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Abstract - Enabling computer systems to recognize human 
facial expressions is a challenging research problem with 
many applications in behavioral science, medicine, 
security, and human-machine interaction. Instead of being 
another approach to automatic detection of prototypic 
facial expressions of emotion, this work attempts to analyze 
subtle changes in facial behavior by recognizing facial 
action units (AUs, i.e. atomic facial signals) that produce 
expressions. This paper proposes AU recognition based 
upon multilevel motion history images (MMHIs), which can 
be seen as an extension to temporal templates introduced 
by Bobick and Davis. By recording motion history at 
multiple time intervals (i.e., multilevel MHIs) instead of 
recording it once for the entire image sequence, we 
overcome the problem of self-occlusion which is inherent to 
temporal templates original definition. For automatic 
classification of an input MMHI-represented face video in 
terms of 21 AU classes, two approaches are compared: a 
Sparse Network of Winnows (SNoW) and a standard k-
Nearest Neighbour (kNN) classifier. The system was  tested 
on two different databases, the MMI-Face-DB developed by 
the authors and the Cohn-Kanade face database. 

1    Introduction 

Humans interact with each other far more naturally than 
they do with machines. This is why face-to-face interaction 
cannot be still substituted by human-computer interaction in 
spite of the theoretical feasibility of such a substitution in 
numerous professional areas including education and 
certain medical branches. In fact, existing man-machine 
interfaces are perceived by a broad user audience as the 
bottleneck in the effective utilization of the available 
information flow [1]. Hence, to improve man-machine 
interaction effectively, one should emulate the way in 
which humans communicate with each other. Although 
speech alone is often sufficient for communicating with 
another person (e.g., in a phone call), considerable research 
in social psychology has shown that non-verbal 
communicative cues are essential to synchronize the 
dialogue, to signal comprehension or disagreement, and to 
let the dialogue run smoother and with less interruptions 
[2]. Of all different non-verbal communication means (body 
gesture, posture, touch), the facial expression is the most 
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important means for interpersonal communication. It is the 
means to clarify what is said by means of lip-reading, to 
stress the importance of the spoken message by means of 
conversational signals like raising the eyebrows and to 
signal comprehension, disagreement, boredom etc. [3]. 

The majority of the existing approaches to automatic 
facial expression analysis focuses at the recognition of few 
prototypic emotional facial expressions such as happiness, 
surprise or anger [4], [5]. Yet such prototypic facial 
displays do not occur frequently in interpersonal 
communication [3]. To facilitate automatic analysis of 
subtler facial expressions, automatic detection of atomic 
facial signals (facial muscle actions), which when combined 
produce facial expressions, should be enabled first. 

The method proposed here is based on the Facial Action 
Coding System (FACS) [6]. This is the best known and the 
most commonly used system developed for human 
observers to describe facial activity in terms of visually 
observable facial muscle actions (i.e., facial action units, 
AUs). With FACS, a human observer decomposes a shown 
facial expression into one or more of in total 44 AUs that 
produced the expression in question. 

Few efforts were reported toward automatic AU detection 
from face image sequences. Tian et al. [4] presented a 
system based upon lip tracking and template matching that 
recognizes 15 AUs occurring alone or in combination in a 
frontal-view face image sequence. Bartlett et al. [7] 
reported on automatic detection of 3 AUs using Gabor 
filters, support vector machines and hidden Markov models 
to analyze a frontal-view face image sequence. Pantic et al. 
[8] reported on color and motion based detection of 20 AUs 
occurring alone or in combination in profile-view face 
video. Our previous work [9] reports on detecting 15 AUs 
and AU combinations by using temporal templates [10] 
generated from input face video and a two-stage classifier 
combining a kNN-based and a rule-based classifier. 

Temporal templates are 2D images, constructed from 
image sequences, which show motion history, that is, where 
and when motion in the image sequence has occurred. A 
drawback innate to temporal templates proposed originally 
by Bobick and Davis [10] is the problem of motion self-
occlusion due to overwriting. Let us explain this problem 
by giving an example. Let us denote an upward movement 
of the eyebrows as action A1 and a downward movement of 
the eyebrows back to the neutral position as action A2. Both 
actions produce apparent motion in the facial region above 



 

the neutral position of the eyebrows (Fig. 1, left). If A2 
follows A1 in time and if the motion history of both actions 
is recorded within a single Motion History Image (MHI), 
then the motion history of action A2 overwrites the motion 
history of A1; the information about the motion history of 
action A1 is lost. To overcome this problem, we propose in 
this paper to record the motion history at multiple time 
intervals and to construct Multilevel Motion History Image 
(MMHI), instead of recording the motion history once for 
the entire image sequence and constructing a single MHI.  

