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Abstract. This work addresses the problem of human action recogni-
tion by introducing a representation of a human action as a collection
of short trajectories that are extracted in areas of the scene with sig-
nificant amount of visual activity. The trajectories are extracted by an
auxiliary particle filtering tracking scheme that is initialized at points
that are considered salient both in space and time. The spatiotemporal
salient points are detected by measuring the variations in the informa-
tion content of pixel neighborhoods in space and time. We implement an
online background estimation algorithm in order to deal with inadequate
localization of the salient points on the moving parts in the scene, and to
improve the overall performance of the particle filter tracking scheme. We
use a variant of the Longest Common Subsequence algorithm (LCSS) in
order to compare different sets of trajectories corresponding to different
actions. We use Relevance Vector Machines (RVM) in order to address
the classification problem. We propose new kernels for use by the RVM,
which are specifically tailored to the proposed representation of short
trajectories. The basis of these kernels is the modified LCSS distance
of the previous step. We present results on real image sequences from a
small database depicting people performing 12 aerobic exercises.

1 Introduction

With an ever-increasing role of computers and other digital devices in our soci-
ety, one of the main foci of the research in Artificial Intelligence should be on
Emerging Human-Machine Systems. A related, crucial issue is that of Human-
Machine Interaction (HMI). A long-term goal in HMI research is to approach
the naturalness of human-human interaction. This means integrating ’natural’
means that humans employ to interact with each other into the HMI designs.
With this motivation, automatic speech recognition and synthesis have been
the topics of research for decades. Recently, other human interactive modalities
such as facial and body gestures have also gained interest as potential modes
of HMI. The analysis of what is present in a scene is an essential issue in the
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development of natural Human-Machine interfaces. Who is in the scene, what
is (s)he doing, and how is (s)he doing it, are essential questions that should be
answered if natural interfaces that are non-obtrusive and informative for the
user are to be realized. Vision offers the means to achieve this. It also repre-
sents an essential link to the creation of systems which are able to adapt to
the affective state of their user, leading in this way to an affect-sensitive inter-
action between the user and the machine. Particularly for ambient intelligence,
anticipatory interfaces, and human computing, the key is the ease of use - the
ability to unobtrusively sense certain behavioral cues of the users and to adapt
automatically to their typical behavioral patterns and the context in which they
act [1]. Sensing and interpretation of human behavioral cues play an important
role and are extremely relevant for the development of applications in the fields
of security (video surveillance and monitoring), natural multimodal interfaces,
augmented reality, smart rooms, object-based video compression and driver as-
sistance. Tremendous amount of work has been done in the field in recent years
[2],[3].

In this work we present an unsupervised method for the representation of the
activity taking place in a scene. This method is based on the detection of salient
points in space and time, that correspond to regions with a significant amount of
activity. Subsequently, we track these points in time using a state-estimation ap-
proach in order to reach a representation based on short trajectories. We test the
proposed method using real image sequences of subjects performing several aero-
bic exercises. It can be used, however, to represent any type of activity, including
hand gestures, gait, extraction of motion patterns etc. Possible applications lie
in the area of e-health, where the development of non-stationary, non-intrusive,
non-invasive monitoring inside and outside the clinical environment is essential,
due to demanding patients, aging population and rising costs. The method can
be realized as an adaptive system that will be able to monitor and assess the cor-
rectness of the performed exercise, and will provide an appropriate alternative
(senior) fitness plan, assisting in this way nurses,physical therapists and family
members. The system can also be configured for use at home, to accommodate
elderly but otherwise healthy patients or patients suffering from conditions like
rheumatism and chronic pain.

2 Related Work

2.1 Tracking

The main objective of tracking is to estimate the state xk (e.g. position, pose)
given all the measurements z1:k up to the current time instant k. In a probabilis-
tic framework, this translates in the construction of the a posteriori probability
p(xk|z1:k). Theoretically, the optimal solution in case of Gaussian noise in the
measurements is given by the Kalman filter [4], which yields the posterior being
also Gaussian. Kalman filters and their variants, like the Extended (EKF) and
the Unscented Kalman Filters (UKF) [5], [6], [7] have been extensively used for a
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variety of tracking applications [8], [9]. However, in nonlinear and non-Gaussian
state estimation problems Kalman filters can be significantly off.

To overcome the limitations of Kalman filtering, the classical particle filtering
algorithm, or so-called Condensation algorithm was proposed [10], [11]. The main
idea behind particle filtering is to maintain a set of possible solutions called
particles. Each particle is associated with a weight, the latter expressing the
likelihood of the particle being the actual solution. By maintaining a set of
solutions instead of a single estimate as is done by Kalman filtering, particle
filters are more robust to missing and inaccurate data. The major drawback of
the classic Condensation algorithm, however, is that a large amount of particles
might be wasted because they are propagated into areas with small likelihood. In
order to overcome this problem, a number of variants to the original algorithm
have been proposed, having as a common characteristic the goal of achieving
a more optimal allocation of new particles. Since particle weights determine
how the particles are being resampled, the likelihood function has an essential
influence on the tracking performance [12]. Several attempts have been made in
order to adjust the way new particles are assigned, through the use of kernels
[13], [14], [15], orientation histograms [16] or special transformations like Mean
Shift [17].

