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IPST: Incremental Pictorial Structures for
model-free Tracking of deformable objects
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Abstract—Model-free tracking is a well-studied task in com-
puter vision. Typically, a rectangular bounding box containing
a single object is provided in the first (few) frame(s) and then
the method tracks the object in the rest frames. However, for
deformable objects (e.g. faces, bodies) the single bounding box
scenario is suboptimal; a part-based approach would be more
effective. The current state-of-the-art part-based approach is
incrementally trained discriminative Deformable Part Models
(DPM). Nevertheless, training discriminative DPMs with one
or a few examples poses a huge challenge. We argue that a
generative model is a better fit for the task. To that end, we
utilise the powerful pictorial structures, which we augment with
incremental updates to account for object adaptations. Our
proposed incremental pictorial structures, which we call IPST,
are experimentally validated in different scenarios. In a thorough
experimentation we demonstrate that IPST outperforms the
existing model-free methods in facial landmark tracking, body
tracking, animal tracking (newly introduced to verify the strength
in ad hoc cases).

Index Terms—Part-based model-free tracking, Pictorial Struc-
tures, Incremental tracking

I. INTRODUCTION

V ISUAL object tracking is among the fundamental prob-
lems of computer vision, with a plethora of applications

including video surveillance, human computer interaction,
augmented reality etc. The past few years considerable im-
provement has been achieved in model-free tracking of single
targets however tracking deformable objects in unconstrained
conditions remains challenging.

Model-free trackers aim at estimating the position of an
object in a video. No prior information is available about the
object; the sole input to the method is the bounding box style
annotation(s) (that contain the object) provided for the first
few frames [1], [2]. Then, the method tracks the object in the
remaining frames. Model-free trackers can be divided into a)
holistic, b) part-based methods. The holistic ones represent
the object with a single bounding box1, while the part-based
methods explicitly include a set of parts that are tracked. Part-
based tracking is well suited for deformable objects where
semantic parts might move differently.

The category of holistic methods is predominant while
the related literature is extensive. The state-of-the-art mainly
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1Since the main aim is to track a rigid representation of the object,
deformations and/or the parts of the object are rarely considered in holistic
methods.

revolves around methods that (a) use a tracking-by-detection
strategy that treats the tracking problem as a classification
task using online learning techniques to update the object
model [3], [4], (b) learn Correlation Filters over image fea-
tures [5], [6] and (c) learn an appropriate function, using Deep
Convolutional Neural Networks, which matches the initial
target to candidates in all the other frames [7], [8]. For a
thorough comparison the interested reader may consult [2],
[7], [9].

In rare cases part-based and object shape representations are
implicitly used in holistic model-free tracking [10]–[12]. The
tracker of Adam et al. [10] represents the object with multiple
arbitrary patches. Each patch votes on potential positions and
scales of the object and a robust statistic is employed to
minimise the error from voting. Kalal et al. [11] perform part-
based sampling; each part (point) is tracked independently in
each frame by estimating the optic flow. Using a forward-
backward measure, the erroneous points are identified and the
rest of the reliable points are utilised to compute the optimal
object trajectory. Wang et al. [12] introduce a tracker predict-
ing the direct object displacement. A cascade of regressors
is utilised to localise the parts, while the model is updated
online and the regressors are initialised by a multiple motion
model at each frame. The motion model initialisation along
with the sensitivity of the regressors can cause drifting in
case of rapid movement or severe deformations. Although, the
aforementioned trackers use the notion of parts/deformation,
their goal is not to track the deformations of the object
but rather to make the rigid object tracking model stable to
occlusions.

The second category, i.e. part-based (deformable) tracking,
has significant applications, however it is relatively under-
studied, because creating databases with ground-truth part
annotations is a gargantuan task. For a handful of well-studied
objects, e.g. human face, human body, benchmarks exist; for
the majority of objects “in-the-wild” there is no work yet.
The annotations of existing benchmarks are typically extracted
in a semi-automatic way [13], [14] by building statistical
models in carefully annotated datasets. Training model-based
fitting methods for arbitrary objects is currently infeasible,
since annotating arbitrary objects with regards to parts forms
an expensive and tedious process. However, to validate our
approach in an ad hoc case, we have annotated a new dataset
that includes cats’ faces.

