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Abstract. The proposed Active Orientation Models (AOMs) are gen-
erative models of facial shape and appearance. Their main differences
with the well-known paradigm of Active Appearance Models (AAMs)
are (i) they use a different statistical model of appearance, (ii) they are
accompanied by a robust algorithm for model fitting and parameter es-
timation and (iii) and, most importantly, they generalize well to unseen
faces and variations. Their main similarity is computational complex-
ity. The project-out version of AOMs is as computationally efficient as
the standard project-out inverse compositional algorithm which is ad-
mittedly the fastest algorithm for fitting AAMs. We show that not only
does the AOM generalize well to unseen identities, but also it outper-
forms state-of-the-art algorithms for the same task by a large margin.
Finally, we prove our claims by providing Matlab code for reproducing
our experiments (http://ibug.doc.ic.ac.uk/resources).

1 Introduction

Because of their numerous applications in HCI, face analysis/recognition and
medical imaging, the problems of learning and fitting deformable models have
been the focus of cutting edge research in computer vision and machine learn-
ing for more than two decades. Put in simple terms, these problems can be
summarized as follows: Learning a deformable model consists of (a) annotating
(typically manually) a set of points (or landmarks) over a set of training im-
ages capturing an object of interest (e.g. faces), (b) learning a shape model (or
point distribution model) which effectively represents the structure and varia-
tions among the annotated points and (c) learning appearance models from the
image texture associated with the learned shape. Fitting a deformable model
utilizes the learned shape and appearance models to detect the location of land-
marks in new images; this can be done using regression, classification or could
be formulated as a non-linear optimization problem.

Depending on the application and/or approach many terms have been used
to coin this research: deformable model fitting, Active Shape Models (ASMs) [1],
Constrained Local Models (CLMs) [2, 3] landmark localization, point detection,
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Fig. 1. The proposed Active Orientation Models (AOMs) are generative deformable
models that: (i) use a statistically robust appearance model based on images gradient
orientations, (ii) are accompanied by a robust algorithm for model fitting and param-
eter estimation and (iii) and, most importantly, generalize well to unseen faces and
variations.

and Active Appearance Models (AAMs) [4, 5] to name a few. The latter approach
and the problem of deformable face alignment are of particular interest to this
work along with the seminal work [5] for fitting AAMs in face images. AAMs
are generative models of shape and appearance typically learned by applying
Principal Component Analysis to both shape and texture. In [5], fitting was
formulated as a non-linear minimization problem which consists of minimizing
the error between the model instance and the given image with respect to the
model parameters which control the shape and appearance variation of faces.
This problem was solved using the project-out inverse compositional algorithm,
which decouples shape from appearance and results in a computationally efficient
algorithm. Owing to its efficiency and accuracy, the algorithm for fitting AAMs
proposed in [5] has become the de facto choice for building and fitting person-
specific AAMs (i.e. AAMs trained to fit face images of a specific subject which
is known in advanced).

Despite their efficiency and accuracy, AAMs in general, and the project out
algorithm of [5] in particular, have been heavily criticized for their inability
to generalize well in unseen variations of illumination, expression and most
importantly identity. Various algorithms have been proposed to address these
challenges. Recent research has suggested the use of simpler (often local) and
thus easier to optimize appearance models and the application of discriminative
methods for model fitting. Discriminative methods have been already shown
to improve the ability of AAMs to fit new faces in [6-9]. The family of meth-
ods termed CLMs combine patch-based image representations, discriminatively
trained point detectors and global shape constraints to localize landmarks in
new images [2,10,3]. Among these methods, the non-parametric approach for
approximating the response maps of the local detectors has been shown to pro-
duce state-of-the-art results [11]. A recent approach that combines the output of
SVM-based local detectors with a non-parametric set of global models has been
shown to produce good results on unconstrained images in [12]. Finally, because
sliding-window landmark detectors may be slow, regression-based techniques
have been proposed to learn a mapping between local patches and landmarks
[12-14]. Not only do these methods enjoy a high degree of computational effi-
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ciency, but also it is often claimed that they achieve state-of-the-art performance
for difficult experiments with unconstrained images.