Despite the improvement in the tracking performance of the previous methods,
the inherent problem of the classic condensation algorithm, that is, the propaga-
tion of particles in areas of small likelihood is not sufficiently addressed. In order
to effectively deal with this issue, the Auxiliary Particle Filtering (APF) algo-
rithm was proposed by Pitt and Shephard [18]. The APF algorithm operates in
two steps. At first, particles are propagated and their likelihood is evaluated. Sub-
sequently, the algorithm chooses again and propagates the particles according to
the likelihood of the previous step. Since the introduction of the APF algorithm,
a number of variants have been proposed in order to address different issues. In
[19] a modified APF tracking scheme is proposed for the tracking of deformable
facial features, like mouth and eye corners. The method uses an invariant color
distance that incorporates a shape deformation term as an observation model
to deal with the deformations of the face. In order to take into account spatial
constraints between tracked points, the particle filter with factorized likelihoods
is proposed in [20], where the spatial constraints between different facial features
are pre-learned and the proposed scheme tracks constellations of points instead
of a single point, by taking into account these constraints.

Particle filters are often used within a template tracking framework. The ob-
ject’s appearance is captured in the first frame of an image sequence and subse-
quently tracked throughout the end of the sequence. The underlying assumption
behind template tracking is that the object will not significantly change its ap-
pearance throughout the duration of the video. This assumption, however, is not
realistic, since an object can undergo several rotations, deformations or partial
occlusions, making the template no longer an accurate model of the appearance
of the object. A simple but rather naive solution to this problem is to update
the template at every frame with a new template corresponding to the tracked
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position of the object. This approach, however, leads to error accumulation, as
small errors are constantly introduced in the location of the template. As a re-
sult, the template eventually drifts away from the object and in the most cases
gets stuck on the static background of the scene. A compromising solution be-
tween these two extremes is to partially update the template, as the weighted
average (e.g. 90-10 %) of the current and the initial template, a process often
called exponential forgetting. Although this solution offers a somewhat more
robust tracking, by allowing the template to adapt, it does not avoid error accu-
mulation, and there is still a high probability that the template will eventually
drift away from the object.

Matthews et al specifically address the drift problem in [21]. The tracked
template is updated at every frame, while maintaining the initial template spec-
ified in the first frame. To eliminate drift, the new template is aligned every
time to the initial one using a gradient descent rule. This strategy, however, is
most suitable for tracking rigid objects (e.g. cars). For objects whose appearance
changes over time, the authors adopt an approach of template tracking with Ac-
tive Appearance Models (AAM). The appearance model and the template are
updated at every time instance, leading to more robust tracking algorithm. A
similar framework is presented in [22], where a set of adaptive appearance mod-
els are used for motion-based tracking. The appearance model used consists of
three components. The stable component (S ) is used to capture the behavior
of temporally stable and slowly varying image observations, the data outlier or
’lost’ component (L) is used to capture data outliers due to failures in tracking,
occlusion or noise and finally the ’wandering’ component (W ) is used to model
sudden changes in the appearance of the object. The parameters of the model
are adjusted online via EM and the system is tested in tracking scenarios where
a high degree of partial object occlusion occurs. Finally, in [23] a Support Vector
Machine (SVM) is used in order to provide an initial guess for an object position
in the first frame. The position of the initial guess in subsequently refined so that
a local maximum of the SVM score is achieved. The whole framework is called
Support Vector Tracking (SVT) and is implemented in moving vehicle tracking
scenarios.

2.2 Human Activity Tracking and Recognition

A major component in human computing research is localization and tracking
of the human body, either as a whole or as a part (e.g. head,limbs). Especially
for the purposes of scene analysis and activity recognition, body tracking has re-
ceived a lot of attention in the last few years. Due to its high degree of freedom
(usually 28-60), body tracking is inherently a very difficult problem. Because
of that, it calls upon sophisticated tracking algorithms, that can address the
problem of high dimensionality. Furthermore, large appearance changes, occlu-
sion between body parts, and the absence of typical appearance due to clothing,
pose additional problems that need to be dealt with.

In contrast to rigid objects, tracking of articulated objects is inherently a much
more difficult problem, mainly due to the high number of degrees of freedom
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that are involved. Accurate human body tracking, in particular, is an extremely
important aspect for human computing applications. A possible strategy for es-
timating the configuration of articulated objects is sequential search, in which a
number of parameters are initially estimated and, assuming that this estimation
is correct, the values of several other parameters are determined. For instance,
Gavrila and Davis in [24] first locate the torso of the human body and then use
this information in order to initialize a search for the limbs. This approach, how-
ever, only works for specific views and is very sensitive to self-occlusion that is,
occlusion between different body parts. A similar approach is presented in [25],
where a particle filtering framework is used for the purposes of hand tracking. For
the same purpose, Cipolla et al [26] propose a view-based hierarchical probabilis-
tic tracking framework that can deal with changes in view and self occlusions.
The system uses edge and color cues in order to estimate the likelihood function
of the hand position and configuration and subsequently a Bayesian filtering
framework that performs the tracking. In [27] a particle filtering approach is
adopted for articulated hand tracking. The tracker is guided by attractors, pre-
collected training samples of possible hand configurations whose observations
are known, while the whole process is modeled by a Dynamic Bayesian Net-
work. A Bayesian Network is also adopted in [28] in order to model the existing
constraints between the different parts of the human body. These constraints
are learned using Gaussian Mixture Models (GMM) and training is done using
motion-capture frames of walking data as the ground truth. Observations are
based on multi-scale edge and ridge filters while the whole process is assisted
with a pooled background model derived by the set of training images. In [29]
a Dynamic Markov Network is utilized instead to model the relations between
body parts and tracking is done using an sequential Monte Carlo algorithm. A
similar approach is presented in [30], where an elastic model is used to repre-
sent relations and constraints between the limbs and a Nonparametric Belief
Propagation (NBP) algorithm for the purpose of tracking. In [31] a combination
of particle filters and Hidden Markov Models (HMM) is used for tracking and
recognition respectively, of articulated hand gestures. Appearance-based mod-
els are learned for the non-rigid motion of the hand and a filtering method is
used for the underlying rigid motion. Both treatments are unified into a single
Bayesian framework. A similar approach is implemented in [32], where arm ges-
tures are recognized as a sequence of body poses. The latter are recognized via
edge matching and HMMs are used in order to extract the gestures from the
pose sequences. HMMs are also used in [33] for recognizing pointing gestures.
Skin information is used to localize the hands and the head of the subject in a
scene and a multiple hypothesis scheme is used for the tracking. Subsequently,
an HMM-based approach is adopted for recognizing the gestures.