The most relevant work to ours is the structure-preserving
object tracker (SPOT) [4] and the tracker of Yao et al. [3].
The tracker in [3] adapts the latent SVM formulation [15] for
online tracking, by making a first order Markov assumption
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on the position of the parts, i.e. the location of each part is
searched in the neighboorhood of the part’s position in the
previous frame. The SPOT tracker on the other hand is a
strongly-supervised discriminatively trained Deformable-Part-
based Model (DPM) [15] object detector that is incrementally
updated. The difference between SPOT and DPM is that the
location of the parts of the object are given by the user in
the first frame (or few frames) of the video, while in Yao
et al. [3] the parts are latent variables learnt during the training
process, and that the parameters of the model are learnt in an
online fashion, rather than from a large collection of annotated
data as in DPM. Nevertheless, as a discriminative method
SPOT requires many well-annotated data and could be prone
to drifting.

In contrast to the aforementioned discriminative part-based
trackers, we support that a generative model is well-suited
for the task. Motivated by the recent works on Active Ap-
pearance Models (AAMs) where it was shown that feature-
based Principal Component Analysis (PCA) is as powerful as
discriminative models for part-based object fitting [16], [17]2,
we illustrate such a case in Fig. 1. The PCA, learnt per-part
from pixel intensities, is able to reconstruct accurately the
texture. Incremental PCA-based trackers were for several years
among the state-of-the-art in model-free tracking methods
[18], [19]; nevertheless they are holistic methods. Expressing
both the variations of the texture and the shape at the same
time with a limited number of PCA components is challenging.
Our methodology instead decouples the variations between
texture and shape, i.e. we devise a method that disentangles
the texture and the shape and is incrementally updated.

In this paper we revisit the original generative pictorial
structures [20]. Pictorial Structures are a statistical model
that assumes a tree structure for the representations; each
node models the texture of a part, while each edge the
spatial relationship between parts. Each part has a different
distribution; we can model deformable objects whose parts
have different (appearance/shape) variance, e.g. the nose tip
versus the eyes of a human face. We augment the original
formulation to include a) appropriate features (e.g., HoG [21]),
b) incremental updates (which are exact). The features consist
our method robust to illumination changes that might occur
in sequential frames, while the increment updates adjust the
model to the object adaptations. Our incremental pictorial
structures tracker, IPST for short, is accurate and can track
effectively any object if given the annotations of the first
few frames. Our thorough experimentation dictates that IPST
is better suited for deformable model-free tracking than its
discriminative counterpart [4]. This is because in a model-
free tracking setting annotated data are scarce and the training
algorithm can be sensitive to erroneous fittings. We also
compare with tracking all the parts independently using several
well-established holistic trackers (which is a computationally
expensive process due to the number of parts).

Our contributions are organised as follows:

2It is very difficult to apply AAMs in a model-free framework, since they
use a non-linear optimisation for fitting which gets easily stack in wrong
solutions without the use of a generic model for the object.

Fig. 1: (best viewed in colour) Visual illustration of the linear
yet powerful incremental update of a part-based representation
in two videos. Left: The 90th frame of a video. Right:
The same frame with the parts (projected and) reconstructed
from PCA’s. The 20 first frames of each video were used
for incrementally updating a per-part PCA. Minor artifacts
can be noticed in few parts, e.g. the hand continuity or the
reconstruction of the cat’s tail/mouth, however each part is
still comprehensible in unseen future frames (e.g. 70 frames
ahead).

• We introduce IPST, a part-based (deformable) model-free
tracker which combines the powerful pictorial structures
with incremental updates.

• In a thorough experimentation we demonstrate that IPST
outperforms the existing trackers in several benchmarks.
In addition, to emphasise the ad-hoc merit of IPST, we
annotated a new dataset with animals. This dataset will
be released upon the acceptance of the paper.

• We release an open-source implementation of IPST,
which can be very useful for initialising ad-hoc de-
formable tracking cases.

II. METHOD

For a sequence of frames, the goal is to track n points
in each frame. In model-free tracking, there is no a-priori
knowledge of the n points of interest, hence they are provided
with manual annotation in the first K0 images. We model both
the appearance and the spatial relationship of the n points with
Gaussian distributions (as originally done by Felzenszwalb
et al.in [20]), while we update both models in an incremental
manner to account for object adaptations; a visual illustration
of the proposed system exists in Fig. 2. In the subsequent
sections we describe the model, the parameter learning and
updates along with the derivation of the cost function.

