based on the relative RGB model, is presented by Yang and
Waibel [45].



images, remained below 3 pixels. Moreover, in most of the
images the localisation error of each micro-feature is
approximately 0.5 pixels.

The results of the detection performance on the testing set
of images are shown in Table 12. From this table one can see

that the localisation error for all of the micro-features
remained below 4 pixels and that, in most of the images,
the error is approximately one pixel. In fact, most of the
larger localisation errors were caused by the difference in
the “definition” of the eye centre in the case of manual
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Table 9
The modules of the ISFER Workbench integrated in the extraction group—Nose-, eyes- and eyebrows detectors

Module Module description

Find Nose & Chin, implemented in C
(extraction)

First the head is segmented from the facial image by analysing the horizontal and the vertical signature of the
image [14]. Then, the linearly filtered and clipped image is thresholded and the seed-fill algorithm is applied
[6] for colouring of the important facial regions such as eyes, nostrils and mouth. The symmetry line between
the important facial regions is found using an adapted version of the algorithm based on Vornoi diagrams
and presented by O’Rourke [27]. The region, where it is looked for the nostrils, is defined in correspondence
with the second deepest valley of the brightness distribution along the symmetry line (a similar algorithm has
been used by Hara and Kobayashi [20]). The important facial regions, which are found previously by the
seed-fill algorithm, which belongs to the nostrils region, which are at approximately the same perpendicular
distance from the symmetry line, and which have the highest intensity values, are located as the nostrils. The
tip of the chin is located as the first peak after the third deepest valley (the mouth) of the brightness
distribution along the symmetry line.

Curve fitting of the eyebrow, simplify
polygon, draw polygon implemented in
C (extraction)

To localise the left eyebrow, the upper left face quadrant is first segmented from the facial image using the
facial axis found by the module MRP to RFM and the contour of the face found by the module Find Head
Contour. The eye-eyebrow region is determined throughout analysing the horizontal and the vertical
signature of the linearly filtered and thresholded image of the upper left face quadrant. The eyebrow region is
then obtained by clipping the triangle defined by the eye points (the corners and the top of the eye found by
one of the eye detectors) out of the eye-eyebrow region. Depending of the colour of the eyebrow (dark or
light), the eyebrow region is thresholded. After a unique colour is assigned to each of the objects in the scene,
the largest is selected and the rest of the objects are discarded. The 4-connected chain codes [31] are applied
to localise the eyebrow contour. At the end, two simplified second-degree curves smooth the obtained
contour.

Chain Code Eyebrow implemented in C
(extraction)

To localise the left eyebrow, the upper left face quadrant is first segmented from the facial image using the
facial axis found by the module MRP to RFM and the contour of the face found by the module Find Head
Contour. The segmented part is thresholded by applying the algorithm of minimum variance clustering [14].
The eye-eyebrow region is then located by analysing the horizontal and the vertical image signature [14].
The signatures are filtered using the closing morphological filters. The width of the region is set to the width
between the first and the last index of the maximal value of the smoothed vertical signature. The height of the
region is set two the width of the smoothed horizontal signature. The similar procedure of thresholding and
segmenting is applied once more in order to define the eyebrow region. The contour of the eyebrow is found
by applying the contour-following algorithm based on the 4-connected chain codes [31].

Eye NN implemented in C (extraction) Neural network approach to eye tracking. The method is described in detail in Section 4.1.

Snake Eye, implemented in C
(extraction)

To localise the box enclosing the eye, the same method is used as in Chain Code Eyebrow module. The
algorithm applies further the active contour method proposed by Kass et al. [17] with the greedy algorithm
for minimising of the snake’s energy function proposed by Williams and Shah [40].
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Table 10
The modules of the ISFER Workbench integrated in the extraction group – Mouth- and other features detectors

Module Module description

Curve fitting of the Mouth implemented
in C (extraction)

The box enclosing the mouth, found by the MRP to RFM module, is segmented from the facial image and
then filtered with a two-dimensional Gaussian low-pass filter. In the binarised image, the lowest highlighted
pixel is then selected as the boundary-following starting point. Directly connected pixel to the current pixel,
representing a zero crossing of the second derivative function of the mouth image, continues the mouth
boundary. The points where the conjunction of the lips ends and changes in disjunction are marked as the
mouth corners. A refined estimate of the mouth shape is then obtained by fitting two second-degree parabolas
on the upper lip and a second-degree parabola on the lower lip. The second order least square model
algorithm is used to find the best relation between the points of the extracted mouth contour and the
parameters of each of the parabolas.

Snake Mouth, implemented in C
(extraction)

The box enclosing the mouth, found by the MRP to RFM module, is first linearly filtered and segmented
from the facial image. Then the mouth-through line is found as a distinct valley in the vertical section of
intensity. The minimum of the line with lowest horizontal integral projection of intensity, representing the
centre of the mouth, is found first. A function of the vertical section of intensity through the found minimum
is created next. The minimum of this function is found and then the valley is detected by searching in both
directions for edge points (zero-crossings in the second derivation of intensity starting from the previously
found minimum). The mouth-through line is further defined using an altered area-growing algorithm. The
algorithm starts from the centre of the mouth and adds points that are 4-connected to the current point if their
intensity is lower than the mean intensity of the previously found valley. The algorithm applies further the
active contour method proposed by Kass et al. [17] with the greedy algorithm for minimising of the snake’s
energy function proposed by Williams and Shah [40]. The snakes start in the shape of ellipse whose
horizontal axis is the mouth-through line, elongated on both sides for 25%.

Fuzzy Mouth, implemented in C11

(extraction)
Fuzzy classifier of the mouth expressions. The method is explained in detail in Section 4.2.