Articulated object tracking, and particularly human body tracking suffer from
dimensionality issues, an inherent problem whenever there is a large number of
degrees of freedom. This fact makes the use of tracking algorithms like particle fil-
ters rather impractical. The reason for this is that a very large number of particles
is required in order to represent the posterior function in a sufficient way, making
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this kind of tracking algorithms slow and computationally expensive. The prob-
lem becomes even more prominent whenever real-time performance is required,
such as in monitoring applications, virtual trainers or augmented reality applica-
tions. In order to deal with this issue, a number of different techniques have been
proposed, either by constraining the configuration space [24] or by restricting the
range of the movements of the subject [34]. These approaches, however, greatly
reduce the generality of the implemented trackers, making them impractical in
real applications. Eigenspace decomposition [35] and principal component anal-
ysis [36] offer an interesting alternative for dimensionality reduction. In [37], a
modified particle filtering approach is used in order to reduce the complexity
of human body tracking. The main characteristic of the utilized tracker is its
ability to avoid local maxima in the tracking by incorporating a search based
on simulated annealing, and thus called annealed particle filter. Apart from di-
mensionality reduction techniques, several researchers have attempted to modify
the way classical tracking algorithms work in order to achieve computational ef-
ficiency and real-time tracking performance. A simple example are the earlier
mentioned kernel-based particle filters [13], [14], [15], [38] or particle filters that
use special transformations, as in [16], [17]. These methods attempt to limit
the number of required particles for efficient tracking, effectively reducing the
computational complexity of their algorithms. Finally, an interesting approach
for real-time tracking and recognition of hand actions is presented in [39],[40].
The motion of the hand is extracted using skin cues and is subsequently tracked
using the Mean-Shift Tracking scheme of [38]. The spatiotemporal curvatures of
the extracted trajectories are used in order to represent the actions performed.
The local maxima of these curvatures are view-invariant and are used for image
sequence alignment and matching of the actions.

2.3 Unsupervised Representation and Recognition of Actions

Despite their extreme usefulness, tracking methods consist of only a fraction of
the methods used for capturing the activity going on in a scene. While track-
ers mainly concentrate on tracking the state of an object at any time instant, a
variety of other methods have been proposed that deal the problem in a more ab-
stract or unsupervised manner [41], [42]. An interesting work is presented in [43],
where human actions are treated as three-dimensional shapes in the space-time
volume. The method utilizes properties of the solution to the Poisson equation
to extract space-time features of the moving human body, such as local space-
time saliency, action dynamics, shape structure and orientation. Subsequently,
spectral clustering is used in order to group similar actions. In [44], long video
sequences are segmented in the time domain by detecting single events in them.
The detection is completely unsupervised, since it is done without any prior
knowledge of the types of events, their models, or their temporal extent. The
method can be used for event-based indexing even when only one short example-
clip is available. Unsupervised methods for learning human motion patterns are
also presented in [45], [46]. In these methods, the human body is modeled as a
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triangulated graph. The model is learned in an unsupervised manner from unla-
belled data using global and local features, either dynamic or appearance-based.
The authors effectively handle occlusion by modeling the missing parts as hidden
variables. The parameters of the assumed models are being estimated using EM.
Finally, a Hidden Markov Model approach for action recognition is presented in
[47]. The activity in a scene is represented by codewords called movelets. Each
movelet is a collection of the shape, motion and occlusion of image patches cor-
responding to the main parts of the body. Recognition is done using HMMs, by
estimating the most likely sequence of codewords and the action that took place
in a sequence.

2.4 Overview of the Proposed Method

A wide variety of activity recognition methods use edge and color cues [16], [14]
or some form of markers [48],[49] in order to assist initialization and the overall
operation of tracking or recognition processes. In order to avoid the use of mark-
ers, an interesting alternative could be the use of interesting points for tracker
initialization. According to Haralick and Shapiro [50] an interesting point is a)
distinguishable from its neighbors and b) its position is invariant with respect
to the expected geometric transformation and to radiometric distortions. Gilles
introduces the notion of saliency in terms of local signal complexity or unpre-
dictability in [51]. Kadir and Brady [52] extend the original Gilles algorithm and
estimate the information content of pixels in circular neighborhoods at different
scales in terms of the entropy. Local extremes of changes in the entropy across
scales are detected and the saliency of each point at a certain scale is defined in
terms of the entropy and its rate of change at the scale in question.