In this paper, we examine further whether and to which 
extent are temporal templates applicable for AU detection 
in face video. For automatic detection of 21 AUs from an 
input (M)MHI-represented face video, we compare two 
approaches: a Sparse Network of Winnows (SNoW) 
classifier and a two-stage classifier combining a kNN-based 
and a rule-based classifier. The evaluation of these two 
approaches on two different databases, the MMI-Face-DB 
developed by the authors and the Cohn-Kanade face 
database [11], suggests that the approaches perform as well 
as humans in AU detection tasks. 

2. Temporal Templates 
Temporal templates are 2D images constructed from 

image sequences, effectively reducing a 3D spatio-temporal 
space to a 2D representation [10]. They eliminate one 
dimension while retaining the temporal information; the 
locations where movement occurred in an input image 
sequence are depicted in the related 2D image.  

To be able to construct temporal templates we either need 
the camera and the background to be static or the motion of 
the object of interest to be separable from the motion 
induced by camera- and by background movements. If a 
temporal template is constructed without preserving the 
information about the time instance in which the movement 
occurred, we refer to it as to a Motion Energy Image (MEI). 
If, instead, we preserve the temporal information (motion 
history) by assigning different intensities to different 
moments of the movement, we refer to the resulting 
temporal template as to a Motion History Image (Fig. 1).  

A drawback inherent to the originally proposed temporal 
template approach [10] is the problem of motion self-
occlusion due to overwriting. As already explained above, 
if a motion on a location χ occurs at time instance t1 and at 
time instance t2 > t1, the recent motion (time instance t2) 

will overwrite the previously encountered motion (time 
instance t1). A way of dealing with this problem is to 
construct Multilevel Motion History Image (MMHI). 
Namely, instead of recording the motion history once for 
the entire image sequence (single MHI), the motion history 
is to be recorded at multiple time intervals (multilevel 
MHI).  

2.1 Face Image Sequence Registration 
In order to enable the construction of meaningful 

temporal templates that visualize only the motion of interest 
and that are comparable with each other, the faces in input 
image sequences must have the same position and 
orientation. In other words, input face image sequences 
must be registered in two ways. First, all rigid head 
movements within one image sequence must be eliminated. 
Second, all utilized image sequences must have the faces in 
the same position and on the same scale.  

To achieve the first registration, we first select manually 
9 facial points from the first frame of the image sequence 
(Fig. 2). These points are then tracked in all subsequent 
frames using a condensation-based template tracking 
technique [12]. For registration of each frame with respect 
to the first frame we apply an affine transformation. This 
transformation uses facial points whose spatial position 
remains the same even if a facial muscle contraction occurs 
(i.e., points 2, 3, and 8 illustrated in Fig. 2). For other points 
we cannot resolve whether the encountered movement of a 
point is due to a rigid head motion that we want to eliminate 
or due to the activation of an AU which we want to 
recognize. We call this process intra-registration. 

As already mentioned above, all utilized image sequences 
must have the faces at the same position and on the same 
scale. This inter-registration process is also carried out by 
an affine transformation. The transformation matrix is 
computed by comparing the neutral position of the 9 facial 
points defined for the current image sequence with the 
positions of the same 9 facial points on a selected ‘normal’ 
face. This way all faces are normalized to the scale and 
position of this base face.  

2.2 Temporal Template Construction 
Once properly registered, the available image sequences 

are used to construct temporal templates. Since we do not 
employ MEIs in the further AU recognition process, we 
will explain only the construction process of MHIs and 
MMHIs. Let I(x, y, t) be an image sequence of pixel 
intensities of k frames and let D(x, y, t) be the binary image 
that results from pixel intensity change detection, that is by 
thresholding ( ) ( ) thtyxItyxI >−− 1,,., , where x and y are the 

spatial coordinates of picture elements and th is the minimal 
intensity difference between to images for change detection. 
In an MHI, say Hτ, the pixel intensity is a function of the 
temporal history of motion at that point with τ being the 
period of time to be considered. 

