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Abstract + Active Appearance Models (AAMs) are

one of the most popular and well-established techniques

for modeling deformable objects in computer vision. In

this paper, we study the problem of fitting AAMs using

Compositional Gradient Descent (CGD) algorithms. We

present a unified and complete view of these algorithms

and classify them with respect to three main charac-

teristics: i) cost function; ii) type of composition; and

iii) optimization method. Furthermore, we extend the

previous view by: a) proposing a novel Bayesian cost

function that can be interpreted as a general proba-

bilistic formulation of the well-known project-out loss;

b) introducing two new types of composition, asymmet-

ric and bidirectional, that combine the gradients of both

image and appearance model to derive better conver-

gent and more robust CGD algorithms; and c) pro-
viding new valuable insights into existent CGD algo-

rithms by reinterpreting them as direct applications of

the Schur complement and the Wiberg method. Finally,

in order to encourage open research and facilitate future

comparisons with our work, we make the implementa-

tion of the algorithms studied in this paper publicly

available as part of the Menpo Project1.
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1 Introduction

Active Appearance Models (AAMs) [15, 29] are one of

the most popular and well-established techniques for

modeling and segmenting deformable objects in com-

puter vision. AAMs are generative parametric models

of shape and appearance that can be fitted to images to

recover the set of model parameters that best describe

a particular instance of the object being modeled.

Fitting AAMs is a non-linear optimization prob-

lem that requires the minimization (maximization) of

a global error (similarity) measure between the input

image and the appearance model. Several approaches

[15, 20, 29, 8, 19, 18, 38, 23, 43, 2, 47, 28, 44, 49, 21, 3]

have been proposed to define and solve the previous

optimization problem. Broadly speaking, they can be

divided into two different groups:

– Regression based [15, 20, 8, 18, 43, 47, 44]

– Optimization based [29, 19, 38, 2, 28, 49, 21]

Regression based techniques attempt to solve the

problem by learning a direct function mapping between

the error measure and the optimal values of the param-

eters. Most notable approaches include variations on

the original [15] fixed linear regression approach of [20,

18], the adaptive linear regression approach of [8], and

the works of [43] and [47] which considerably improved

upon previous techniques by using boosted regression.

Also, Cootes and Taylor [13] and Tresadern et al. [47]

showed that the use of non-linear gradient-based and

Haar-like appearance representations, respectively, lead

to better fitting accuracy in regression based AAMs.

Optimization based methods for fitting AAMs were

proposed by Matthews and Baker in [29]. These tech-

niques are known as Compositional Gradient Decent

(CGD) algorithms and are based on direct analytical
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optimization of the error measure. Popular CGD al-

gorithms include the very efficient project-out Inverse

Compositional (PIC) algorithm [29], the accurate but

costly Simultaneous Inverse Compositional (SIC) al-

gorithm [19], and the more efficient versions of SIC

presented in [38] and [49]. Lucey et al. [25] extended

these algorithms to the Fourier domain to efficiently

enable convolution with Gabor filters, increasing their

robustness; and the authors of [3] showed that opti-

mization based AAMs using non-linear feature based

(e.g. SIFT[24] and HOG [16]) appearance models were

competitive with modern state-of-the-art techniques in

non-rigid face alignment [55, 4] in terms of fitting ac-

curacy.

AAMs have often been criticized for several reasons:

i) the limited representational power of their linear ap-

pearance model; ii) the difficulty of optimizing shape

and appearance parameters simultaneously; and iii) the

complexity involved in handling occlusions. However,

recent works in this area [38, 43, 47, 25, 49, 3] suggest

that these limitations might have been over-stressed in

the literature and that AAMs can produce highly ac-

curate results if appropriate training data [49], appear-

ance representations [47, 25, 3] and fitting strategies

[38, 43, 47, 49] are employed.

In this paper, we study the problem of fitting AAMs

using CGD algorithms thoroughly. Summarizing, our

main contributions are:

– To present a unified and complete overview of the

most relevant and recently published CGD algo-

rithms for fitting AAMs [29, 19, 38, 2, 28, 51, 49, 21].

To this end, we classify CGD algorithms with re-

spect to three main characteristics: i) the cost func-

tion defining the fitting problem; ii) the type of com-

position used; and iii) the optimization method em-

ployed to solve the non-linear optimization problem.

– To review the probabilistic interpretation of AAMs

and propose a novel Bayesian formulation2 of the

fitting problem. We assume a probabilistic model

for appearance generation with both Gaussian noise

and a Gaussian prior over a latent appearance space.

Marginalizing out the latent appearance space, we

derive a novel cost function that only depends on

shape parameters and that can be interpreted as a

valid and more general probabilistic formulation of

the well-known project-out cost function [29]. Our

Bayesian formulation is motivated by seminal works

on probabilistic component analysis and object track-

ing [34, 40, 46].