Image intensity in Facial Areas,
implemented in C (extraction)

This module is still under development. The used algorithm is based on the results of several modules,
namely Chain Code Eyebrow, Eye Points NN and Curve fitting of the Mouth. The image intensity in a facial
region (features f19, f20, f21, f22, f23 and f24 of the frontal-view face model) is represented as the area of
the vertical signature function obtained for that facial region. The image intensity on the vertical axis of the
mouth (feature f25 of the frontal-view face model) is obtained as brightness distribution data [20] along that
line.

Find Profile Contour, implemented in
Java (extraction)

Wojdel et al. has presented the profile detector [42]. First theValueof HSV colour model is calculated and
exploited for the thresholding of the input profile image. The tip of the nose is then found as the most right
high-lighted part of the binary image. The tip of the chin is found as the first distinct minimum in the vector
of summed background pixels from the bottom. To solve the problem of face rotation, the line between the
tip of the nose and the tip of the chin is used as the x-axis of the new co-ordinate system. To obtain the profile
contour from the binary image, the number of background pixels are simply counted between the right edge
of the image and the first foreground pixel. This obtains a vector that represents a sampling of the profile
contour curve. To remove the noise from the contour, an average procedure is performed with a three-pixel
wide window, which is slid along the vector. The zero crossing of the 1st derivative of the profile function
defined extremes. Usually, many extremes are found (depending of the local profile change). The list of
extremes is processed in both directions from the global maximum. The decision about particular extreme
rejection is made using two consecutive records in the list. This obtains the list of extremes that reflect the
most distinct peaks/ valleys in the profile contour (see Table 5).



estimation and automatic estimation. Manually, the centre
of the eye was defined as the centre of the iris while the
neural network tends to find the centre as the darkest point
of the iris. However, when comparing the performance of
different eye-detectors with the performance of our eye-
detector similar error distributions are found. The average
error of different eye-detectors was measured to be 0.98
pixels for the same resolution of testing images [30].
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Fig. 9. Screenshot of the ISFER workbench.

Fig. 10. Curve fitting on the eye micro-features.

Table 11
Distribution of d�p; pM� for the localised right and left eye micro-features
over the training set of 126 images

0 0.5 1 1.5 2 2.5 3

Right eye
Left 14 83 22 5 2 0 0
Left-top 5 74 30 9 4 1 3
Right-top 7 71 23 12 6 5 2
Right 16 91 18 0 1 0 0
Right-bot. 8 77 34 6 1 0 0
Left-bot. 6 81 33 2 3 1 0
Centre 8 65 45 8 0 0 0

Left eye
Left 19 87 18 2 0 0 0
Left-top 4 62 41 12 2 0 5
Right-top 3 68 39 9 2 1 4
Right 22 89 15 0 0 0 0
Right-bot. 11 82 29 4 0 0 0
Left-bot. 9 81 32 2 0 2 0
Centre 9 69 38 10 0 0 0



4.3. Fuzzy classifier of the mouth expressions

The examination of children’s or caricature drawings led
us to an interesting conclusion. The mouth expression can
be shown using only a single drawing line that still perfectly
reflects the intention of the drawer. This led us further to the
conclusion that the appropriate representation of the mouth
shape may be the information about the average edge inten-
sity and direction in the corners of the mouth. If the edge is
on average “going up”, mouth would be interpreted as
“smiling”. If the edge is on average “going down”, mouth
would be interpreted as “sad”. This idea has been imple-
mented by our research team in a form of a fuzzy classifier
of mouth expressions [41].

The processing of the module starts with locating the
mouth region and the vertical axis of the mouth by applying
the MRP to RFM workbench module. Then a fuzzy reason-
ing for edge detection is performed based on two character-
istics of the gradient, namely, the gradient value
corresponds with local steepness of the function and the
function is locally symmetrical along the gradient direction.
The basic idea of fuzzy reasoning for edge detection origi-
nates from Law et al. [21]. Still, theirs and our approach
differ from each other—our main information is the direc-
tion of the gradient rather than its value.

The fuzzy reasoning proceeds as follows. The numerical
values representing symmetry and steepness level are first
fuzzified into the labelslow, mediumor high and then
passed to the reasoning part of the process. The reasoning
part is based on nine rules such as “if the steepness is high
and the symmetry level is high then the edge intensity in this
point is high”. This part results in the labelslow, medium
andhigh, which depict the edge intensity in a given point.
The information about the direction of the mouth symmetry

axis is used to obtain the information about both, the
intensity and the direction of the edge in a given point.
Combining the intensity and the direction of the edge in a
given point results in a vector representation of that point.
The obtained vector-field for the whole mouth region is then
averaged and 100 average vectors are passed to a 100× 6 ×
4 × 4 × 3 backpropagation neural network.

The used network layout (see Fig. 11) reflects the vertical
symmetry of the mouth. The implemented architecture
contains two 50× 3 × 2 “features” networks set in parallel
(one for each side of the mouth) whose output is passed
further to a 4× 3 “recognition” network. The output of
the network is a singular emotional classification of the
shown mouth expression—one of smile, neutral and sad
categories.

Both features networks should perform the same task and
they can be implemented, therefore, as two copies of the
same network. In that case the error is propagated within the
single network as well as from the recognition network to
both of the features networks. This speeds up the training
process and results in better generalisation properties of the
network.

To evaluate the method a set of 100 full-face images has
been used. The images have been given first to a human
observer who classified the images, according to the appear-
ance of the mouth, into one of the three used categories.
Then in each experiment, ten images were randomly chosen
as the test set. The remaining 90 images were processed first
by the fuzzy part of the algorithm and then passed to the
network as the training set. In each expirement the network
achieved full 100% recognition level for both, the training
and the test set of images. The training took in average 60
epochs. Changes in the average error of the network
response during the training process are illustrated in
Fig. 12. An average response error of the testing set is
calculated to be 0.08.

It is not proved yet whether the proposed method is
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Fig. 11. NN-architecture of the fuzzy classifier.