A. Notation

A capital (small) bold letter denotes a matrix (vector)
representation, a plain letter represents a scalar number. The
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Fig. 2: (best viewed in colour) Visual overview of the proposed part-based model-free tracking system where the patches are
indicated with more intense colours. In the learning part (left side of the figure) the appearance parameters are learnt, such
a visualisation is provided for part i (the left hand). Similarly the spatial parameters are learned from the relative movement
(deformation) of the parts. On the right side of the figure the tracking is performed. The incremental parameter updates, which
allow the method to account for (appearance) adaptations, are also indicated in the tracking part.

symbol i(t) denotes a vectorised 2D image3.
For each frame i(t) in time t, we estimate a set of n points

with spatial configuration

l(t) = [[`
(t)
1 ]T , [`

(t)
2 ]T , . . . , [`(t)n ]T ]T

where `(t)j = [x
(t)
j , y

(t)
j ]T , j ∈ [1, n] denote the Cartesian

coordinates of the jth point. For patch shape (wj , hj) (patch
area pa = wj ·hj), ij ∈ Rpa declares a vectorised rectangular
image patch of height hj and width wj defined by the spatial
neighbourhood centered around the point `j . Additionally,
the relative location of two points of interest is determined
as the vector of their spatial difference, i.e. `j − `k = [xj −
xk, yj−yk]T . The I denotes an identity matrix of appropriate
dimensionality.

B. Learning

Given a frame i(t), we model the likelihood
P (i(t), l(t)|A,S) where A,S denote the appearance,
shape parameters respectively. This likelihood expresses
the confidence of observing the part `j in the patch i

(t)
j

which captures both the appearance variation and the
spatial relationship of the points of interest. Following the
successful paradigm of pictorial structures [20] we create
a tree G = (V,E) where each vertex V = {v1, v2, ..., vn}
corresponds to a point of interest j, while each edge E
models the structural constraints between every pair of points
that are connected. That tree enables us to use the efficient
derivation conducted by Felzenszwalb et al.in [22]. Then the
likelihood is equivalent to:

P (i(t), l(t)|A,S) = P (i(t)|l(t),A)P (l(t)|S) =
n∏
j=1

P (i(t)|`(t)j ,A)

n∏
(vk,vj)∈E

P (`
(t)
j , `

(t)
k |S)

(1)

3The extension in case of feature extraction method or any other transfor-
mation in the images is straightforward.

The aforementioned tree-structure enables us to utilise the gen-
eralised distance transforms [22] for maximising the likelihood
of Eq. 1. Notice that Eq. 1 depends on two product terms;
the first term captures the conditional appearance probability,
while the second the spatial configuration probability. Each
of the two terms is modelled separately below with the final
objective of maximizing the likelihood.

Appearance modeling
The appearance of each point j is modelled with a Gaussian
distribution N (µj ,Σj) (µj ∈ Rpa , Σj ∈ R(pa,pa)). The
negative logarithm of the P (i(t)|`(t)j ,A) is minimised instead
of the maximisation of the likelihood, results in optimising:

argmin
ij

(ij − µj)TΣ−1j (ij − µj) (2)

We perform a Singular Value Decomposition (SVD) in
every matrix Σj and maintain the m greatest eigenvalues.
Hence, Σj ≈ UjLjU

T
j with Uj ∈ R(pa,m), Lj a diagonal

matrix of shape m×m.

Reconstruction error

The model-free context along with the Gaussian distribu-
tion assumption, constrains the representational power of Σj

within the learnt subspace. We ameliorate that by enriching
the variance formulation. Each patch i

(t)
j is modelled as

a linear combination of a latent random variable rj with
rj ∼ N (0,Lj), the mean appearance µj and a random
variable ε with ε ∼ N (0, σ2I) that incorporates the noise.
The formula for i(t)j is:

i
(t)
j = Ujrj + µj + ε (3)

Based on the previous equation, the posterior of i(t) is
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(a) Original frame (b) Minimum Spanning Tree (c) Appearance (unary) cost (d) Total cost (root point)

Fig. 3: (Preferably viewed in colour) Visualisation of the tree structure and the unary/total cost for a sample frame (for the
49 facial markup). The heat-maps demonstrate the cost that should be minimised; the preferred (argmin) points are the ones
closer to the blue (denoted in the colour range). The unary cost is quite precise in this sample, however the total cost that
accounts for the spatial deformations is more accurate (filtering out with very high values all the unrelated coordinates).

modified to:

P (i(t)|`(t)j ,A) =

∫
rj

P (i(t)|rj , `(t)j ,A)P (rj |A)dvj =

N (µj ,UjLjU
T
j + σ2I)

(4)

Note that the posterior in Eq. 4 is a Gaussian with the
same mean as the original one while the variance is aug-
mented with a term σ2I , i.e. Σaugm

j = UjLjU
T
j + σ2I .