Figure 1. Motion History Images (MHIs) of activated Action 
Units AU1+AU2 (left), AU16 (mid) and AU36L (right) 



 

The implementation of the MHI is as follows [10]: 
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Bobick and Davis studied spontaneous body gestures. In 
their problem definition it is not known when the 
movement of interest begins or ends. Therefore they needed 
to vary the observed period τ and to try to classify all 
resulting MHIs. Because we assume that the beginning and 
the end of a facial expression are known and that they 
coincide with the duration of an image sequence, we do not 
need to vary τ; we are able to normalize the temporal 
behavior by distributing the gray values in the MHI over the 
available range (0-255, assuming that we are using 8 bit 
gray level images). In turn, we are able to cancel out 
variations in display duration of an AU which makes it 
possible to compare facial expressions that have a different 
period but are otherwise identical. 

Initially, the input image sequences may have different 
numbers of frames. So, while the MHIs are temporally 
normalized, the number of history levels in them may still 
differ from one image sequence to another. To be able to 
compare the sequences properly, we want to create all 
MHIs such that they have a fixed number of history levels 
n. Therefore each image sequence is sampled to n+1 
frames. Using the known parameter n we modify the MHI 
operator into: 
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where ( )ns /255= is the intensity step between two history 
levels and ( ) 0,, =tyxH for 0≤t . We have varied n between 
3 and 9 and th between 0.15 and 0.20. In section IV we 
present our results with the values of n and th optimized for 
achieving the highest possible recognition rates. 

With an MMHI, we want to encode motion occurring at 
different time instances on the same location such that it is 
uniquely decodable later on. To do so, we use a simple bit-
wise coding scheme. If motion occurs at time instance t at 
position (x, y), we add 2 to the power of (t-1) to the old 
value of the MMHI: 

( ) ( ) ( ) 12,,1,,,, −⋅+−= ttyxDtyxMtyxM  (3) 

with ( ) 0,, =tyxM for 0≤t . Because of the bitwise coding 
scheme, we are able to separate multiple motions occurring 
at the same position in the classification stage.  

3    Classification Schemes 
For AU automatic detection from (M)MHI-represented 

face image sequences, we compare two classification 
schemes: (i) a two-stage classifier combining a kNN-based 
and a rule-based classifier, and (ii) a SNoW classifier. A 
preliminary version of the first classification scheme has 
been presented in [9]. The second classification method has 
been originally proposed in [13]. It is a sparse network of 
linear functions over a pre-defined or incrementally learned 
feature space. It is a multi-class classifier specifically 
tailored to large-scale classification problems with a very 
large number of features which seems, therefore, suitable 
for our problem. 

3.1 Combined kNN/rule-based classifier  
The employed kNN algorithm is straightforward: for a 

test sample it uses a distance metric to compute which k 
(labeled) training samples are “nearest” to the sample in 
question and then casts a majority vote on the labels of the 
nearest neighbors to decide the class of the test sample. 
Parameters of interest are the distance metric being used 
and k, the number of neighbors to consider.  

In the case of MHI-based data representation, both k and 
the distance measure were experimentally determined [9]. 
The distance measure distMHI that performed the best was 
the simple Euclidian distance measure: 

( ) ( )2
1 ',' � −= =

d
i iimhi xxxxdist  (4) 

where x is the test sample, x’ is a training sample and d is 
the dimensionality of our sample space.  

In the case of MMHI-based data representation, the 
distance measure distMMHI has been calculated as follows. 
Let us denote the current input sample with S’ and the 
sample with which it is compared with S. Lets denote 

Figure 2. Manually selected points Figure 3. Facial regions for determining 
temporal templates activity 



 

further the j-th feature (pixel) of sample S’ with S’j, its 
corresponding MMHI representation as M(S’j), the j-th 
feature (pixel) of sample S with Sj, and its MMHI 
representation as M(Sj), where 