Table 12
Distribution of d�p; pM� for the localised right and left eye micro-features
over the testing set of 126 images; ifd�p;pM� � 2:5 or d�p; pM� � 3:5 the
localisation error is counted as 3, 4 pixels, respectively

0 0.5 1 1.5 2 3 4

Right eye
Left 9 24 54 37 1 1 0
Left-top 1 17 49 31 24 3 1
Right-top 0 21 43 32 21 3 6
Right 11 19 62 32 0 2 0
Right-bot. 4 17 51 40 12 2 2
Left-bot. 2 20 51 41 9 1 2
Centre 2 42 57 24 1 0 0

Left eye
Left 11 18 56 39 2 0 0
Left-top 0 12 49 42 15 6 2
Right-top 1 13 53 36 12 7 4
Right 8 26 61 27 4 0 0
Right-bot. 6 21 50 33 13 2 1
Left-bot. 3 19 52 40 4 5 3
Centre 2 47 59 15 3 0 0



sufficiently sensitive. The method uses only some average
properties of the image, which do not have to depict subtle
differences between various mouth expressions. Still those
fine changes in mouth appearance are crucial for a proper
(emotional) interpretation of mouth expressions. The
method proved quite efficient, however, as a check facility.
Overall correctness of the results of other mouth-detectors
integrated into the ISFER Workbench can be easily checked
on basis of the here presented fuzzy classifier. Using a
simple set of rules, the output of the fuzzy classifier can
be compared with the properties of the mouth contour
localised by another mouth detector. The rules such as “if
smilethen the corners of the mouth are up” extend the fuzzy
classifier of mouth expressions and form mouth-detectors
checking facility, which has been integrated into the
ISFER Workbench as the Fuzzy Mouth module.

5. Dealing with ambiguous facial expression information

In the previous version of ISFER, we used only the
frontal-view face model and we tracked the model features
by applying the network of workbench modules illustrated
in Fig. 9. The accuracy of the resulting face geometry
depended, therefore, on the performance of the modules
illustrated in Fig. 9. If one of the modules would fail to
localise a certain facial feature, we were encountering
missing data.

On the other hand, the inference engine of the system
(HERCULES) has been developed to reason on a set of
exact data about the face [28]. This means that the system
would reason on the shown facial expression in a correct
way only if all of the necessary facial features have been
successfully localised. In the case that one of the modules
would fail to localise a certain facial feature, we were substi-
tuting the missing data about the currently examined facial
expression with the appropriate data from the neutral facial
expression. By doing so, accurate information on the exam-
ined facial expression was lost.

To enhance the system, we introduced a number of novel-
ties. Two most important are the dual-view face model and
the hybrid facial feature detection. The new face model
based on a dual facial view resulted in a more realistic
and a more reliable representation of the 3D face. The

multi-detector operating-mode of the ISFER Workbench
ensured maximal reduction of missing data in the output.
Namely, for each facial feature a number of detectors based
on different algorithms have been built into the ISFER
Workbench. Applying several feature-detection approaches,
where each one has circumstances under which it performs
especially well, reduces the possibility of failed tracking.

After an automatic invoking of each and every detector
integrated into the workbench (multi-detector operating-
mode), the result of each detector is stored into a separate
file. Those files, representing the face geometry of the exam-
ined facial expression, form further the input to the Facial
Data Evaluator part of ISFER (see Fig. 1).

The information stored in the files is redundant. In the
case that none of the detectors of a certain facial feature
performed a successful detection, the workbench output
files can contain missing data about that facial feature.
The workbench output files can also contain highly inaccu-
rate data about some facial feature. As already pointed out
while describing our face model, the way of dealing with
ambiguous facial expression information depends on a
twofold. Namely, the suitability of describing a particular
AU with the particular facial view model (given in Table 7)
and the overall success ratio of the given detector. We
assigned a certain priority to each particular facial feature
detector based on both, the information given in Table 7 and
the testing results obtained while evaluating the given detec-
tor. Based on Table 7, a highest priority has been assigned to
the detectors of profile, mouth, eyes and eyebrows. Based on
the evaluation results, different priorities were assigned to
different detectors of the same facial feature. The facial
feature detectors and their priority levels are given in
Table 13.

Dealing with ambiguous facial expression information is,
in fact, the process of checking, reducing and adjusting the
set of files that form the output of the multi-detector
operating of the ISFER Workbench. Checking the work-
bench output is flagging the localised facial features with
the labelsgood, missing, andhighly inaccurate. The process
of checking the workbench output is described in Section
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Fig. 12. Average error in training epoch.

Table 13
The priority levels of the workbench extraction modules

Workbench module Priority

Find Profile Contour 3
Fuzzy Mouth 3
Snake Mouth 2
Curve fitting of the Mouth 3
Snake Eye 2
Eye NN 3
Chain Code Eyebrow 2
Curve fitting of the Eyebrow 3
Find Nose & Chin 2
Image intensity in facial
areas (under development)

2

Mouth shapes (under
development)

1



5.1. The reduction and adjustment of the workbench output
is based on the priority levels of the facial feature detectors
and on the labels assigned to the localised features in the
checking stage of the Facial Data Evaluator. This process is
explained in Section 5.2. The result of dealing with redun-
dant, missing and highly inaccurate facial data is unambig-
uous face geometry. The features defined by our face model
can be extracted directly from the obtained face geometry.
They form further the input to the ISFER inference engine
HERCULES.

5.1. Checking the facial data

Dealing with missing and highly inaccurate data is based
on two kinds of knowledge, namely, the knowledge about
the neutral facial expression and the knowledge about the
facial proportions. When the system is used as an observing
tool of a particular person, the pre-processing step of ISFER
consists of acquiring a dual-view of the person’s neutral
facial expression. To ensure correct extraction of the facial
features from someone’s neutral facial expression, it is
highly recommended that the results of automatic feature
detection are visually inspected and if necessary, that the
choice of facial feature detectors is further manually made.
This information is further used to deal with missing and
highly inaccurate facial data, encountered in the examined
facial expression.