Hence, following the derivation above, it is sufficient to find
argmin

i
(t)
j
(i

(t)
j − µj)T (Σ

augm
i )−1(i

(t)
j − µj). By applying

the Woodbury formula:

(Σaugm
j )−1 = Uj(Lj + σ2I)−1UT

j +
1

σ2
(I −UjUT

j ) (5)

As suggested in the experiment III-C, the initial term of
Uj(Lj+σ

2I)−1UT
j does not contribute significantly, thus in

our experiments we consider that
Σaugm
j ≈ Σreconst

j = 1
σ2 (I −UjUT

j ).

Incremental update
Since there is no prior knowledge about the point of interest,
we need to account for the adaptations of the appearance
of i(t)j over time. When Knew images are available the
incremental update of each appearance model can be exact
as Ross et al.proved in [18], i.e. it is equivalent to training
a new appearance model with an augmented set of images
i1:(K0+Knew). The derivation of that update is the following:

Given the previous mean µj , the eigenvectors Uj , the
diagonal matrix Lj of the previous covariance Σj and the
new data B = iK0+1:Knew the goal of the update consists in
learning a µ̂j and a Ûj , L̂j with Σ̂j = Ûj L̂j Û

T
j . The new

Knew samples can be described by the components already
included in Uj and the components to the orthogonal subspace
to Uj . Denoting the latter components as Vj , we obtain

Σ̂j = [Uj Vj ]

[
Lj UT

j B
0 V T

j B

] [
UT
j 0
0 I

]
SV D
=

([Uj Vj ] Ũj) L̃j (Ũ
T
j

[
UT
j 0
0 I

]
)

(6)

Note that for the derivation of the last part of the equation,

a SVD was performed in the matrix R =

[
Lj UT

j B
0 V T

j B

]
=

Ũj L̃j Ũ
T
j . Hence, the updated terms are Ûj = [Uj Vj ] Ũj

and L̂j = L̃j , while the µ̂j is the weighted mean of µj
combined with the mean of the new images.

Spatial Modelling
For each pair of points that are connected with an edge, we
model their relative displacement (`(t)j −`

(t)
k ) with a Gaussian

distribution N (µj,k,Σj,k) where µj,k ∈ R2, Σj,k ∈ R(2,2).
In a similar manner to the appearance modelling, the

maximisation of the likelihood P (`
(t)
j , `

(t)
k |S) is equivalent

to argmin
`
(t)
j ,`

(t)
k

(`
(t)
j − `

(t)
k −µj,k)TΣ−1j,k(`

(t)
j − `

(t)
k −µj,k).

This is a computationally demanding derivation as there are
thousands of spatial locations in every frame, however by
utilising the efficient derivation of the tree structure, it is
computed in linear time in the number of spatial locations.

Even though this formulation was developed for spatial
modelling, acknowledge that it additionally models the case
of deformation in the case of the vertexes of the graph being
points in a single object, e.g. a human face.

Tree structure
The tree G is constrained so that every vertex aside of the root
has exactly one parent vertex. Along with the mean vector
µj,k and the covariance matrix Σj,k the tree structure and the
edges’ weights form the spatial parameters S to be learnt. As
demonstrated in [20] the optimal configuration for the edges
E is provided by computing the Minimum Spanning Tree
(MST), which consitutes a tree with minimum total weights
on the edges. To learn the structure and the edges, a complete
graph with the vertices V and the edges is initialised and then
Kruskal’s algorithm is applied to compute the MST.

C. Inference

Cost function
The final cost function as derived from Eq. 1 is:

argmin
l(t),i

(t)
j

(

n∑
j=1

(i
(t)
j − µj)

TΣ−1j (i
(t)
j − µj)+

(`
(t)
j − `

(t)
k − µj,k)

TΣ−1j,k(`
(t)
j − `

(t)
k − µj,k))

(7)

where k denotes the parent node of each vertex and l(t)

the configuration of all the parts. Each vertex contributes
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an appearance (unary) cost plus the cost of the deformation
(pairwise term) from the nominal displacement from its’ parent
position.