( ) laaa
jSM 2...22' 21 +++= , 

( ) mbbb
jSM 2...22 21 +++=  

such that Aj = {a1, a2,…, an} is the set of active history 
levels of the j-th feature of sample S’ and Bj={b1, b2,…, bn} 
is the set of active history levels of the j-th feature of 
sample S. The distance measure distMMHI is defined as: 
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where d is the dimensionality of the feature space.  
Though it gives a good indication about the AUs shown 

in a given sample, the kNN algorithm confuses commonly 
AUs that have partially the same (M)MHI. To address this 
drawback, we created a set of rules based on the knowledge 
of a human FACS coder. We defined facial regions in 
which the presence of motion characterizes certain AU 
activation. For example, the presence of motion in region 
R2 (Fig. 3) is characteristic for the activation of AU2. We 
calculate this activity in facial region Ri as follows: 
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where H is the MHI operator defined in (2),  n is the 

number of history levels in each (M)MHI, jA  the 

cardinality of active history levels of the j-th pixel in a 
(M)MHI and N the number of pixels in the facial region Ri. 
The facial regions are positioned relative to the same facial 
points that we used for the registration of image sequences. 
Using these regions we built a set of rules, which are based 
on the activation values in facial regions being typical for 
certain AU activation. With these rules we can correctly 
reclassify samples that the kNN algorithm misclassified at 
first. For example, the kNN classifier often confuses AU4 
and AU1+AU4. Both produce activity in the same part of 
the MHI (in regions R1 and R4 illustrated in Fig. 3), but 
AU4 causes the eyebrows to move inward and downward, 
while AU1+AU4 first causes an upward movement of the 
eyebrows followed by an inward and downward movement. 
This results in high activation between the brows and 
relatively low activation above the inner corners of the 
brows. Hence, the rules used to resolve the confusion in 
question are defined as follows. If the kNN classifier 
encodes AU4 and it is true that 

( )
( ) ( )( ) ( ) 43 4

42

1 thRactth
RactRact

Ract >∧>
+
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where act(Ri) is the activity in facial region Ri defined in 
(6) and thj are thresholds that are automatically defined 
during the training phase [9], then AU1+AU4 will be the 
final classification of the pertinent input sample. Otherwise, 
AU4 will be the final classification of the pertinent input 
sample. Similarly, if the kNN classifier encodes AU1+AU4 
and it is true that 

( )
( ) ( ) ( ) ( ) 87 496

1

4 thRactRactRactth
Ract
Ract <−+∧> , 

then AU4 will be the final classification of the input sample 
in question. Otherwise, AU1+AU4 will be the final output 
of the two-stage classifier explained here. For a complete 
list of the utilized rules, the reader is referred to [9]. 

3.2 SNoW classifier 
A Sparse Network of Winnows (SNoW) is an information 

processing structure that consists of an input layer of nodes 
and an output layer of target nodes. It learns a sparse 
network of linear functions in which the target concepts 
(class labels) are represented as linear functions over a 
common feature space [13].  

The SNOW classifier that we employ for AU detection 
uses one target node for each AU to be detected. The data 
fed to the input layer of the utilized SNOW is a set of 
features extracted from the specific facial regions (see Fig. 
3) of an input (M)MHI. These features have binary values 
(active or inactive). Namely, if the pixel at position (x,y) is 
the i-th out of d pixels that form the facial regions depicted 
in Fig. 3, and if it has active history levels Aj = {a1, a2,…, 
al}, then the set of active features for the pixel in question 
can be defined as: 

 �
(x,y) ( ) ( ) ( ){ }lanianiani +∗−+∗−+∗−= 1,...,1,1 21  (7) 

 
where n is the number of history levels of the input 
(M)MHI. The total set of features forming the input to the 
utilized SNoW is the union of the active features for all the 
pixels of the facial regions depicted in Fig. 3. Target nodes 
are linked further via weighted connections to (some of the) 
input nodes. If Lt={i, i,…, im} is the set of active input 
features that are linked to target node t, then t is active if 

and only if tLti
t
iw θ>

�
∈ , where θt is a threshold and t

iw is 

the weight associated with the connection of the i-th feature 
to target node t. Different update rules, Winnow, 
Perceptron, and naive Bayes, can be used within a SNoW. 
The SNoW learning architecture inherits its generalization 
properties from the particular update rule that is being used. 
When using Winnow, it is a feature efficient learning 
algorithm, in that it scales linearly with the number of 
relevant features, and linearly with the number of features 
active in the domain. The SNOW classifier that we employ 
for AU detection uses  Winnow  update  rule  which,  
except  



 

 of the threshold θt, utilizes two other update parameters: 
a promotion parameter α > 1 and a demotion parameter 0 < 
β < 1. These are being used to adjust the weights of the 
links when a mistake is made. If the system produces a false 
negative prediction during the training, all active weights 
are promoted by multiplication with α. Similarly, when the 
system produces a false positive prediction, all active 
weights are demoted by multiplication with β.  