Facial proportions are the facial characteristic distances
such as the distance between the eyes and the distance
between the centres of the nostrils. The knowledge about
someone’s facial proportions can be acquired from a full-
face image of someone’s neutral facial expression.
Considering the fact that a 3D face is captured on a 2D
image, the facial proportions are not retained if the head is
rotated. However, the camera setting defined for ISFER (see
Section 1.3), ensures that no rigid head motions can be
encountered. Therefore, the position of the head (the size
and the orientation) and the facial proportions remain the
same in the examined facial expression as in the neutral
facial expression in both facial views.

The set of output files resulting from the multi-detector
operating of the ISFER Workbench, is evaluated first in
terms of missing data. If a single point represents a facial
feature, the file containing that feature is labelled asmissing.
In the case of the pair features (eyes and eyebrows), only if a
single point represents both facial features the file is labelled
asmissing. If only one of the features is detected as a single
point then the file is labelled asmissing one.

The workbench output files that have not been labelled as
missingare evaluated further in terms of highly inaccurate
data. The evaluation process consists of the following steps.

1. To conclude that the profile contour is badly detected
(as a result of for example badly performed thresholding
of the profile image), the tip of the nose and the top of
the forehead should deviate for at least ten pixels from
these points localised in the neutral facial expression. A

slight deviation can be also the result of facial muscles
contraction (e.g. backwards pull of the ears that pulls
the border between the hair and the forehead towards
the top of the head). In that case, the file containing the
tracked profile contour should not be labelled ashighly
inaccurate.

2. To conclude that the eyes are badly detected one of the
following two requirements should be fulfilled. First, the
points representing the inner corners of the eyes are
immovable points considering the camera setting. If
the position of B and B1 (see Fig. 2) deviates for at
least five pixels from the neutral expression position
of B and B1, one or both eyes will be flagged as
badly localised. A slight deviation in the position of
the inner corners of the eyes uncovers inaccurate- but
no highly inaccurate detection. Although the narrowing
and the widening of the eyes can be unilateral, it is
almost always bilateral [8]. So, the proportion of one
eye comparing to the other should be the same in the
examined expression as in the neutral expression. If this
is not the case, one or both eyes will be flagged as badly
localised. If both eyes are flagged as badly tracked, the
file containing the tracked eyes will be labelled ashighly
inaccurate. If only one eye is flagged as badly localised,
the file will be labelled ashighly inaccurate one. This
procedure is applied to each file containing the result of
an eye detector.

3. In the case of the eyebrows, the important fact is that no
muscle contraction can elongate or de-elongate the
eyebrow [8]. This and the camera setting, ensure that
the area size of each eyebrow remains the same in each
examined frontal-view of the observed person. If the
size of the eyebrow area deviates for at least ten pixels
from the size of that area measured in the neutral facial
expression, the eyebrow will be flagged as badly loca-
lised. If both eyebrows are flagged so, the file containing
this information will be labelled ashighly inaccurate. If
only one eyebrow is flagged as badly localised, the file
will be labelled ashighly inaccurate one. This proce-
dure is applied to each file containing the result of an
eyebrow detector.

4. The points representing the centres of the nostrils are
immovable points considering the camera setting. So,
irrespectively of the performance of the module Find
Nose & Chin, the correct location of H and H1 (see
Fig. 2) can be always extracted from the neutral facial
expression. Still, if the nostrils are not localised
correctly by the module Find Nose & Chin, the prob-
ability that the tip of the chin is also badly detected is
high. If the tracked location of H and H1 deviates for
more than five pixels from the neutral expression posi-
tion of H and H1, the file containing the output of the
module Find Nose & Chin will be labelled ashighly
inaccurate.

5. Checking the accuracy of a mouth detector is a pretty
difficult task considering the diversity of the possible
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mouth movements. The mouth can be elongated or de-
elongated, wide open or tightened, puckered or sucked
in, laughing or crying. A good way to check if the
mouth has been tracked correctly is to compare the
tracked mouth shapes in two subsequent frames of a
facial image sequence. If the extracted shapes differ a
lot, it would be concluded that the mouth has been badly
tracked in the currently examined frame. ISFER does
not deal, however, with image sequences; it deals with
still images. The check that we are performing consists
of two steps. First, the opening of the lips (distance KL,
Fig. 2) calculated from the localised mouth contour is
compared to the distance between the lips calculated
from the profile contour (distance P6P8, Fig. 7). If the
compared distances deviate for more than five pixels,
the file containing the mouth contour will be labelled
as highly inaccurate. If the mouth contour passes this
test, it is checked further with the mouth-detector check-
ing facility implemented as the Fuzzy Mouth module
(see Section 4.2). If the mouth contour doesn’t pass
this second test, the file containing it will be labelled
ashighly inaccurate. This procedure is applied to each
file containing the result of a mouth detector. The
evaluation explained here, consider only inaccuracies
in the vertical stretching of the mouth (and that only
in the case that the file containing the profile contour
is not labelled ashighly inaccurate) and inaccuracies in
the position of the mouth corners. At the moment, we
are not able to take into account inaccuracies in the
horizontal stretching of the mouth. This forms a short-
coming of the Facial Data Evaluator.

6. Evaluating the accuracy of the module Image Intensity
In Facial Areas and the module Mouth Shapes is not
implemented yet, as well as the modules themselves
are still under development. However, this does not
form a greater shortcoming of the system considering
the fact that the results of these modules are not neces-
sary for the processing of the system (see Table 7). Still,
in order to facilitate a full-scale reasoning about both
facial views, these modules will be integrated into a next
version of the system.