Efficient computation

Due to the tree structure, the overall cost can be computed
very efficiently by traversing the tree exactly twice (bottom-up
and top-down). Specifically, starting from the cost of the leaf
nodes and inversely traversing the tree towards the root vertex,
the cost of placing each vertex in every position of the grid
is computed by utilising the generalised distance transforms.
Summing all these costs in the root vertex, the minimum cost
position for the root vertex is determined and based on this, the
positions of the children are decided recursively by traversing
the tree, hence the complete configuration l(t) is derived. An
illustrative figure including the minimum spanning tree, along
with the unary cost of the root and the final minimum cost
position (for the root) is depicted in Fig. 3.

III. EXPERIMENTS

The diverse set of comparisons that was performed is
summarised in this section (an overview of the datasets exists
in Table I). In sec. III-C an internal evaluation of IPST was
performed; sequentially the comparisons with state-of-the-art
methods in three different tasks (four datasets employed in
total) were developed. The tasks selected were: Deformable
face tracking [14], [23] in a model-free structure; body parts
tracking by employing the two diverse datasets [24], [25] and
deformable animal tracking.

Except for SPOT [4] there are no other state-of-the-art
methods suitable for deformable model-free tracking (when
the parts are explicitly defined). Alternative choices would
be incremental AAMs [26] or the incremental discriminative
tracker proposed in [27]. We experimented with AAMs in
a model-free framework; we found them unstable, not being
able to track the object after few frames, contrary to model-
based AAMs which work well. The problem was even more
pronounced with methods such as Asthana et al. [27] which
are unstable without the use of a model for a particular object
(e.g. faces).

We included a number of single bounding box trackers
in our experimentation. Executing a single object model-free
tracker for multiple points was both time-consuming, e.g.
calling the tracker 49 times for a 49 mark-up annotation for a
single clip, and suboptimal since it fails to capture the spatial
relationship among the parts. The latter one was especially
evident in the experiments where the different parts interacted
with finite degrees of freedom, e.g. in the facial landmark
mark-up. Nevertheless, we selected the following strong per-
forming methods: (i) CMT [28], which is a recent keypoint-
based model-free tracker that implicitly performs deformable
tracking (in the single bounding box case); (ii) FCT [29],
which is a fast tracker (used as a baseline); (iii) DSST [5],
which is a fast and accurate tracker based on correlation filters;
(iv) IVT [18], which is among the most widely used trackers
as baseline, while it is one of the generative methods that is

incrementally updated in a way similar to ours, (v) STCL [30],
which utilises a bayesian framework to learn the spatio-
temporal context of the object of interest, hence implicitly
accounting for the correlation of ‘close enough’ parts.

Additionally, we implemented an ‘oracle’. Principal Com-
ponent Analysis (PCA) was applied to the first K0 training
frames; then each new shape (frame) was projected and recon-
structed from the PCA after removing the global transforma-
tion components. The ‘oracle’ requires access to the ground-
truth landmarks for each frame, which are then projected and
reconstructed per part, hence it cannot be applied to a new
dataset, it is only added for denoting the theoretical upper
bound of our method.

The cumulative error distribution (CED) plot is utilised as
a comparison metric in the body tracking and the deformable
(facial, animal) tracking experiments. Similarly to [25] the x-
axis denotes the euclidean distance of the tracked point from
the ground-truth, while the y-axis the proportion of images
with less than this error. Unless differently mentioned, CED
curves measure the image proportion in the y-axis and the
(normalised) point-to-point distance in the x-axis. Additional
error metrics for every experiment are deferred to the supple-
mentary material. A qualitative result can be found in Fig. 5,
visually indicating the strengths of IPST; SPOT is chosen as
the main state-of-the-art method in part-based tracking; DSST
is randomly chosen among the single bounding box model-
free trackers; in the supplementary material additional results
are plotted4.

A. Implementation details

The implementation was conducted inside the Menpo
project [31]. In this work the first frame was initialised from
the ground-truth; the next four were tracked with a simple
template matching per landmark (simple correlation filter per
part), i.e. K0 = 5. We experimentally noticed that the first 4,
5 principal components of each part suffice for tracking. To
avoid overflowing values in the shape covariance matrices in
case the part movement is negligible in the first K0 frames,
we restrict the inverse covariance values within a pre-defined
interval. The sparse HOG features [15] were applied as the
feature extraction method. For all the experiments we kept
all the parameters of the algorithms unchanged. Regarding
the SPOT tracker, we made our own implementation but also
tested the code of the authors. We always reported the best
performing implementation for each specific video. Any direct
comparison with pre-trained methods utilising object domain
knowledge might differ from this work’s setup, since in model-
free tracking framework there is no a priori knowledge of the
objects; the trackers have only access to the first K0 frames
of each video.