4    Experimental results 
We evaluated the performance of the two AU 

recognition schemes described above using two different 
databases: the Cohn-Kanade face database [11] and the 
MMI-Face-DB developed by the authors. 

4.1 Cohn-Kanade face database  
The Cohn-Kanade face database contains over 2000 

videos of the facial displays produced by 210 adults being 
18 to 50 years old, 69% female, 81% Caucasian, 13% 
African and 6% from other ethnic groups. All facial 
displays were made on command and the recordings were 
made under constant lighting conditions. Only real 
expressions were recorded, which means that many AUs 
never occur alone. Many recordings contain the date/time 
stamp recorded over parts of the face. This occurrence is 
unwanted, for it causes (M)MHI activation which is of 
course unwanted. 

4.2 MMI-Face-DB  
Mainly due to the lack of facial displays depicting the 

activation of individual AUs in the Cohn-Kanade database, 
the authors of this paper decided to develop a new face 
database: the MMI-Face-DB. It consists of over 4000 
videos and over 600 static images depicting the facial 
displays of 31 adults being 19 to 35 years old; 50% female, 
81% being Caucasian, 14% Asian and 5% African. All 
facial displays were made on command and the recordings 
were made under constant lighting conditions. All but seven 
facial expression videos were recorded in profile and frontal 
view simultaneously (using a mirror). Two FACS experts 
coded the database. When in doubt, decisions were made by 
consensus.  

The database contains a large amount of videos where 
the activation of individual AUs has been recorded. In the 
cases where this was not possible, expressions produced by 
the activation of the least possible number of AUs were 
recorded. For example, in AU16 (lower lip depressed): 
depressing the lower lip automatically parts the lips causing 
AU25 (lips parted) to be activated as well.  

4.3 Evaluation results  
The experiments using the kNN rule-based classifier 

have been applied to both MHI and MMHI represented data 
constructed from image sequences that were scaled down 
by a factor 4 in both the height and the width. This scaling 
has been done to increase the detection speed. The optimal 
kNN parameter k and (M)MHI constructor threshold th 
were experimentally determined to be k = 3 and th = 0.19. 
Table 1 shows the results of tests performed using the 
MMI-Face-DB. Results for MMHI are, overall, lower than 
they are for MHI. This is because of the definition of 
MMHI. The distance measure used makes it difficult to find 
the desired nearest neighbor of a sample when multiple 
levels are activated on the same position in a MMHI. 
Furthermore, as we do not have any examples displaying 
possible confusion caused by motion self-occlusion, we 
were not able to show the increased resolution of MMHI 

MHI MMHI Action 
Units 

nr 
Rec. 
rate 

False 
positive 

Rec. 
rate 

False 
positive 

1 + 2 10 0.90 3 0.90 3 
2 6 0.50 0 0.50 2 

1 + 4 6 0.50 6 0.50 3 
4 12 0.67 6 0.75 10 
6 10 0.70 1 0.70 1 
9 11 0.82 0 0.45 0 

8 + 25 10 0.60 4 0.40 3 
10 + 25 10 0.90 1 0.80 1 
11 + 25 10 0.70 1 0.70 1 
12 + 25 10 1.00 10 0.80 9 

14 11 0.27 4 0.18 3 
15 8 0.37 9 0.75 28 

16 + 25 10 0.60 8 0.50 16 
17 10 0.60 3 0.70 6 
18 10 0.70 4 0.60 5 
20 10 0.60 3 0.60 1 

22 + 25 10 0.60 3 0.40 0 
25 9 0.33 10 0.33 5 

25 + 26 11 0.36 11 0.46 11 
27 10 0.80 0 0.70 0 

26 + 30L 9 0.33 1 0.33 1 
26 + 30R 9 0.67 3 0.67 2 
26 + 36T 12 0.50 1 0.42 2 
26+36B 10 0.60 2 0.30 1 
26+36L 9 0.56 6 0.44 5 
26+36R 10 0.40 6 0.60 2 