At this point, the files that have not been labelled asmissing
or highly inaccurateare labelled asgood.

5.2. Reduction/adjustment of the facial data

After the workbench output files that are labelled as
missingare discarded, the reduction and the adjustment of
the workbench output proceeds as follows.

1. The file containing the profile contour is not discarded
even if labelled ashighly inaccurate. The motivation for
doing so is the overall performance of the detection
scheme. The algorithm has been tested on 112 profile
images representing seven basic emotional expressions
shown twice by eight different persons. The images were

taken at a resolution of 240× 290 pixels and a colour
depth of 24 bits. Using Adobe Photoshop and a mouse
device, the profile characteristic points (Fig. 7) were
manually pointed by a human observer in all 112 images.
The performance of the workbench module Find Profile
Contour is evaluated by calculating the block distance
(maximal difference in x and y direction) between the
estimated and the manually located profile characteristic
points in each testing image. The performance of the
algorithm is shown in Table 14. The localisation error
for all profile characteristic points remained below 5
pixels and in most images the error was approximately
2 pixels. Most of the errors were caused by the difference
in “definition” of the profile characteristic points in the
case of manual and automatic estimation. Manually, the
points were defined as the extremes of the profile contour
while the automatic scheme tends to find the extremes of
the curvature of the profile contour. Anyway, the file
containing the output of the module Find Profile Contour
will rarely (if ever) be labelled ashighly inaccurate
considering the overall performance of the algorithm
with an average localisation error of 2 pixels.

2. Each workbench output file, which contains the results
of an eye detector and has been labelled ashighly
inaccurate, is discarded. If there is no eye-detector
file left, the missing data is substituted with the eyes
localised in the neutral facial expression. Otherwise,
the non-discarded result of the eye detector with a
highest priority (see Table 13) will be used in system’s
further processing. The results of other eye detectors
will be discarded in that case. Still, if the eye-detector
file with a highest priority is labelled asmissing oneor
highly inaccurate one, the result of an eye detector
with a lower priority will be used to substitute the
data about the badly localised eye. If there is no detec-
tor with a lower priority, i.e. all are discarded or are
labelled ashighly inaccurate onefor the relevant eye,
the successfully localised eye will be used to substitute
the data about the badly localised eye.
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Table 14
Distribution ofd�p; pM� for the localised profile characteristic points (PCPs)
over the testing set of 112 images; the localisation error is rounded to a
higher integer value

0 1 2 3 4 5 6

PCP
P1 8 14 49 27 11 3 0
P2 4 10 43 36 12 7 0
P3 5 9 48 39 9 2 0
P4 12 19 51 29 1 0 0
P5 5 23 47 34 3 0 0
P6 7 20 50 29 2 4 0
P7 3 8 45 40 10 6 0
P8 7 21 49 29 3 3 0
P9 2 10 40 37 15 8 0
P10 11 17 50 28 5 1 0



3. In the case of the eyebrows the processing is the same
as in the case of the eyes.

4. If the file containing the result of the workbench
module Find Nose & Chin is labelled ashighly inac-
curate, the nostrils will be set to the nostrils localised
in the neutral facial expression. In that case, the reason-
ing about the movement of the chin (AU25, AU26 and
AU27) will be based on the profile-view model, even if
the file containing the profile contour is labelled as
highly inaccurate. The motivation of doing this is the
overall performance of the module Find Profile
Contour (Table 14). If the file containing the result of
the Find Nose & Chin module is labelled asgood,
while the file containing the profile contour is labelled
ashighly inaccurate, the reasoning about the movement
of the chin will be based on the frontal-view model. In
that case the rules of Table 7 for AU25–AU27 are
replaced by the appropriate rules of Table 4.

5. Each workbench output file, which contains the result
of a mouth detector and has been labelled ashighly
inaccurate, is discarded. If there is no mouth-detector
file left, the missing data is substituted with the mouth
detected in the neutral facial expression. Otherwise, the
non-discarded result of the mouth detector with a high-
est priority (see Table 13) will be used in system’s
further processing.

The current processing of the ISFER Facial Data Evalua-
tor has several shortcomings. First, the currently implemen-
ted data evaluation process will not discover a mouth
contour that greatly extends the horizontal length of the
actual mouth. Second, all data labelled ashighly inaccurate
will be discarded and, if no data has been labelled asgood,
the relevant facial feature detected in the neutral facial
expression will substitute the missing feature. By doing
so, accurate information about the examined facial expres-
sion gets lost. Finally, ISFER is not able to deal with minor
inaccuracies encountered in the workbench output.

To enhance the system’s processing we should implement
both, dealing with facial image sequences and fuzzy reason-
ing on facial image data.

A facial expression evolves from a minimal intensity to a
maximal intensity (if no emotional shock interrupts it). This
means that the global characteristics of a shown expression
do not change drastically during a short time interval
between two subsequent frames of a facial image sequence.
If the system could deal with image sequences, tracking of
each facial feature could be checked in correspondence with
the relevant feature tracked in the previously examined
frame. Obviously, this will enhance the facial data evalua-
tion process.

By implementing a fuzzy reasoning, a certainty level
would be assigned to the obtained results. If the assigned
certainty is based on the accuracy of the performed facial
feature tracking, the system would be able to reason on
facial data having any level of inaccuracy. This as well as

the aspect of dealing with facial image sequences is
currently under development.

The result of the Facial Data Evaluator is the face
geometry, unambiguously defined by reduced and adjusted
workbench output files. The features defined by our face
model (Tables 2 and 5) can be extracted straightforwardly
from the files containing the results of feature detectors. The
extraction is performed in the Model Data Acquiring step of
the system’s processing illustrated in Fig. 1. The model
features form further the input to the reasoning mechanism
of the system.