– To propose the use of two novel types of composi-

tion for AAMs: i) asymmetric; and ii) bidirectional.

2 A preliminary version of this work [30] was presented at
CVPR 2014.

These types of composition have been widely used

in the related field of parametric image alignment

[27, 32, 5, 33] and use the gradients of both image

and appearance model to derive better convergent

and more robust CGD algorithms.

– To provide valuable insights into existent strate-

gies used to derive fast and exact simultaneous al-

gorithms for fitting AAMs by reinterpreting them

as direct applications of the Schur complement [11]

and the Wiberg method [37, 45].

The remainder of the paper is structured as follows.

Section 2 introduces AAMs and reviews their proba-

bilistic interpretation. Section 3 constitutes the main

section of the paper and contains the discussion and

derivations related to the cost functions 3.1; compo-

sition types 3.2; and optimization methods 3.3. Imple-

mentation details and experimental results are reported

in Section 5. Finally, conclusions are drawn in Section

6.

2 Active Appearance Models

AAMs [15, 29] are generative parametric models that

explain visual variations, in terms of shape and appear-

ance, within a particular object class. AAMs are built

from a collection of images for which the spatial position

of a sparse set of v landmark points xi = (xi, yi)
T ∈

R2 representing the shape s = (x1, y1, . . . , xv, yv)
T ∈

R2v×1 of the object being modeled have been manually

defined a priori.

AAMs are themselves composed of three different

models: (i) shape model; (ii) appearance model; and
(iii) motion model.

The shape model, which is also referred to as Point

Distribution Model (PDM), is obtained by typically ap-

plying Principal Component Analysis (PCA) to the set

of object’s shapes. The resulting shape model is math-

ematically expressed as:

s = s̄ +

n∑
i=1

pisi

= s̄ + Sp

(1)

where s̄ ∈ R2v×1 is the mean shape, and S ∈ R2v×n and

p ∈ Rn×1 denote the shape bases and shape parame-

ters, respectively. In order to allow a particular shape

instance s to be arbitrarily positioned in space, the pre-

vious model can be augmented with a global similarity

transform. Note that this normally requires the initial

shapes to be normalized with respect to the same type

of transform (typically using Procrustes Analysis (PA))
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Fig. 1: Exemplar images from the Labeled Faces in-the-Wild (LFPW) dataset [9] for which a consistent set of sparse

landmarks representing the shape of the object being model (human face) has been manually defined [41, 42].

before PCA is applied. This results in the following ex-

pression for each landmark point of the shape model:

xi = sR (x̄i + Xip) + t (2)

where s, R ∈ R2×2 and t ∈ R2 denote the scale, ro-

tation and translation applied by the global similarity

transform, respectively. Using the orthonormalization

procedure described in [29] the final expression for the

shape model can be compactly written as the linear

combination of a set of bases:

s = s̄ +

4∑
i=1

p∗i s
∗
i +

n∑
i=1

pisi

= s̄ + Sp

(3)

where S = (s∗1, . . . , s
∗
4, s1, · · · , sn) ∈ R2v×(n+4) and p =

(p∗1, . . . , p
∗
4, p1, . . . , pn)T ∈ R(n+4)×1 are redefined as the

concatenation of the similarity bases s∗i and similarity

parameters p∗i with the original S and p, respectively.

The appearance model is obtained by warping the

original images onto a common reference frame (typi-

cally defined in terms of the mean shape s̄) and applying

PCA to the obtained warped images. Mathematically,

the appearance model is defined by the following ex-

pression:

A(x) = Ā(x) +

m∑
i=1

ciAi(x) (4)

where x ∈ Ω denote all pixel positions on the reference

frame, and Ā(x), Ai(x) and ci denote the mean texture,

the appearance bases and appearance parameters, re-

spectively. Denoting a = vec(A(x)) as the vectorized

version of the previous appearance instance, Equation

4 can be concisely written in vector form as:

a = ā + Ac (5)

where a ∈ RF×1 is the mean appearance, and A ∈
RF×m and c ∈ Rm×1 denote the appearance bases and

appearance parameters, respectively.

The role of the motion model, denoted by W(x; p),

is to extrapolate the position of all pixel positions x ∈

Ω from the reference frame to a particular shape in-

stance s (and vice-versa) based on their relative posi-

tion with respect to the sparse set of landmarks defin-

ing the shape model (for which direct correspondences

are always known). Classic motion models for AAMs

are PieceWise Affine (PWA) [14, 29] and Thin Plate

Splines (TPS) [14, 38] warps.