In this work, we propose a human action recognition algorithm that is based
on the detection and tracking of spatiotemporal features in given image se-
quences. We do this by extending in the temporal direction the salient feature
detector developed in [52]. The detected salient points correspond to peaks in
activity variation such as the edges of a moving object. Similar to [43], we treat
the action as three-dimensional events, by detecting the salient points in the
space-time domain. Contrary to [14], [37], [28] and [29] that use models to rep-
resent the human body, we propose an entirely unsupervised method based on
the detected salient features in order to represent the moving parts of the body.
In this sense, the concept of our method resembles the one in [44], where de-
tection is done without prior knowledge of the types of events, their models, or
their temporal extent. Like in [52], we automatically detect the scales at which
the entropy achieves local maxima and form spatiotemporal salient regions by
clustering spatiotemporal points with similar location and scale. We derive a
suitable distance measure between sets of salient regions, which is based on
the Chamfer distance, and we optimize this measure with respect to a number
of temporal and scaling parameters. In this way we achieve invariance against
scaling and we eliminate the temporal differences between the representations.
We extend our previous work on salient points presented at [53] by using the
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detected salient regions in order to initialize a tracking scheme based on the
auxiliary particle filter, proposed in [18]. Each image sequence is then represented
as a set of short trajectories. The spatiotemporal coordinates of the points that
consist the extracted trajectories are appropriately transformed according to the
parameters that were estimated in the Chamfer distance optimization step. We
use the adaptive background estimation algorithm presented in [54] in order
to model the background in the available sequences and to improve the overall
quality of the implemented tracking scheme. We use a variant of the Longest
Common Subsequence algorithm (LCSS) that was proposed in [55],[56] in order
to compare different sets of trajectories. We use Relevance Vector Machines [57]
in order to address the classification problem. We propose new kernels for use
by the RVM, which are specifically tailored to the proposed short trajectory
representation. The basis of these kernels is the modified LCSS distance of the
previous step. The novelty of the proposed method lies in the unsupervised
nature of representation of the actions. Since we don’t use any model, the method
can be easily extended and used for a variety of different actions, ranging from
full-body actions to single gestures.

The remainder of the paper is organized as follows: In section 3, the spa-
tiotemporal feature detector used is described, along with the proposed space-
time warping technique. In section 4, the auxiliary particle filter that was used is
briefly analyzed along with the background estimation model that was utilized.
In section 5 the proposed kernel-based recognition method is described. In sec-
tion 6, we present our experimental results, and in section 7, final conclusions
are drawn.

3 Spatiotemporal Salient Points

3.1 Spatiotemporal Saliency

Let us denote by Nc(s, v) the set of pixels in an image I that belong to a cir-
cular neighborhood of radius s, centered at pixel v = (x, y). In [52], in order to
detect salient points in static images, Kadir and Brady define a saliency measure
yD(s, v) based on measuring changes in the information content of Nc for a set of
different circular radiuses (i.e. scales). In order to detect spatiotemporal salient
points at peaks of activity variation we extend the Kadir’s detector by consider-
ing cylindrical spatiotemporal neighborhoods at different spatial radiuses s and
temporal depths d. More specifically, let us denote by Ncl(s, v) the set of pixels
in a cylindrical neighborhood of scale s = (s, d) centered at the spatiotemporal
point v = (x, y, t) in the given image sequence. At each point v and for each
scale s we will define the spatiotemporal saliency yD(s, v) by measuring the
changes in the information content within Ncl(s, v). Since we are interested in
activity within an image sequence, we consider as input signal the convolution of
the intensity information with a first-order Gaussian derivative filter. Formally,
given an image sequence I0(x, y, t) and a filter Gt, the input signal that we use
is defined as:

I(x, y, t) = Gt ∗ I0(x, y, t) . (1)
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For each point v in the image sequence, we calculate the Shannon entropy of the
signal histogram in a cylindrical neighborhood Ns(s, v) around it. That is,

HD(s, d, υ) = −
∑

q∈D

p(q, s, d, υ) log p(q, s, d,υ) , (2)

The set of scales at which the entropy is peaked is given by:

Ŝp = {(s, d) : HD(s − 1, d, υ) < HD(s, d, υ) > HD(s + 1, d, υ)

∧HD(s, d − 1, υ) < HD(s, d, υ) > HD(s, d + 1, υ)} (3)

The saliency measure at the candidate scales is given by:

yD(s, d, v) = HD(s, d, v)WD(s, d, v), ∀ (s, d) ∈ Ŝp , (4)

The first term of eq. 4 is a measure of the variation in the information content
of the signal. The weighting function WD(s, v) is a measure of how prominent
the local maximum is at s, and is given by:

WD(s, d, υ) =
s2

2s − 1

∑

q∈D

|p(q, s, d,υ) − p(q, s − 1, d, υ)|

+d
∑

q∈D

|p(q, s, d, υ) − p(q, s, d − 1, υ)|,∀ (s, d) ∈ Ŝp , (5)

where the values in front of each summation in the right part of eq. 5 are nor-
malization factors. When a peak in the entropy for a specific scale is distinct,
then the corresponding pixel probability density functions at the neighboring
scales will differ substantially, giving a large value to the summations of eq. 5
and thus, to the corresponding weight value assigned. On the contrary, when
the peak is smoother, then the summations in eq. 5 will have a smaller value.
Let us note that we considered cylindrical neighborhoods for simplicity reasons.
However, more complicated shapes, such as elliptical neighborhoods at different
orientations and with different axes ratios could be considered.