Our motivation to pursue a generative AAM-based approach to generic face
alignment is three fold. (a) It has not been shown yet that the accuracy of
(generative) person-specific AAMs can be matched by any discriminative-based
alignment method. (b) For specific scenarios of interest [15], generative models
have been shown to model sufficiently accurately unseen variations, i.e. it is the
fitting algorithm which fails to fit the model to unseen images. (¢) New tools
and insights on how to solve (b) have been recently suggested in [16, 17].

Main results. (a) Models: We propose Active Orientation Model, a genera-
tive deformable model that uses a statistically robust appearance model based on
the principal components of images gradient orientations (see Fig. 1). We show
how to use gradient ascent in order to maximize the correlation of this non-linear
appearance model and a new image with respect to the model shape parameters.
(b) Complexity: Similarly to the AAM formulation of [5], we show that AOMs
can be optimized using the project-out inverse compositional algorithm which
is admittedly the fastest algorithm for fitting deformable models in images. (c)
Robustness/Accuracy: To the best of our knowledge, we demonstrate for the
first time that this algorithm can be used to fit the learned models to faces not
seen in the training set. While other variations of AAMs have been somewhat
shown to fit unseen faces, the reported results are always significantly inferior to
what is considered the state-of-the-art. On the contrary, we show that the AOM
proposed here outperforms state-of-the-art algorithms including the best version
of the recently proposed method of [18] by a large margin. (d) Reproducible
research: Similarly to [13,11, 18] we prove our claims by providing Matlab code
which reproduces our results (http://ibug.doc.ic.ac.uk/resources).

2 Active Appearance Models

Prior work. AAMs able to fit unseen faces do exist, however the reported fit-
ting performances have been always outperformed (in many cases by a large
margin) by what it was considered the state-of-the-art at that time. One of the
first attempts is the AAM of Cootes and Taylor [19] which is based on regression
and features somewhat similar to the ones that the AOM is based on. However,
this AAM was later shown to perform worse than the baseline Constrained Local
Model (CLM) algorithm [2]. Also these features have been shown to be signifi-
cantly inferior to the optimization strategy of [16] which has been adopted here
for the case of AOMs. Other “generic” AAMs learn a fitting function through
maximizing the score of a two-class classifier (aligned or not aligned) or ranking
[6, 7]. Boosting a huge number of Haar features is very inefficient, and results are
reported only for low resolution images. This immediately rules out the possibil-
ity of accurate landmark localization in high resolution images and it is clearly
unsatisfactory. Other discriminative approaches include learning non-linear re-
gressors from features to model parameters through boosting and simulation [8,
9]. Again, all these approaches seem to produce inferior results compared to the



4 Authors Suppressed Due to Excessive Length

family of methods coined CLMs [2,10, 3], which build upon the Active Shape
Model [1]. Very recently, a globally optimized part-based model has been shown
to produce state-of-the-art results [18]. The AOM proposed in this work outper-
forms both the state-of-the-art CLM method of [3] and the best version of [18]
by a large margin.

Background. An AAM is defined by a shape, appearance and motion model.
The shape model is typically learned by annotating N fiducial points s; =
[Z1,Y1,%2,Y2, - .. TN, Yn]| to each of a set of training images {I;} and then apply-
ing PCA on s;. The resulting model {5, ®5 € R1>V:P}} can be used to represent
a test shape s, as

8, =8+ ®sp, p=PL(s,—5) (1)

The appearance model is learned by first warping each of the training images
I;(x) € R¥ to the canonical reference frame defined by the mean shape s; using
motion model W (x;p) and then applying PCA on the shape-free textures. We
choose piecewise affine warps as the motion model in this work. The resulting
model {a,®4 € R{K’Q}} can be used to represent a shape-free test texture a,
as

a,=a+®,c, c=o(a,—a). (2)