B. Computational cost

All the methods were called for the first 100 frames of a
video in 300vW [23] (resolution of 1280 · 720). The machine

4A tracking video is provided in https://youtu.be/gCudSfSkYmU. Addi-
tional information about it can be found in the supplementary material.

https://youtu.be/gCudSfSkYmU
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(a) Sec. III-D (b) Sec. III-E (Penn) (c) Sec. III-E (BBC pose) (d) Sec. III-F
Fig. 4: Exemplar frames along with the points of interest for the datasets utilised.

TABLE I: A summary of the diverse datasets used in the
experiments. The sign of ‘#’ abbreviates the ‘number of’.
Columns 3-5 provide statistics only for the videos annotated,
i.e. those reported in the experiments. Column 6 mentions
the section with the respective experimental setup. In Fig. 4
a visual illustration of exemplar frames for each dataset is
provided.

Dataset Citation # videos # frames # points Sec.

300 vW [23] 64 123405 49 III-D
BBC pose [25] 10 1993 7 III-E

Penn Action [24] 2297 162158 7-13 III-E
Cat faces - 10 5861 38 III-F

employed included an i7 processor, 3.6 GHz, while no further
optimisation was performed for any of the methods. The
indicative times in seconds are reported in Tab.II. Our imple-
mentation was not optimised for the computational cost, hence
our python code could be further improved. Nevertheless, it is
faster than the SPOT implementation and as indicated in the
quantitative results, it outperforms all the compared methods
by a large margin in different datasets.

It should be noted that even with CMT which is a recent
tracker with a fast implementation (C++), the part-based
execution requires over 22 hours. Therefore, only trackers
which require less than 3 seconds per frame (for all the 49
parts) were compared.

C. Self evaluation

Three self evaluation experiments were conducted for quan-
titatively assessing the proposed method’s performance with
different parameters. In all cases, the validation was performed
in category 1 of 300 Videos in-the-Wild dataset (300vW) [23]
that includes over 60000 frames.

Effect of Sigma and incremental update: In this exper-
iment we assessed i) the influence of different covariances
(Σaugm

i and Σreconst
i ), ii) the influence of incremental

update.
Three alternatives were considered: a) disable the incremen-

tal update, alleged no-update version, b) use the full Σaugm
i

as proposed in sec II, c) use only the reconstruction error for
the appearance, i.e. the Σreconst

i .
The cumulative curve in Fig. 10 demonstrates the benefit

of utilising the incremental update for our learnt subspaces
while tracking. Additionally, the difference between Σaugm

i

and Σreconst
i was minor (also visually verified in different

experiments), henceforth in the subsequent experiments only
the reconstruction error (Σreconst

i ) was computed.
Influence of patch size: We investigated the sensitivity

of IPST to the patch size selection. Even with our efficient
vectorised computation (sec. II-C) the patch size has an
influence in the computational complexity. Thus, we explored
the effect of the patch size in the performance.

The following three options were considered: a) patch size
12, b) patch size 20, c) patch size 24. The CED plot is
illustrated in Fig. 7a. The difference between the patch size of
24 and 20 was not substantial, however we chose the patch size
24 for our experiments as it had a marginal improvement. The
performance of a much smaller patch size (12) was decreased,
i.e. the difference from patch size 24 was substantial.

Rapid motion: Even though the diverse experiments
demonstrated the effectiveness of IPST versus existing meth-
ods, we experimented with the case of faster and abrupt
changes. That effect was simulated by skipping every sec-
ond frame of the original database, i.e. assuming that each
clip included the sequence {2 · n} frames where n ∈
{1, 2, . . . , length(clip)2 }.

We executed IPST in the clips with skipped frames and
visualised the CED plot in Fig. 7b. Even though there was a
minor decrease in the performance, we noticed that IPST was
robust to more rapid motion.

In case prior knowledge about the database was available
(e.g. rapid movement, frequent occlusions) more elaborate
engineering tricks could be employed. For instance, we could
include the forgetting factor [18] that applies a weighting
scheme to favour more recent samples. Additionally, the
reconstruction error could be used to dictate when to perform
updates. However, the simple proposed system was quite
robust; further analysis on such tricks is left as future work.