Total: 253 0.61 106 0.56 121 

MHI MMHI Action 
Units 

nr 
Rec. 
rate 

False 
positive 

Rec. 
rate 

False 
positive 

1 + 2 21 0.52 2 0.45 3 
1 + 4 21 0.61 12 0.67 22 

4 21 0.38 10 0.29 7 
6 61 1.00 8 0.89 8 

12 + 25 59 0.63 10 0.31 4 
12 27 0.78 26 0.54 32 
15 4 0.25 10 0 2 
17 26 0.54 5 0.46 16 

20 + 25 18 0.11 1 0.11 5 
25 42 0.64 10 0.88 37 
27 42 0.93 5 0.78 3 
Total: 344 0.68 110 0.58 139 

Table 1. Recognition rates for the MMI-Face-DB. The second column 
shows the number of samples with the specified action unit the 

database contains. 

Table 2. Recognition rates for the Cohn-Kanade database. The 
second column shows the number of samples with the specified 

action unit the database contains. 



 

with respect to MHI in occasions where confusion caused 
by motion self-occlusion does occur. 

 The test results for classification using the kNN rule-
based algorithm on the Cohn-Kanade database are shown in 
Table 2. Unfortunately, as already mentioned above, the 
Cohn-Kanade database has fewer AUs occurring alone, 
resulting in fewer AUs that can be recognized. The 
recognition rates for this database are somewhat higher. 
This is probably due to a larger number of samples per AU 
and fewer target classes providing less confusion 
possibilities. 

 For both datasets, all confusions of AU 11 (upper lip 
raised and deepened nasolabial furrows) were made with 
AU10 (upper lip raised). This is no surprise, however, as 
the facial changes produced by these AUs are very similar. 
There are many combinations of AUs with AU25 (for 
example AU16 + AU25), causing rather low recognition 
rates for this AU. 

 Finally, in Table 3 we show the result for detecting 
selected AUs in MHI data using the SNoW classifier. For 
each AU to detect a binary SNoW net is trained using an 
equal number of positive as negative samples. Each trained 
SNoW net is evaluated on the whole dataset on a leave-one-
out basis. The MHI data was constructed from the Cohn-
Kanade database; samples containing individual AUs as 
well as samples containing more than one AU were allowed 
in the training and test sets. The number of examples the 
SNoW algorithm requires to learn a linear function grows 
linearly with the number of relevant features. But although 
we downscaled our images and applied feature selection as 
described in section 3.2, the results suggest that there still 
are to many relevant features present in our sample MHIs 
for the number of samples in the dataset; AUs with little 
positive samples do not have good recognition rates for the 
detection of positively labeled samples.  

5. Conclusions 

This paper presented an evaluation of the use of Motion 
History Images in the field of Facial Action detection and 
suggested the use of Multilevel Motion History Images.  

The test results show clearly that (M)MHIs are very 
suitable for detecting various AUs. Especially the AUs 
AU1+AU2 (eyebrows raised), AU10+AU25 (raised upper 

lip), AU12+AU25 (smile with lips parted) and AU27 
(mouth stretched vertically) are easily recognized.  

 Though classification using MMHIs resulted in lower 
recognition rates than classification using conventional 
MHIs, we believe that MMHI data representation can offer 
many benefits in applications where confusions caused by 
motion self-occlusion are common (e.g., in hand gesture 
recognition, waving the hand is often confused with moving 
the hand from left to right only).  

In order to gain better results using neural network 
classifiers such as the SNoW architecture, we plan to 
combine the Cohn-Kanade database and the MMI-face-DB. 
Together with a feature selection mechanism this should 
produce higher classification rates. 

In future work we want to examine how sensitive the 
system is for registration errors. We also want to compare 
temporal templates with other features, such as optical flow.  
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Action 
Unit 

nr Recognition rate 
positive samples 

Recognition rate 
negative samples 

1 34 0.85 0.85 
2 22 0.64 0.97 
4 37 0.76 0.85 
6 18 0.5 0.89 

12 21 0.67 0.94 
17 36 0.33 0.85 
25 49 0.94 0.23 
26 4 0.25 0.94 
27 7 0.29 1.00 

Total: 228 0.58 0.84 

Table 3. SNoW detection results. Column 2 lists the number of 
positive samples in the dataset. 
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