Given an image I containing the object of inter-

est, its manually annotated ground truth shape s, and

a particular motion model W(x,p); the two main as-

sumptions behind AAMs are:

1. The ground truth shape of the object can be well

approximated by the shape model

s ≈ s̄ + Sp (6)

2. The object’s appearance can be well approximated

by the appearance model after the image is warped,

using the motion model and the previous shape ap-

proximation, onto the reference frame:

i[p] ≈ ā + Ac (7)

where i[p] = vec(I(W(x; p))) denotes the vectorized

version of the warped image. Note that, the warp

W(x; p) which explicitly depends on the shape pa-

rameters p, relates the shape and appearance mod-

els and is a central part of the AAMs formulation.

Because of the explicit use of the motion model, the

two previous assumptions provide a concise definition

of AAMs. At this point, it is worth mentioning that the

vector notation of Equations 6 and 7 will be, in general,

the preferred notation in this paper.

2.1 Probabilistic Formulation

A probabilistic interpretation of AAMs can be obtained

by rewriting Equations 6 and 7 assuming probabilis-

tic models for shape and appearance generation. In

this paper, motivated by seminal works on Probabilis-

tic Component Analysis (PPCA) and object tracking

[46, 40, 34], we will assume probabilistic models for

shape and appearance generation with both Gaussian
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noise and Gaussian priors over the latent shape and

appearance spaces3:

s = s̄ + Sp + ε

p ∼ N (0,Λ)

ε ∼ N
(
0, ς2I

) (8)

i[p] = ā + Ac + ε

c ∼ N (0,Σ)

ε ∼ N
(
0, σ2I

) (9)

where the diagonal matrices Λ = diag(λs1 , · · · , λsm)

and Σ = diag(λa1
, · · · , λam) contain the eigenvalues as-

sociated to shape and appearance eigenvectors respec-

tively and where ς2 and σ2 denote the estimated shape

and image noise4 respectively.

This probabilistic formulation will be used to de-

rive Maximum-Likelihood (ML), Maximum A Posteri-

ori (MAP) and Bayesian cost functions for fitting AAMs

in Sections 3.1.1 and 3.1.2.

3 Fitting Active Appearance Models

Several techniques have been proposed to fit AAMs

to images [15, 20, 29, 8, 19, 18, 38, 23, 43, 2, 47, 28,

44, 49, 21, 3]. In this paper, we will center the discus-

sion around Compositional Gradient Descent (CGD)

algorithms [29, 19, 38, 2, 28, 49, 21] for fitting AAMs.

Consequently, we will not review regression based ap-

proaches. For more details on these type of methods

the interested reader is referred to the existent litera-

ture [15, 20, 8, 18, 23, 43, 47, 44].

The following subsections present a unified and com-
plete view of CGD algorithms by classifying them with

respect to their three main characteristics: a) cost func-

tion (Section 3.1); b) type of composition (Section 3.2);

and c) optimization method (Section 3.3).

3.1 Cost Function

AAM fitting is typically formulated as the (regularized)

search over the shape and appearance parameters that

minimize a global error measure between the vectorized

warped image and the appearance model:

p∗, c∗ = arg min
p,c

R(p, c) +D(i[p], c) (10)

3 This formulation is generic and one could assume other
probabilistic generative models [26, 6, 39, 36] to define novel
probabilistic versions of AAMs.

4 Theoretically, the optimal value for ς2 and σ2 is the
average value of the eigenvalues associated to the dis-
carded shape and appearance eigenvectors respectively i.e.
ς2 = 1

N−n
∑N
i=n λsi and σ2 = 1

M−m
∑M
i=m λai [34].

where D is a data term that quantifies the global error

measure between the vectorized warped image and the

appearance model and R is an optional regularization

term that penalizes complex shape and appearance de-

formations.

3.1.1 Sum of Squared Differences

Arguably, the most natural choice for the previous data

term is the Sum of Squared Differences (SSD) between

the vectorized warped image and the linear appearance

model5. Consequently, the classic AAM fitting prob-

lem is defined by the following non-linear optimization

problem6:

p∗, c∗ = arg min
p,c

1

2
rT r

= arg min
p,c

1

2
‖i[p]− (ā + Ac)‖2︸ ︷︷ ︸

D(i[p],c)

(11)

On the other hand, considering regularization, the

most natural choice for R is the sum of `2
2-norms over

the shape and appearance parameters. In this case, the

regularized AAM fitting problem is defined as follows:

p∗, c∗ = arg min
p,c

1

2
||p||2 +

1

2
||c||2 +

1

2
rT r

= arg min
p,c

1

2
||p||2 +

1

2
||c||2︸ ︷︷ ︸

R(p,c)

+

1

2
||i[p]− (ā + Ac)||2︸ ︷︷ ︸

D(i[p],c)

(12)

Probabilistic Formulation

A probabilistic formulation of the previous cost func-

tion can be naturally derived using the probabilistic

generative models introduced in Section 2.1. Denoting

the models’ parameters as Θ = {s̄,S,Λ, ā,A,Σ, σ2} a

ML formulation can be derived as follows:

p∗, c∗ = arg max
p,c

p(i[p]|p, c, Θ)

= arg max
p,c

ln p(i[p]|p, c, Θ)

= arg min
p,c

1

2σ2
||i[p]− (ā + Ac)||2︸ ︷︷ ︸

D(i[p],c)

(13)

5 This choice of D is naturally given by second main as-
sumption behind AAMs, Equation 7 and by the linear gener-
ative model of appearance defined by Equation 9.