D. Deformable face tracking

In this experiment, the points of interest were the sparse
facial landmark points in the 300 Videos in-the-Wild dataset
[23]. This dataset includes 114 videos (approx. 1500 frames
each), organised in 3 categories. Each frame contains a single
human face and is annotated with 68 points, while the videos
comprise of a wide variety of facial poses and expressions. We
considered each point of the 49 mark-up as a tracking target
and tracked all the frames.
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(a) SPOT (facial tracking)
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(b) Tracker DSST (facial tracking)
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(c) (Proposed) IPST (facial tracking)
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(f) (Proposed) IPST (body tracking)

Fig. 5: (Preferably viewed in colour) Indicative tracked frames from the facial tracking experiment and the body tracking
experiment (Penn Action dataset in III-E). Evidently, the single bounding box tracker fails to capture the spatial relationship
among the patches; different patches are tracked in random parts, i.e. completely losing the shape information.

CMT [28] DSST [5] FCT [29] IPST IVT [18] SPOT [4] STCL [30]

2.4 1.3 0.9 1.3 1.5 2.2 1.4

Colouring denotes the methods’ ranking: � first � second � third

TABLE II: The computational cost (reported in seconds) of the compared methods. The 3 fastest methods are highlighted.
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Fig. 6: (Preferably viewed in colour) CED plots comparing IPST with the prior art in different scenarios. The x-axis represents
the point-to-point error per frame, while the y-axis the proportion of frames up to an error. (b), (c) The comparison with the
prior art on body tracking in two diverse datasets. (d) The animal tracking experiment portrays the ad-hoc utilities of the IPST
for tracking deformable objects when no prior annotations exist. The proposed method outperforms the compared methods.

patch_12

patch_20

patch_24

IPST - skip every second

IPST

(a) Influence of patch size (b) Rapid motion

Fig. 7: (Preferably viewed in colour) Self evaluation related
CED plots. (a) The CED plot reflecting the influence of
different patch sizes. The x-axis depicts the normalised point-
to-point error, while the y-axis the proportion of images with
less than a specified x error. (b) The CED plot for rapid motion
case.

Following the deformable literature on faces [14], [32],
the standard cumulative error distribution (CED) plots with
normalised point-to-point error was selected for the quanti-
tative evaluation. The CED curves were produced based on
the ones in Chrysos et al. [14] for 49 landmark points. The
error metric chosen was the mean Euclidean displacement of
the 49 points, normalised by the length of the ground truth’s
bounding box diagonal5. The cut-off error was set to 0.08;

5As reported in [14] this metric is relatively invariant to large pose angles,
while it is mathematically expressed as (

√
width2 + height2). height and

width correspond to the vertical and horizontal difference of the boundary
landmark points respectively.

above that threshold it was considered failure to localise the
landmarks.

We visualise the CED plots of all three categories in
Fig. 8. In category 1 (Fig. 8a) the proposed method managed
to localise approximately 40% of the landmarks (across all
images) with error less than 0.05 (mediocre errors), while it
is noticeable that the rest methods did not manage to reach
this point even in 0.08 error. IPST largely outperformed the
rest compared methods. In category 2 (Fig. 8b) IPST still out-
performed the compared methods, however the performance
of all methods was slightly improved. This was credited to
the robustness of modern trackers to illumination changes
(which is the challenge of category 2). In this category the
single bounding box trackers performed considerably worse
than methods that consider explicitly the relationship among
the parts. Even with trackers that localised the parts in the
first few frames accurately, the high correlation of the points
in the human face dominated the localisation ability, hence
they drifted within the first few hundred frames and tracked
‘random’ patches of the image. Lastly, category 3 (Fig. 8c),
which is the most challenging in 300VW, validated the results
of the previous two categories. Even though the performance
of all methods deteriorated, IPST outperformed the compared
methods. The decreased performance of category 3 was at-
tributed to the self-occlusions of the face. Only the first few
frames were observed and when those points were occluded,
the model-free methods could not learn the appearance of the
occluded part, hence they tracked the patch that was causing
the occlusion in the first frames; please see Fig. 9 for an
illustration of the phenomenon.

To sum up, the spatial modelling contributed to the suc-
cessful tracking of the facial parts in all three categories. The
discriminative training of SPOT with only few positive sam-
ples, made it very challenging to disambiguate between similar
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parts, e.g. the eyes. Additionally, in SPOT the deformation
cost parameters are constant instead of being learnt from data,
hence it got trapped easily in local minima.

E. Deformable body parts tracking

The popular datasets of Charles et al. [25] and Zhang
et al. [24] were selected for studying the movement of fiducial
body parts.