6. Facial data analysis

The ISFER inference engine is called Human Emotion
Recognition Clips Utilised Expert System (HERCULES).
The name remained in use although the original version of
HERCULES, which dealt exclusively with manually
measured frontal-view facial data [28], has been refined to
reason on dual-view facial data and form an integral part of
ISFER. HERCULES performs automatic facial expression
classification in both, AU categories and emotion cate-
gories. Classification of expressions in the AU categories
is described in Section 6.1. Classification in the emotion
categories is explained in Section 6.2.

6.1. Automatic face action tracking

The existing emotion classifiers [2,10,37] singularly
categorise examined facial expressions—in one of anger,
fear, happiness, surprise, disgust, sadness, and neutral
categories. In other words, they are not capable of perform-
ing a classification of non-prototypic expressions (such as
blends of emotional expressions). In order to develop a
system that can recognise complex non-prototypic facial
expressions, the face actions should be recognised in the
observed face images.

We achieved an automatic face action recognition in two
steps. First we perform automatic extraction of the facial
features in the examined facial image by utilising the multi-
detector processing of the ISFER Workbench. Then the
obtained face geometry is automatically converted into a
set of activated AUs by utilising the rules of the ISFER
inference engine. These rules are given in Table 7 and in
the corresponding Tables 4 and 6.

The rules representing the description of the AUs-codes
in terms of our combined-view model have been validated
twice. First, we asked three certified FACS coders to
produce the facial expressions of separate AU activation,
according to the rules given in Table 7 and the correspond-
ing tables. Only the changes described in the tables have
been produced, the appearance of other facial features is left
unchanged. Dual views are recorded and the acquired 96
images �3 × 32 expressions of separate AU activation,
Table 7) were given for evaluation to other two certified
FACS coders. In 100% of the cases, the image representing

M. Pantic, L.J.M. Rothkrantz / Image and Vision Computing 18 (2000) 881–905 899



the activation of a certain AU, produced according to our
rules, has been labelled with the same AU-code by the
FACS coders. This result was expected, however, consider-
ing the fact that all of the rules for representing the AUs-
codes in terms of our face model have been generated from
the linguistic descriptions given in FACS.

The second validation test of the rules for AU recognition
using our face model concerns the automatically performed
face action encoding in 496 dual views. The images repre-
sent 31 expressions of separate AU activation shown by
eight certified FACS coders twice�2 × 8 × 31�: All of the
images have been made strictly according to the rules given
in Tables 7, 6 and 4. Dual views have been recorded under
constant illumination using fixed light sources and none of
the subjects had a moustache, a beard or wear glasses.
Subjects were of both sexes and ranged in age (22–33)
and ethnicity (European, South American and Asian). The
average recognition rate was 92% for the upper face AUs
and 86% for the lower face AUs (Fig. 13). In only 2% of the
images (11 images) the detection failed completely. As
expected, a lower recognition rate has been achieved by
automatic than by manual facial expression classification
in the AU categories. We should point out that, the auto-
matic recognition errors were caused by the localisation
errors resulting from the facial feature detectors integrated
into the ISFER Workbench and not by some semantic errors
of the implemented recognition rules. Improvement of the
integrated detectors, that also involves improvement of
currently available image processing techniques, will yield
system’s higher recognition rate of the face actions.

Currently, if the activation of a particular AU is recog-
nised, an intensity level of 100% will be assigned to it.
Otherwise, an intensity level of 0% will be assigned to
it. We are investigating the methods to make the intensity

of an activated AU dependent on the intensity of the related
model deformation. We are doing so under the condition
that the reasoning of the system remains person-indepen-
dent.

The production rules that convert the model-based face
geometry resulting from the ISFER Facial Data Evaluator
into the set of activated AUs, form the first part of the ISFER
inference engine (see Fig. 1). The second part of it classifies
the shown facial expression in the emotion categories.

6.2. Emotional classification of facial expressions

Classification of the shown facial expression in the
emotional categories anger, disgust, fear, happiness, sadness
and surprise, is performed by comparing the AUs-coded
description of the shown expression to each AUs-coded
description of the expression that characterises a particular
emotion category. The used AUs-coded descriptions of the
expressions characteristic for the six basic emotional
categories are given in Table 15. These AUs-coded
descriptions have been acquired from the linguistic
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Fig. 13. Face action recognition performance of ISFER when analysed 16 dual views of each of the 31 separately activated AUs.

Table 15
Description of the six basic emotional expressions in terms of AUs

Expression Aus-coded description

Happiness 61 121 161 (25 or 26)
Sadness 11 4 1 (6 or 7)1 151 171 (25 or 26)
Anger 41 7 1 (((23 or 24) with or not 17) or

(161 (25 or 26)) or (101 161 (25 or 26)))
with or not 2

Disgust ((10 with or not 17) or (9 with or not
17))1 (25 or 26)

Fear (11 4) 1 (5 1 7) 1 201 (25 or 26)
Surprise (11 2) 1 (5 without 7)1 26



descriptions of the six basic emotional expressions given by
Ekman [7,9].

The AUs-coded descriptions of the six basic emotional
expressions given in Table 15 represent in fact the produc-
tion rules of ISFER inference engine (given in a reader-
oriented pseudo-code), which are used for automatic classi-
fication of the basic emotional expressions. The semantic
correctness of the rules has been evaluated in the following
way. We asked three certified FACS coders to produce
facial expressions according to the rules given in Table
15. Dual views were recorded and the acquired 54 images
�3 × 6 expressions shown by three subjects) were given for
evaluation to other five certified FACS coders. Table 16
shows the distribution of the correct recognition ratio and
the misrecognition ratio. According to Bassili [1], the
correct recognition ratio for the six basic emotional expres-
sions obtained by a trained observer is about 87%. The
achieved average of the correct recognition ratio is 86% in
the case of utilising our rules to produce emotional expres-
sions. This validates the used rules.