Given a test image I, inference in AAMs entails estimating p and c assuming
“reasonable” initialization of the fitting process. This initialization is typically
performed by placing the mean shape according to the output of an object (in
this work face) detector. Note that only p needs to be estimated for deformable
model fitting. Estimating c is a by-product of the fitting algorithm. Various al-
gorithms and cost functions have been proposed to estimate p and c including
regression, classification and non-linear optimization methods. The latter ap-
proach is of particular interest in this work. It minimizes the ¢s-norm of the
error between the model instance and the given image with respect to the model
parameters as follows

{po,Cco} = arg {rf)licn} [|[I(W(x;p)) —a— <I>Ac||2. (3)

The project-out algorithm decouples shape and appearance by solving (3) in a
subspace orthogonal to the appearance variation. This can be done by applying
the projector operator P = E — ® 4®7 (E is the identity matrix) to any of I, a.
The resulting optimization problem can be then solved very efficiently using a
variation of the Gauss-Newton algorithm coined inverse compositional algorithm
[5].

3 Active Orientation Models

The deformable model fitting framework of the previous section has been highly
criticized as difficult to optimize mainly due to the high-dimensional parameter
space and the existence of numerous undesirable local minima in the cost func-
tion of (3). Therefore, the problem in hand is how to avoid these local minima
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during optimization. We propose to address this problem by using a similar-
ity criterion robust to outliers. The Active Orientation Models proposed in this
work are designed to use the same shape and motion model as the ones used by
AAMs but a different appearance model and a different cost function to fit this
model.

At the heart of AOMs there exists a robust kernel for measuring similarity.
We define outliers to be anything that the learned appearance model cannot
reconstruct because (a) it was not seen in the training set (e.g. appearance
variation due to different identity, expression or illumination) (b) it does not
belong to the face space at all (e.g. glasses) and (c) it was excluded from P4
as noise because in any case the number of principal components in ® 4 should
be kept as small as possible so that the model is easier to optimize and cannot
generate appearance which is unrelated to faces. Note that as it was shown in
[15] for some cases of interest (e.g. appearance variation in frontal views), a
very compact appearance space, learned from a training set with a few persons
only, in general, results in relatively small reconstruction errors of unseen faces.
This illustrates that a generative model is not an unreasonable choice for generic
deformable model fitting. All that is needed is a robust cost function to fit this
model.

A general framework for robust estimation is weighted least squares [20]. Let
us define e = I(W(x;p)) — a — ®4c. Then, weighted least squares methods
optimize

{Po, co} = arg min eTQea (4)

{p,c}

where Q € RUSKY is a diagonal weighting matrix which down-weighs pixels
corrupted by outliers. An ideal case would be Qj = 0 if pixel k is an outlier and
Qi = 1 otherwise. The estimation of Q along with the optimal model parameters
have been extensively studied in the literature of robust statistics (please see [20]
for a review). However, none of these out-of-the-box approaches has been proven
successful so far in AAM fitting because (a) the noise model for outliers in our
case is very hard to define and (b) the estimation process is also very prone to
local minima.

We propose to address this problem in AAMs by using a robust similarity
criterion based on image gradient orientations [16,17]. Suppose that we wish
to measure the similarity between two images I;, i = 1,2. For each image, we
extract image gradients g; ., 8, and the corresponding estimates of gradient
orientation ¢;. Let us denote by z; the the so-called normalized gradients

1 T . T
zZ; = ﬁ[cos(qﬁi) , sin(¢;)" 7, (5)

where cos(¢;) = [cos(¢;(1)),...,cos(p,;(K))]T and sin(¢;) is similarly defined.
Then, the following kernel can be used to measure image similarity

s = Z{Zg

£ 3 cos( (k) — (k) (6)

kes2
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where (2 denotes the image support.

Let us also denote by (2; the image support that is outlier-free and (25 the
image support that is corrupted by outliers (£2 = (27 U (2). Then, as it was
shown in [17], under some assumptions, it holds

> cos(¢y (k) — ¢y(k)) = 0. (7)

ke,

Note that (a) in contrary to [21], no assumption about the structure of outliers
is made and (b) no actual knowledge of (2 is required. Based on (7), we can
re-write (6) as follows

5= Z cos(y (k) — @y(k)) + Z cos(py (k) — po(k))

kes2y k€S2
= D Lcos(y(k) = ¢a(R)) + D e cos(¢y (k) — ¢a(k))
ke kef2s
~ Z?Qidealz% (8)

where € — 0 and Qigea is the “ideal” weighting matrix defined above. Note
that Qideal in (8) is never calculated explicitly. We can write (8) only because
outliers are approximately “canceled out” when the above kernel is used to
measure image similarity.