BBC pose dataset: The extended BBC pose database [25]
includes 92 videos of news in sign language; each video
includes several thousands frames. For each frame, 7 points
of the presenter’s body are annotated. In this experiment
we assessed the methods’ performance only in the manually
annotated frames, which are provided for 10 videos (200
samples per video are manually annotated). BBC pose consists
a very challenging benchmark due to the abrupt background
changes, e.g. complete change of the background in two
consequtive frames.

The CED plot of Fig. 6b demonstrates that the performance
of IPST outperforms significantly the compared methods.
Their poor performance can be attributed to the fast back-
ground changes; the background can completely change from
a frame to the next, resulting in complete drifting of the
compared methods.

Penn Action dataset: The Penn Action dataset [24] was
introduced for action understanding and includes 2326 short
clips; each clip includes a single action performed by a human;
up to 13 points in the body are annotated per frame. Through
the visibility masks provided we tracked only the visible points
per clip, i.e.only the points visible in the first 10 frames were
considered. Considering the amount of videos that this dataset
contains along with the fact that in every video the bodies
annotated are in a different pose from the rest of the videos,
this makes it one of the most challenging benchmarks for
comparing methods for deformable tracking. The difference in
the results (Fig. 6a) from BBC can be attributed to the shorter
length of the clip (approx. 70 frames), which is very short in
comparison to the longer clips of BBC. Nevertheless, IPST did
handle the diverse actions and appearance/spatial modelling
cases and outperformed the compared methods. In addition, in
the supplementary material we study how the curve is modified
in case we consider only the clips with a minimum of 50
frames.

F. Deformable animal tracking

Animals’ faces express a larger degree of shape and ap-
pearance variation than human faces. To the best of our
knowledge, there is no tracking dataset with sparse shapes on
animals’ bodies, hence 10 videos with 38 markup facial points
in cat faces were annotated semi-automatically per frame.
Particularly, utilising the 350 fittings of Sagonas et al. [33]
a patch-based AAM was built [31], [34], then a video-specific
method ( [13]) was used for the refinement of the points.
The erroneous annotations were excluded by two experts. This
annotation process is only required for obtaining the ground-
truth shapes and not for the actual methods to track.

This experiment illustrated the ad-hoc utility of IPST in the
model-free tracking framework. The lack of such a markup for
animal tracking required the laborious process of annotating
plenty of frames; building elaborate models [34]. However,
with IPST only the first few annotations are required and then
it tracks the rest of the frames automatically. This provides
a satisfying initialisation and then possibly a refinement with
some video-specific trained model would provide very accu-
rate results, as can be verified in Fig. 6 with the CED plot
of this experiment. A qualitative comparison is provided in
Fig. 11 for different frames of a video of the category. As
aforementioned, the methods of single bounding box trackers
do fail after the first couple of frames, since they do not capture
the spatial relationships.

To further demonstrate the merits of IPST in an ad-hoc case,
we trained a model-based system using MDNET [8] (state-
of-the-art tracker) + parametric SDM with 2000 collected
images of cats. The collection of these images even with a
semi-automatic method is quite costly (please refer to the
supplementary material for a further analysis). In order not
to clutter the results, we present in Fig. 10 the comparison
of IPST with a model-based approach. MDNET + SDM is a
state-of-the-art approach, however IPST still is more robust to
the wide range of deformations of animals’ bodies.

IV. CONCLUSION

In this work we introduced IPST, a method for model-
free part-based object tracking. We model the appearance
and the deformation of each part with multivariate Gaussian
distributions; we update those incrementally based on the
tracked frames to account for object adaptations. The thorough
assessment in different tasks, i.e. in facial landmark track-
ing, body parts tracking and animal tracking experimentally
demonstrated that IPST outperforms the prior art. Any custom
deformable shape could be defined and the proposed method
can track that object(s) given only the first few annotated
frames. In the future we plan to perform an in-depth study
of the frames in which incremental update is required in order
to avoid cases of updating the subspaces during an ephemeral
occlusion. Another line of research, is the direct utilisation of
the learnt subspace from the appearance and spatial models
by a more elaborate model-based method for part refinement,
e.g. an AAM.
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Fig. 11: (Preferably viewed in colour) Indicative tracked frames from the task of animal tracking. The results are in alphabetical
order, i.e. : 1st row: CMT, 2nd row: DSST, 3rd row: FCT, 4th row: IPST, 5th row: IVT, 6th row: ORACLE, 7th row: SPOT,
8th row: STCL.