In Fig. 1(a), a single frame from a sample image sequence is presented, where
the subject is raising its right hand. By selecting as origin the center pixel of the
drawn white circle, we apply a number of cylindrical neighborhoods of various
scales in the sequence and we calculate the corresponding entropy values. The
result is shown in Fig. 1(b), where the various entropy values are plotted with
respect to the radiuses and depths of the corresponding cylindrical neighbor-
hoods. The scale which corresponds to the distinct peak of the plot is considered
candidate salient scale, and is assigned a saliency value, according to eq. 4.

3.2 Salient Regions

The analysis of the previous section leads to a set of candidate spatiotemporal
salient points S = {(si, vi, yD,i)}, where vi = (x, y, t), si and yD,i are respec-
tively, the position vector, the scale and the saliency value of the feature point
with index i. In order to achieve robustness against noise we follow a similar
approach as that in [52] and develop a clustering algorithm, which we apply to
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(a) (b)

Fig. 1. (a) Single frame from a sample image sequence where the subject is raising its
right hand and (b) the corresponding entropy plot as a function of the spatial radius
and temporal depth of all the applied cylindrical neighborhoods. The origin of all the
applied cylindrical neighborhoods is the center of the white circle in (a).

the detected salient points. By this we define salient regions instead of salient
points, the location of which should be more stable than the individual salient
points, since noise is unlikely to affect all of the points within the region in the
same way. The proposed algorithm removes salient points with low saliency and
creates clusters that are a) well localized in space, time and scale, b) sufficiently
salient and c) sufficiently distant from each other. The steps of the proposed
algorithm can be summarized as follows:

1. Derive a new set ST from S by applying a global threshold T to the saliency
of the points that consist S. Thresholding removes salient points with low
saliency, that is,

ST = {(si, υi, yD,i) : yD,i > T} . (6)

2. Select the point i in ST with the highest saliency value and use it as a seed
to initialize a salient region Rk. Add nearby points j to the region Rk as
long as the intra-cluster variance does not exceed a threshold TV . That is,
as long as

1

|Rk|
∑

j∈Rk

c2
j < TV , (7)

where Rk is the set of the points in the current region k and cj is the
Euclidean distance of the jth point from the seed point i.

3. If the overall saliency of the region Rk is lower than a saliency threshold TS ,
∑

j∈Rk

yD,j ≤ TS , (8)

discard the points in the region back to the initial set of points and continue
from step 2 with the next highest salient point. Otherwise, calculate the
Euclidean distance of the center of region Rk from the center of salient
regions already defined, that is, from salient regions Rk′ , k′ < k.
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4. If the distance is lower than the average scale of Rk, discard the points in Rk

back to the initial set of points, and continue with the next highest salient
point. Otherwise, accept Rk as a new cluster and store it as the mean scale
and spatial location of the points in it.

5. Form a new set ST consisting of the remaining salient points, increase the
cluster index k and continue from step 2 with the next highest salient point.

By setting the threshold TV in step 2, we define clusters that have local
support and are well localized in space and time. In addition, we want to take
the saliency of the points into consideration such that the overall saliency of the
region is sufficient. We do this in step 3, by setting a saliency threshold, TS .
Finally, the purpose of step 4 is to accept clusters that are sufficiently distant
from each other. To summarize, a new cluster is accepted only if it has sufficient
local support, its overall saliency value is above the saliency threshold, and it is
sufficiently distant in terms of Euclidean distance from already existing clusters.

3.3 Space-Time Warping

There is a large amount of variability between feature sets due to differences in
the execution speed of the corresponding actions. Furthermore, we need to com-
pensate for possible shifting of the representations forward or backward in time,
caused by imprecise segmentation of the corresponding actions. To cope with both
these issues, we propose a linear space-time warping technique with which we
model variations in time using a time-scaling parameter a and a time-shifting pa-
rameter b. In addition, in order to achieve invariance against scaling, we introduce
a scaling parameter c in the proposed warping technique. To accommodate this
procedure, we propose the Chamfer distance as an appropriate distance measure,
in order to cope with unequal number of features between different sets of salient
points. More specifically, for two feature sets F = {(xi, yi, ti), 1 ≤ i ≤ M} and
F ′ = {(x′

j , y
′
j, t

′
j), 1 ≤ j ≤ M ′} consisting of an M and M ′ number of features,

respectively, the Chamfer distance of the set F from the set F ′ is defined as follows:

D(F, F ′) =
1

M

M∑

i=1

M′
min
j=1

√
(x′

j − xi)2 + (y′
j − yi)2 + (t′j − ti)2 . (9)

From eq. 9 it is obvious that the selected distance measure is not symmetrical,
as D(F, F ′) �= D(F ′, F ). For recognition purposes, it is desirable to select a
distance measure that is symmetrical. A measure that satisfies this requirement
is the average of D(F, F ′) and D(F ′, F ), that is,

Dc(F, F ′) =
1

2
(D(F, F ′) + D(F ′, F )) . (10)

Let us denote by Fw = {(cxi, cyi, ati − b), 1 ≤ i ≤ M} the feature set F with
respect to feature set F ′. Then, the distance between F ′ and Fw is given by eq. 9
as:

D(Fw, F ′) =
1

M

M∑

i=1

M′
min
j=1

√
(x′

j − cxi)2 + (y′
j − cyi)2 + (t′j − ati + b)2 . (11)
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Similarly, the feature set F ′ with respect to feature set F can be represented as
F ′

w = {(1
c x′

j ,
1
cy′

j ,
1
a t′j + b), 1 ≤ j ≤ M ′} and their distance as:

D(F ′
w , F ) =

1

M ′

M′∑

j=1

M

min
i=1

√
(xi − 1

c
x′

j)
2 + (yi − 1

c
y′

j)
2 + (ti − 1

a
t′j − b)2 . (12)

The distance to be optimized follows from the substitution of eq. 11 and eq. 12
to eq. 10. We follow an iterative gradient descent approach for the adjustment
of the a, b and c parameters. The update rules are given by:

an+1 = an − λ1
∂Dc

∂an
, (13)

bn+1 = bn − λ2
∂Dc

∂bn
, (14)

cn+1 = cn − λ3
∂Dc

∂cn
, (15)

where λ1, λ2, λ3 are the learning rates and n is the iteration index. The algo-
rithm iteratively adjusts the values of a, b and c towards the minimization of the
Chamfer distance between the two feature sets, given by eq. 10. The iterative
procedure stops when the values of a, b and c do not change significantly or after
a fixed number of iterations.

4 Tracking

4.1 Auxiliary Particle Filtering

Recently, particle filtering tracking schemes [10], [18], have been successfully used
[58], [59], [19] in order to track the state of a temporal event given a set of noisy
observations. Its ability to maintain simultaneously multiple solutions, called
particles, makes it particularly attractive when the noise in the observations is
not Gaussian and makes it robust to missing or inaccurate data.

The particle filtering tracking scheme described in this section is initialized
at the spatiotemporal salient points that are detected using the procedure of
section 3. Let c denote the template that contains the color information in a
rectangular window centered at each detected salient point and α denote the
unknown location of the facial feature at the current time instant. Furthermore,
let us denote by Y = {y1, . . . , y−, y} the observations up to the current time
instant. The main idea of the particle filtering is to maintain a particle based
representation of the a posteriori probability p(α|Y ) of the state α given all
the observations Y up to the current time instance. The distribution p(α|Y ) is
represented by a set of pairs (sk, πk) such that if sk is chosen with probability
equal to πk, then it is as if sk was drawn from p(α|Y ). Our knowledge about
the a posteriori probability is updated in a recursive way. Suppose that we have
a particle based representation of the density p(α−|Y −), that is we have a col-
lection of K particles and their corresponding weights (i.e. (s−k , π−

k )). Then, the
Auxiliary Particle Filtering can be summarized as follows:
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1. Propagate all particles s−k via the transition probability p(α|α−) in order to
arrive at a collection of K particles μk.

2. Evaluate the likelihood associated with each particle μk, that is let λk =
p(y|μk; c).
For the definition of p(y|μk; c) we use, in this paper, the observation model
described in [19].

3. Draw K particles s−k from the probability density that is represented by the
collection (s−k , λkπ−

k ). In this way, the auxiliary particle filter favors particles
with high λk, that is particles which, when propagated with the transition
density, end up at areas with high likelihood.

4. Propagate each particle s−k with the transition probability p(α|α−) in order
to arrive at a collection of K particles sk

′.
5. Assign a weight πk

′ to each particle as follows,

wk
′ =

p(y|sk
′; c)

λk
, πk

′ =
wk

′
∑
j

wj
(16)

This results in a collection of K particles and their corresponding weights
(i.e. {(sk

′, πk
′)}) which is an approximation of the density p(α|Y ).

4.2 Online Background Estimation

The particle filtering tracking scheme described in the previous section is initial-
ized at the spatiotemporal salient points that are detected using the procedure
described in section 3. As indicated from eq. 1, the input signal that is used is
the convolution of the original image sequence with a Gaussian derivative filter
along the temporal dimension. The result of this is that the detected salient
points are localized on the edges of the moving objects existing in the scene,
rather than on the objects themselves. This fact may deteriorate the output of
the tracker used, since the patches of the sequence that are being tracked also
include a considerable portion of the scene’s background. For this reason, we
implement the adaptive background estimation algorithm described in [54], in
order to determine which pixels belong to the foreground and which ones to the
background. According to this algorithm, the values of a particular pixel over
time are considered as a temporal process. At each time t, what is known about
a particular pixel (x0, y0) is its history:

{X1, . . . , Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t}, (17)

where I is the image sequence. The recent history of each pixel is modeled by a
mixture of K Gaussian distributions. The probability of observing the current
pixel value is given by:

P (Xt) =
K∑

i=1

wi,t · η(Xt, μi,t, Σi,t), (18)

where K is the number of distributions, wi,t is an estimate of the weight of the
ith Gaussian in the mixture at time t, μi,t is the mean value of the ith Gaussian
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in the mixture at time t, Σi,t is the covariance matrix of the ith Gaussian in the
mixture at time t, and η is a Gaussian probability density function. K was set
to 3, and the covariance matrix Σ is assumed to be diagonal, meaning that the
RGB values of the pixels are assumed to be uncorrelated.

The parameters of each Gaussian mixture were initially estimated using the
Expectation-Maximization (EM) algorithm and by using a small portion of the
available data (i.e. the first few frames of the image sequence). Subsequently at
each new frame t we follow an update procedure similar to the one of [54]. Every
new pixel value Xt is checked against the existing K distributions until a match
is found. A match is defined if the current pixel is within 3 standard deviations
of a distribution. In case a match is found the parameters of the Gaussians are
updated. If none of the K distributions match the current pixel value, the least
probable distribution is replaced with a distribution with the current value as
its mean value, an initially high variance, and low prior weight.