3.1 Appearance Model

The robust kernel of (6) can be used to define a kernel PCA [17]. The appearance
model in AOMs is learned using this robust PCA. Note that the kernel can be
written using the explicit mapping of (5) and therefore no pre-image computation
is required. All that is needed is to compute the normalized image gradients of
(5), define the data matrix Z the columns of which are the shape-free normalized
gradients of the training faces and then apply standard PCA on Z. Note that to
preserve the kernel properties no subtraction of the “mean” normalized gradient
is needed and the first eigenvector is treated as the mean where it is required.
We denote by ®, € R2E*4 the learned appearance model.

3.2 Inference

We perform inference in AOMs by maximizing the correlation of a test image
with the learned appearance model

{Po,Co} = arg max z[p}Tq)Zc, 9)
{p,c}

where z[p| denotes the normalized gradients of I(W (x; p)). We used a formula-
tion similar to the one proposed in [16, 22] which does not require the calculation
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of second-order derivatives. This entails the maximization of the normalized cor-
relation

Ty
{Po, o} = arg max z[p]” ®zc

zlpl” ®z¢ 10
mex % el (10)

(z[p] has a unit norm by definition) using the inverse compositional framework
of [5]. This is an efficient Gauss-Newton algorithm in which the Hessian is pre-
computed and remains constant across iterations when appearance variation is
known (c is known) or can be ignored. In brief, in the inverse compositional
framework, each principal component of ®y is linearized with respect to the
shape parameters around 0, an increment Ap is estimated at each iteration
(using the closed-form expression obtained by setting the derivatives equal to
0) and then W(x;p) is composed with —Ap. The updated W is finally used
to warp the test image and move on to the next iteration. Note that because
at each step ®z is linearized about 0, the Hessian can be pre-computed and
stored along with the model. This results in significant computational savings.
For more details on the inverse compositional algorithm and how to implement
the compositional approach for AAMs please see [5]. Our optimization strategies
are summarized below:

Simultaneous. The simultaneous AOM maximizes (10) with respect to both
{p,c}. This requires the computation of the Hessian (O((p + ¢)?K)) and its
inverse (O((p + ¢)?)) and it is very slow. For this reason, we did not look into
this algorithm further.

Project-out. The project-out algorithm decouples shape from appearance
parameters by maximizing the correlation of the test image with the “mean”
appearance t in the subspace orthogonal to ® ;. Because we choose t to be the
first eigenvector of ® 4, this is the case by construction. So projecting-out will be
effective only after linearization. Let us denote by ® 4, the appearance subspace
obtained by removing the first column of ® 7 and define the projecting operator
P = E — &%, We linearize (around 0) t = t[0] + JAp, and project-out.
Then, the cost function of (10) takes the form

z[p]"t[0] + z[p]" PJAp

= . 11
Po = At X ot [0]TI Ap + ApTJTPJ Ap (11)
The update is given by
Ap = (JTPJI)~1IT (\z[p] - t[0]), (12)
where X is equal to
1—t[0]7J(ITPJI)~1I7t[0

z[p]"t[0] — z[p] " I(ITPI)~1ITt[0]"

Because the Hessian JTPJ and its inverse can be pre-computed, this algorithm
has complexity O(pK) (per iteration) and has been shown to track faces at 300
fps [15].
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Aternating. We propose to use alternating optimization to maximize (10)
with respect to both {p, ¢}, which to our surprise has been barely used in AAM
literature. This entails estimating the appearance of z[p] at each iteration from
z = ®;®Lz[p] and then maximizing the correlation of z[p] with z. The cost
function and the update rules are exactly as above with the only difference being
that t is replace by z and the projection operator is removed (P = E). Note
however that the Hessian and its inverse must be computed at each iteration.
The costs for these computations are O(p?K) and O(p?), respectively, while
there is also a cost of O(qK) associated with the update of appearance. This
algorithm is slower than the project-out algorithm but still very fast probably
allowing a real-time implementation.