Human faces seldom show “pure” emotional expressions
[9]. Most of the time people express “blends” of emotional
expressions. A basic emotional expression expressed in a
lower intensity than 100% or some combination of the six
basic emotional expressions is indicated as a blended
emotional expression [9]. In order to deal with non-proto-
typic emotional facial expressions, we set a hypothesis –the
subsets of AUs-coded description of a basic emotional

expression should be classified as the very same emotional
expression. The hypothesis resulted in a set of 43 rules for
recognition of blended emotional expressions. The rules are
given in Table 17 in a reader-oriented pseudo-code. These
rules represent the complete set of the production rules of
ISFER inference engine. The rules for recognition of “pure”
emotional expressions, given in Table 15, represent the
combinations of the rules given in Table 17 and therefore
do not exist as such in HERCULES.

The semantic correctness of the rules given in Table 17
has been evaluated as follows. Recordings of three certified
FACS coders showing 43 relevant combinations of AUs
given in Table 17, made a set of 129 dual-view images.
The images have been given then to other five certified
FACS coders for judging. Table 18 shows the distribution
of the correct recognition ratio. The achieved correct recog-
nition ratio with an average of 85%, in the case of utilising
the rules of Table 17 to produce the judged emotional
expressions, validates the used rules.

A description of the shown facial expression in terms of
weighted emotion labels concludes the facial expression
analysis performed by ISFER (Fig. 14). The weight of the
assigned emotion label is calculated according to assump-
tion that each AU, forming the AUs-coded description of a
particular “pure” emotional expression (Table 15), has the
same influence on the intensity of that emotional expression.
Let us explain this issue using an example. The facial
expression illustrated in Fig. 9 will be classified as the
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Table 16
Distribution of the recognition ratio of 18 emotional expressions made according to the rules of Table 15 and judged by five certified FACS coders

Produced expression Recognised expression

Surprise Fear Disgust Anger Happiness Sadness

Surprise 93 7 0 0 0 0
Fear 3 77 12 0 0 8
Disgust 0 0 74 26 0 0
Anger 0 3 15 82 0 0
Happiness 2 0 0 0 98 0
Sadness 0 6 0 0 0 94

Average: 86.3%

Table 17
The production rules of ISFER inference engine for emotional classification of facial expressions

AUs Emotion AUs Emotion AUs Emotion AUs Emotion

1 1 2 Surprise 1 Sadness 231 17 Anger 101 17 Disgust
2 Anger 4 Anger 231 26 Anger 101 �25=26� Disgust
6 Happiness 5 Surprise 23 Anger 10 Disgust
1 1 4 1 5 1 7 Fear 7 Anger 241 171 26 Anger 91 �25=26� Disgust
1 1 4 1 5 Fear 241 17 Anger 91 17 Disgust
1 1 4 1 7 Sadness 27 Surprise 241 26 Anger 9 Disgust
1 1 5 1 7 Fear 201 �25=26� Fear 24 Anger 121 �25=26� Happiness
1 1 4 Sadness 20 Fear 101 161 �25=26� Anger 12 Happiness
1 1 5 Fear 151 �25=26� Sadness 101 171 �25=26� Disgust 161 �25=26� Anger
1 1 7 Sadness 15 Sadness 91 171 �25=26� Disgust 17 Sadness
5 1 7 Fear 231 171 26 Anger 121 161 �25=26� Happiness 26 Surprise



activation of AU91 AU26. From Table 15 one can see that
a facial expression AU101 AU17 1 AU26 or an expres-
sion AU91 AU17 1 AU26 will be classified as 100%
disgust. So, the facial expression illustrated in Fig. 9 will
be classified as 66% disgust, in the case that AU9 and AU26
are 100% activated. Considering the rule for the recognition
of AU26 activation (see Tables 6 and 4 and Fig. 15), an
intensity level between 0 and 100 can be assigned to the
recognised activation according to the extent to which the
jaw has been dropped. In the expression given in Fig. 9, the
extent to which the jaw has been dropped is measured to be
66.67% of the second-bounding-threshold (i.e. an intensity
level of 66.67% has been assigned to the activation of
AU26). Therefore, the expression illustrated in Fig. 9 is
classified as 0:33× 100%1 0:33× 67%� 55:6% disgust
(Fig. 14).

The overall performance of the ISFER automatic
emotional classification of facial expressions has been tested
on a set of 265 dual-view images. The images represent 129
images used to validate the rules of the ISFER inference
engine given in Table 17, 56 images representing 7 “pure”
emotional expressions (including neutral expression) and 80
images of various blended emotional expressions (e.g. Figs.

16 and 17) shown by eight certified FACS coders. Dual
views have been recorded under constant illumination
using fixed light sources and none of the subjects had a
moustache, a beard or wear glasses. Subjects were of both
sexes and ranged in age (22–33) and ethnicity (European,
South American and Asian). First, the images were manu-
ally classified according to the rules of Table 17. The perfor-
mance of the automatic classification is then evaluated by
counting the images that have been correctly classified and
weighted by the system. In only 2% of the images (6
images) detection failed completely. The average correct
recognition ratio was 91% (Table 19).

The encountered errors result from the localisation errors
coming from the facial feature detectors integrated into the
ISFER Workbench. The localisation errors are causing the
errors in the estimation of the shown face actions, and in
turn the errors in the emotional classification of the recog-
nised face actions. Improvement of the integrated detectors
will yield system’s higher recognition rate of the face
actions and in turn, a more successful emotional classifica-
tion of the recognised face actions performed by the system.

One does certainly understand that the rules for emotional
classification of facial expression, implemented in ISFER
reasoning mechanism are completely based and acquired
from Ekman studies [7–9]. Still, one can interpret a
shown facial expression differently than Ekman does and
therefore differently than the system does.
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Fig. 14. The screenshot of ISFER output resulting from emotional classi-
fication of facial expression illustrated in Fig. 9, priori processed by the
ISFER Workbench.