At each iteration of the particle filtering tracking scheme of section 4.1, every
new particle is evaluated based on an invariant colour distance between the ini-
tial template (centered at the initializing spatiotemporal salient point) and the
block that corresponds to the particle that is being evaluated. In order to take the
estimated background model into account, we add an additional cost in the eval-
uation process of each new particle. The additional cost for every pixel is equal to
the probability that the pixel belongs to the current background model, that is,

Ci,j,t =
K∑

i=1

wi,jη(Xj,t, μi,j,t, Σi,j,t), (19)

where K is the number of distributions, wi,j,t is an estimate of the weight of the
ith Gaussian in the mixture for the pixel j at time t, μi,j,t is the mean value

Fig. 2. Initial estimation of the background for an action where the subject is just
raising its right hand
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of the ith Gaussian in the mixture for the pixel j at time t and Σi,j,t is the
covariance matrix of the ith Gaussian in the mixture for pixel j at time t.

If a pixel in the block belongs to the background, then eq. 19 will assign a
large cost to that pixel, since the resulting probability will be high. If most pixels
in the block belong to the background, then the additional cost to that block
will also be large and consequently, a smaller weight will be assigned to it by the
particle filter. In this way, the tracking scheme favors blocks that contain larger
number of foreground pixels and assigns larger weights to the corresponding
particles.

In Fig. 2 the initial background model that was estimated for an action where
the subject is raising its right hand is presented. As can be seen from the figure,
parts of the body that do not present significant motion are also considered part
of the background. On the other hand, fast moving parts (e.g. right hand) are
considered to belong to the foreground and are not included in the estimation.

5 Recognition

5.1 Longest Common Subsequence (LCSS) Algorithm

Using the analysis of the previous sections, we represent a given image se-
quence by a set of short trajectories, where each trajectory is initialized at a
point which is considered salient both in space and time. Formally, an image
sequence is represented by a set of trajectories {Ai}, i = 1 . . .K, where K is
the number of trajectories that consist the set. Each trajectory is defined as
Ai = ((ti,n, xi,n, yi,n), . . .), n = 1 . . . N , where ti,n, xi,n, yi,n are spatiotemporal
coordinates and N is the number of samples that consist Ai. Let us define another
trajectory set {Bj}, j = 1 . . . L representing a different image sequence. Similar
to {Ai}, the trajectories in {Bj} are defined as Bj = ((tj,m, xj,m, yj,m), . . .),
m = 1 . . .M , where M is the number of individual trajectories that consist
{Bj}. We use a variant of the LCSS algorithm presented at [55], [56] in or-
der to compare the two sets. Before we proceed with the comparison, we align
the two sets in space and time using the a, b and c parameters that were com-
puted using the procedure of section 3.3. Let us define the function Head(Ai) =
((ti,n, xi,n, yi,n)), n = 1 . . .N − 1, that is, the individual trajectory Ai reduced
by one sample. Then, according to the LCSS algorithm, the distance between
individual trajectories Ai and Bj is given by:

dL(Ai, Bj) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Ai or Bj is empty

de((ti,n, xi,n, yi,n), (tj,m, xj,m, yj,m))
+dL(Head(Ai), Head(Bj)),
if |ti,n − tj,m| < δ and |xi,n − xj,m| < ε
and |yi,n − yj,m| < ε

max(dL(Head(Ai), Bj), dL(Ai, Head(Bj))) + p,
otherwise

, (20)
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Fig. 3. The notion of the LCSS matching within a region of δ and ε of a trajectory

where de is the Euclidean distance, δ controls how far in time we can go in order
to match a given point from one trajectory to a point in another trajectory, ε is
the matching threshold and p is a penalty cost in case of mismatch. The notion
of the LCSS distance of eq. 20 is depicted in Fig. 3.

Subsequently, the distance between sets {Ai} and {Bj}is defined as follows:

DL({Ai}, {Bj}) =
1

K

∑

i

min
j

dL(Ai, Bj) +
1

L

∑

j

min
i

dL(Bj , Ai), (21)

that is, the average over the set of theminimumdistances, as they have beendefined
in eq. 20, between the K trajectories of set {Ai} and the L trajectories of set {Bj}.

5.2 Relevance Vector Machine Classifier

We propose a classification scheme based on Relevance Vector Machines [57] in
order to classify given examples of human actions. A Relevance Vector Machine
(RVM) is a probabilistic sparse kernel model identical in functional form to
the Support Vector Machines (SVM). In their simplest form, Relevance Vector
Machines attempt to find a hyperplane defined as a weighted combination of a
few Relevance Vectors that separate samples of two different classes. In contrast
to SVM, predictions in RVM are probabilistic. Given a dataset of N input-target
pairs {(Fn, ln), 1 ≤ n ≤ N}, an RVM learns functional mappings of the form:

y(F ) =
N∑

n=1

wnK(F, Fn) + w0 , (22)

where {wn} are the model weights and K(., .) is a Kernel function. Gaussian or
Radial Basis Functions have been extensively used as kernels in RVM. In our
case, we use as a kernel a Gaussian Radial Basis Function defined by the distance
measure of eq. 21. That is,