4 Experiments

We assessed the performance of the proposed AOMs on generic face fitting under
variations of identity, expression and pose both quantitatively and qualitatively.
We also compared their performance with that of two state-of-the-art methods:
the best available variation of CLMs [3] and the best possible version of the very
recently proposed parts-based tree shape model of [18]. Where possible, we used
the code/implementations kindly provided by the authors. Matlab code repro-
ducing our results is also available at http://ibug.doc.ic.ac.uk/resources.
We also provide the performance of the project-out AAM (AAM-PO) [5] as
baseline. Finally, we experimented with the Fourier-Gabor AAMs [23], but our
implementation did not produce any improvement over [5] for the experiments
reported here, and these results were omitted for clarity of presentation.

Similarly to standard AAMs, our models work best when the shape model is
constructed using a large number of annotated points per face. Therefore, for all
experiments, our shape models were learned from 68-point markups which are
the most dense annotations we had access to (but still quite sparse). We report
the fitting accuracy achieved by two optimization strategies: AOM fitted using
the project-out algorithm (AOM-PO) and AOM using alternating optimization
(AOM-A). For both versions we used a standard multi-scale implementation
and a simple Gaussian shape prior (only at the composition step, as in [24]) for
enhancing convergence, while both algorithms were initialized by a face detector.
In this sense, we report here only the baseline performance of our algorithms.
In fact, an additional advantage of AOMs is the fact that they can benefit from
more than 15 years research on AAMs. Sophisticated enhancements such as 3D
constraints [25], densification [26] and other sophisticated shape priors [27] are
left as future work.

For assessing the performance of AOMs on generic face alignment quantita-
tively, we used two popular databases: (a) the XM2VTS database [28], and (b)
the CMU Multi-PIE [29]. Because the markups for these databases are different,
we did not perform out-of-database quantitative experiments. We also provide
illustrative examples of fitting AOMs trained on Multi-PIE to some of the in-
the-wild images of [12]. Finally, a quantitative evaluation of the performance of
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AOMs on this data set is not feasible mainly because (a) only 29 (after excluding
the ears) landmarks are provided while our AOMs require dense annotation (b)
a significant number of both training/testing images is no longer available or
was never made publicly available.

Overview of results. (a) For the quantitative experiments, we show that
our AOMs outperform both [3] and [18] in terms of robustness and fitting accu-
racy by a large margin. We believe that this a notable achievement given that
AAMs have been in general considered successful only for person-specific face
alignment. (b) Our qualitative results, although limited, indicate that AOMs are
able to fit unseen in-the-wild face images. This result is surprising given that we
trained our models using only 54 different subjects taken under the controlled
conditions of Multi-PIE.

4.1 XM2VTS

The XM2VTS database [28] contains 2,360 frontal images of 295 different sub-
jects displaying neutral expression. Experiments on this database are interesting
mainly because of the large variation in facial shape and appearance due to
facial hair, glasses, ethnicity etc. To compare directly with [3] (the result for
[3] has been taken directly from the paper), we reproduced the experiment re-
ported therein by dividing the database into four different sets with no identity
overlap and perform four-fold cross validation experiments, using three parts
for training and one for testing in every trial. Results for this experiment are
shown in Fig. 2 and Table 4.1. Unfortunately, because the trees provided in [18]
were hard coded for Multi-PIE, fair comparison with [18] is not feasible. For
the remaining of methods considered, the graph shows the cumulative curve ob-
tained by computing the percentage of images for which the fitting error was
less than a specific value. We used the same shape RMSE as the one used in [3].
Table 4.1 states the exact proportion of images that were fitted with RMSE < 4
and RMSE < 5 pixels accuracy. For these two cases of interest, both versions of
AOMs outperform the CLM algorithm of [3] for about 40% and 30% (in absolute
terms) fitting accuracy. Illustrative examples of fittings for XM2VTS are shown
in Fig. 4.