Fig. 15. CLIPS-implemented rule for the recognition of AU26 activation
based on the frontal-view face model.

Table 18
Distribution of the correct recognition ratio of 129 emotional expressions made according to the rules of Table 17 and judged by five certified FACS coders

Produced
expression

Classified as Produced
expression

Classified as Produced
expression

Classified as Produced
expression

Classified as

1 1 2 95% surprise 1 98% sadness 231 17 72% anger 101 17 75% disgust
2 77% anger 4 100% anger 231 26 49% anger 101 �25=26� 67% disgust
6 98% happiness 5 79% surprise 23 88% anger 10 82% disgust
1 1 4 1 5 1 7 90% fear 7 92% anger 241 171 26 85% anger 91 �25=26� 93% disgust
1 1 4 1 5 93% fear 241 17 77% anger 91 17 95% disgust
1 1 4 1 7 82% sadness 27 81% surprise 241 26 53% anger 9 89% disgust
1 1 5 1 7 96% fear 201 �25=26� 100% fear 24 92% anger 121 �25=26� 100% happiness
1 1 4 79% sadness 20 80 % fear 101 161 �25=26� 75% anger 12 100% happiness
1 1 5 81% fear 151 �25=26� 100% sadness 101 171 �25=26� 79% disgust 161 �25=26� 68% anger
1 1 7 77% sadness 15 100% sadness 91 171 �25=26� 98% disgust 17 83% sadness
5 1 7 86% fear 231 171 26 82% anger 121 161 �25=26� 100% happiness 26 70% surprise

Average: 85.02%



In spite of the fact that during the last twenty years the
theory of Paul Ekman was the most commonly used theory
on emotions, correctness and universality of it has been
criticised. While Izard [16], Ekman [9], and other psychol-
ogists of that school state that the facial appearances of the
six basic emotional expressions are indeed universal,
another psychological circle doubts even the correctness
of the definition of the term “emotion”. They argue that
the term “facial expression of emotion” used by Ekman is
merely a stressing of the verbal communication and has
nothing to do with an actual emotional state.

As the goal of our research does not form a solution for
this psychological debate but an automatic analysis of a
shown facial expression, the best thing to do is to make
the system independent of all psychological polemics
about emotions. To achieve this and still to retain interpre-
tation facility of the system, a learning facility should be
developed. This will allow the user to define his/her own
emotion-, or simply interpretation labels. The user can
decide then, whether he/she will use the labels predefined
by the system or his/her self-defined labels.

7. Conclusion

This paper presents a prototype of the person- and situa-
tion independent system for vision-based facial gesture

analysis, which utilises a framework for hybrid facial
feature detection and an Expert System for face action
recognition and emotional classification of facial expressions.

We proposed dual view face model that can recover 32
different face actions (29 AUs) which form an integral part
of the human behaviour. The experiments with certified
FACS coders indicate that the rules for face action recogni-
tion, based on our face model, are valid. The proposed
model shapes the face actions globally; it does not consider
only local facial regions. The model avoids inaccuracy and
manual initialisation of 3D wire-frame models and still it
represents a realistic representation of the 3D human face.

A new approach to facial feature detection based on
multiple feature detection techniques has been proposed.
The modules integrated into the framework for hybrid facial
feature detection have been described. By showing the
experimental results for two newly developed modules of
the ISFER Workbench, we were hoping to give the reader
an indication of the overall performance of our framework
for hybrid facial feature detection.

The paper has presented a face action recognition strategy
based on the proposed face model and multiple feature-
detection algorithms applied in parallel. The redundant
data, resulting from the multiple-detector operating-mode
of the ISFER Workbench, is used to improve the reliability
of the system; it is used to solve the problem of missing and
erroneous data encountered in the output of the ISFER
Workbench. Dealing with this ambiguous facial information
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Fig. 16. Blend of sad and anger emotional expression.
Fig. 17. Blend of fear and surprise expression.

Table 19
Distribution of the correct recognition ratio and the misrecognition ratio of 265 emotional expressions

Expression Recognised expression

Surprise Fear Disgust Anger Happines Sadness B

Surprise 97 1 0 0 0 0 2
Fear 0 84 0 0 0 9 7
Disgust 0 0 82 14 0 0 3
Anger 0 1 12 84 0 0 2
Happiness 1 0 0 0 98 0 1
Sadness 0 2 0 0 0 96 2
B 3 1 0 0 2 1 93

Average: 90.57%



that results from the processing of the ISFER Workbench
has been explained in detail. The experimental results indi-
cate that face action recognition can be achieved quite accu-
rately by the system.

In this paper, we also proposed a face action classification
strategy that allows singular- as well as multiple classifica-
tion of facial expression in the six basic emotional cate-
gories. By a number of experiments, performed with
certified FACS coders, we demonstrated the validity of
the rules for the emotional classification of face actions
that are implemented in the system. The evaluation of the
overall performance of the fully automated system indicates
that the facial feature detection, the face action recognition
and the face action emotional classification are performed
rather accurately by the system.

The system deals with static face action (static image),
not with facial motion. Specifically defined camera setting
facilitates the system to have no problem with significant
head motions. The system does not require use of any
special markers or make-up on the user but beard, mous-
tache and eyeglasses are not allowed.

Our ongoing work is focused on a threefold. Modelling
the facial motion, i.e. dealing with facial image sequences,
will increase the overall performance of the system. Devel-
oping a Fuzzy Expert System for face action tracking and
face action emotional classification will increase the quality
of the system by allowing it to reason about the involved
face actions according to the accuracy of the performed
facial feature tracking. Designing and developing a learning
facility, which will allow the user to define his/her own
interpretation categories, will make the system independent
of any psychological debate on emotions.
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