K(F, Fn) = e
− DL(F,Fn)2

2η , (23)
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where η is the Kernel width. RVM performs classification by predicting the
posterior probability of class membership given the input F . The posterior is
given by wrapping eq. 22 in a sigmoid function, that is:

p(l|F ) =
1

1 + e−y(F )
(24)

In the two class problem, a sample F is classified to the class l ∈ [0, 1], that
maximizes the conditional probability p(l|F ). For L different classes, L different
classifiers are trained and a given example F is classified to the class for which
the conditional distribution pi(l|F ),1 ≤ i ≤ L is maximized, that is:

Class(F ) = arg max
i

(pi(l|F )) . (25)

6 Experimental Results

For the evaluation of the proposed method, we use aerobic exercises as a test
domain. Our dataset consists of 12 different aerobic exercises, performed by
amateurs, that have seen a video with an instructor performing the same set of
exercises. Each exercise is performed twice by four different subjects, leading to
a set of 96 corresponding feature sets.

In order to illustrate the ability of the proposed method to extract the kind
of motion performed, we present in Fig. 4 the trajectories that were extracted

Fig. 4. Extracted trajectories for two different actions
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Table 1. Recall and Precision rates for the kNN and RVM classifiers

Class Labels 1 2 3 4 5 6
RVM Recall 1 1 1 1 0.5 0.5

RVM Precision 1 1 1 1 0.44 0.4
Class Labels 7 8 9 10 11 12
RVM Recall 1 0.88 0.63 0.63 0.88 1

RVM Precision 1 1 0.63 0.83 0.88 1

Table 2. RVM Confusion Matrix

Class labels 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 8 0 0 0 0 0 0 0 0 0 0 0 8
2 0 8 0 0 0 0 0 0 0 0 0 0 8
3 0 0 8 0 0 0 0 0 0 0 0 0 8
4 0 0 0 8 0 0 0 0 0 0 0 0 8
5 0 0 0 0 4 5 0 0 0 0 0 0 9
6 0 0 0 0 4 3 0 0 3 0 0 0 10
7 0 0 0 0 0 0 8 0 0 0 0 0 8
8 0 0 0 0 0 0 0 7 0 0 0 0 7
9 0 0 0 0 0 0 0 1 5 2 0 0 8
10 0 0 0 0 0 0 0 0 0 5 1 0 6
11 0 0 0 0 0 0 0 0 0 1 7 0 8
12 0 0 0 0 0 0 0 0 0 0 0 8 8

Total 8 8 8 8 8 8 8 8 8 8 8 8 8

from two different actions along with a snapshot of the corresponding actions.
The salient points that are visible in the upper part of the figure were used in
order to extract some of the trajectories presented in the lower part of the same
Figure. Furthermore, the extracted trajectory set seems to correctly capture the
pattern of the motion performed. This can easily be observed from the arch-like
trajectories of the lower part of the figure, which correspond to the motion of
the subjects’ hands.

In order to classify a test example using the Relevance Vector Machines, we
constructed 12 different classifiers, one for each class, and we calculated for each
test example F the conditional probability pi(l|F ), 1 ≤ i ≤ 12. Each example
was assigned to the class for which the corresponding classifier provided the
maximum conditional probability, as depicted in eq. 25. Note that for estimating
each of the pi(l|F ), an RVM is trained by leaving out the example F as well as
all other instances of the same exercise that were performed by the subject from
F . The corresponding recall and precision rates, calculated as an average of all
test trials, are given in Table 1. The total recognition rate is equal to 80.61%,
which is a relatively good performance, given the small number of examples with
respect to the number of classes, and the fact that the subjects were not trained.
In Table 2 the confusion matrix generated by the RVM classifier is also given.

The confusion matrix in Table 2 conceals the fact that for some of the mis-
classified examples the probability assigned by the RVM classifier to the correct
matching move might be very close to the probability assigned to the move ac-
tually selected by the classifier. We used the average ranking percentile in order
to extract this kind of information and to measure the overall matching quality
of our proposed algorithm. Let us denote with rFn the position of the correct
match for the test example Fn, n = 1 . . .N2, in the ordered list of N1 match
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values. Rank rFn ranges from r = 1 for a perfect match to r = N1 for the worst
possible match. Then, the average ranking percentile is calculated as follows:

r =

(
1

N2

N2∑

n=1

N1 − rFn

N1 − 1

)
100%. (26)

Since our dataset consists of 96 test image sequences divided in 12 separate
classes, it follows that N1 = 12 and N2 = 96. Each of the 12 match values
are provided for each example by the 12 trained RVM classifiers. The average
ranking percentile for the RVM classifier is 94.5%. Its high value shows that for
the majority of the missclassified examples, the correct matches are located in
the first positions in the ordered list of match values.

7 Conclusions

In this work, previous work on spatiotemporal saliency was enhanced in order to
extract a number of short trajectories from given image sequences. Each detected
spatiotemporal point was used in order to initialize a tracker based on auxiliary
particle filtering. A background estimation model was also implemented and in-
corporated into the particle evaluation process, in order to deal with inadequate
localization of the initialization points and to improve, thus, the performance
of the tracker. A variant of the LCSS algorithm was used in order to compare
different sets of trajectories. The derived LCSS distance was used in order to
define a kernel for the RVM classifier that was used for recognition. We have il-
lustrated the efficiency of our representation in recognizing human actions using
as a test domain aerobic exercises. Finally, we presented results on real image
sequences that illustrate the consistency in the spatiotemporal localization and
scale selection of the proposed method.
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