Shape RMSE < 3 pixels < 4 pixels < 5 pixels
AOMs - A 0.19 0.64 0.89
AOMs - PO 0.25 0.66 0.84
CLMs 0.03 0.25 0.55
AAMs - PO 0.05 0.19 0.42

Table 1. Proportion of images that were fitted with a shape RMSE < 4 and < 5 pixels
accuracy in the XM2VTS database experiment.
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4.2 Multi-PIE

The Multi-PIE face database contains around 750,000 images of 337 subjects
under 15 view points, 19 illumination conditions and displaying 6 different fa-
cial expressions. We had access to markup annotations for a small subset of
the database. We trained our models using 432 images from 54 different sub-
jects. For each subject we used 8 images in total as follows: 1 image for frontal
(0 degrees) neutral expression, 2 images for 2 different viewpoints (-15 and 15
degrees) displaying neutral expression; and 5 frontal images (0 degrees) display-
ing the remaining 5 expressions. For testing, we used the remaining annotated
images (more than 1000 images in total, all faces of subjects not seen in our
training set). We report the fitting accuracies for the 3 above cases in Fig. 3
and Table 4.2. For comparison purposes, we used the CLM code provided by
[3]. This was trained only for frontal images so the results we report for the
pose experiment are not representative of the full capabilities of the method.
For the method in [18] we had two options: the first was to use the (fully shared)
pre-trained models provided by the authors or to train the so-called independent
model using our own data set and the training code provided by the authors. We
followed the latter approach in order to report here the best possible results for
[18]. Note that the independent model roughly corresponds to training different
models for each of the variations being present in our data set and requires large
fitting times. On the contrary, in our case, we trained a single combined AOM
using the whole training set. As before, for all methods considered, each graph
shows the cumulative curve obtained by computing the percentage of images for
which the fitting error was less than a specific value. For this experiment, we
used the same point-to-point RMSE normalized by the face size as the one used
in [18] which we believe that it is the best measure for reporting fitting accu-
racy. Our results show that the AOM-A performs by far the best. The AOM-PO
outperforms [18] for the frontal-neutral experiment and is able to fit 60% of the
expression images more accurately than [18], while for the pose experiment both
methods perform similarly. Finally, the CLM performs consistently much worse.
Mlustrative examples of fittings for Multi-PIE are shown in Fig. 5.

Experiments Frontal Neutral Frontal Expressions Pose
Norm. pp. RMSE < 0.02 < 0.03 < 0.02 < 0.03 < 0.02 < 0.03
AOMs - A 0.67 0.98 0.53 0.90 0.63 0.96
AOMs - PO 0.46 0.91 0.26 0.69 0.20 0.87
Indep. 0.12 0.81 0.09 0.73 0.23 0.90
CLMs 0.37 0.81 0.12 0.50 0.00 0.12
AAMs - PO 0.16 0.58 0.08 0.38 0.02 0.19

Table 2. Proportion of images that were fitted with normalized point-to-point RMSE
< 0.02 and < 0.03 for the frontal neutral expression, frontal remaining expression (no
neutral) and pose experiments in the Multi-PIE database.
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Fig. 4. Example of fitting results in the XM2VTS database.

Fig. 5. Example of fitting results in the MultiPIE database.

Fig. 6. Example of fitting results in the LFPW database.
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4.3 In-the-wild

Although we did not assess the performance of AOMs for the case of in-the-wild
images quantitatively, for the reasons mentioned above, we do provide illustrative
examples of fittings in Fig. 6. We find these results surprising given that we
trained our models using only 54 different subjects taken under the controlled
conditions of Multi-PIE and given that only a baseline implementation of our
algorithm was used.

5 Conclusions

We introduced Active Orientation Models, generative models for generic de-
formable face alignment that generalize well to unseen faces and variations. We
show that not only does the AOM generalize well to unseen examples, but also
it outperforms state-of-the-art algorithms for the same task by a large margin.
Finally, we prove our claims by providing Matlab code for reproducing our ex-
periments (http://ibug.doc.ic.ac.uk/resources).
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