6 The residual r in Equation 11 is linear with respect to the
appearance parameters c and non-linear with respect to the
shape parameters p through the warp W(x; p)
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and a MAP formulation can be similarly derived by tak-

ing into account the prior distributions over the shape

and appearance parameters:

p∗, c∗ = arg max
p,c

p(p, c, i[p]|Θ)

= arg max
p,c

p(p|Λ)p(c|Σ)p(i[p]|p, c, Θ)

= arg max
p,c

ln p(p|Λ) + ln p(c|Σ)+

ln p(i[p]|p, c, Θ)

= arg min
p,c

1

2
||p||2Λ−1 +

1

2
||c||2Σ−1︸ ︷︷ ︸

R(p,c)

+

1

2σ2
||i[p]− (ā + Ac)||2︸ ︷︷ ︸

D(i[p],c)

(14)

where we have assumed the shape and appearance pa-

rameters to be independent7.

The previous ML and MAP formulations are weighted

version of the optimization problem defined by Equa-

tion 11 and 12. In both cases, the maximization of the

conditional probability of the vectorized warped im-

age given the shape, appearance and model parameters

leads to the minimization of the data term D and, in

the MAP case, the maximization of the prior probabil-

ity over the shape and appearance parameters leads to

the minimization of the regularization term R.

3.1.2 Project-Out

Matthews and Baker showed in [29] that one could ex-

press the SSD between the vectorized warped image and

the linear PCA-based8 appearance model as the sum of

two different terms:

1

2
rT r =

1

2
rT (AAT + I−AAT )r

=
1

2
rT (AAT )r +

1

2
rT (I−AAT )r

=
1

2
‖i[p]− (ā + Ac)‖2AAT +

1

2
‖i[p]− (ā + Ac)‖2I−AAT

= f1(p, c) + f2(p, c)

(15)

7 This is a common assumption in CGD algorithms [29],
however, in reality, some degree of dependence between these
parameters is to be expected [15].

8 The use of PCA ensures the orthonormality of the ap-
pearance bases and, consequently, ATA = I (where I denotes
the identity matrix). Similarly, the use of PCA also ensures
orthogonality between the appearance mean and the appear-
ance bases and, hence, AT ā = 0.

The first term defines the distance within the appear-

ance subspace and it is always 0 regardless of the value

of the shape parameters p:

f1(p, c) =
1

2
‖i[p]− (ā + Ac)‖2AAT

=
1

2

i[p]TA︸ ︷︷ ︸
cT

AT i[p]︸ ︷︷ ︸
c

− 2

cT︷ ︸︸ ︷
i[p]TA

0︷︸︸︷
AT ā︸ ︷︷ ︸

0

−

2 i[p]TA︸ ︷︷ ︸
cT

I︷ ︸︸ ︷
ATA c︸ ︷︷ ︸

c

+

0T︷︸︸︷
āTA

0︷︸︸︷
AT ā︸ ︷︷ ︸

0

+

cT

I︷ ︸︸ ︷
ATA︸ ︷︷ ︸
cT

I︷ ︸︸ ︷
ATA c︸ ︷︷ ︸

c


=

1

2
(cT c− 2cT c + cT c)

= 0

(16)

The second term measures the distance to the appear-

ance subspace i.e. the distance within its orthogonal

complement. After some algebraic manipulation, one

can show that this term reduces to a function that only

depends on the shape parameters p:

f2(p, c) =
1

2
‖i[p]− (ā + Ac)‖2Ā

=
1

2

(
i[p]T Āi[p]− 2i[p]T Āā−

2i[p]T ĀAc︸ ︷︷ ︸
0

+āT Āā + cTAT ĀAc︸ ︷︷ ︸
0


=

1

2
(i[p]T Āi[p]− 2i[p]T Āā + āT Āā)

=
1

2
‖i[p]− ā‖2Ā

(17)

where, for convenience, we have defined the orthogo-

nal complement to the appearance subspace as Ā =

I−AAT . Note that, as mentioned above, the previous

term does not depend on the appearance parameters c:

f2(p, c) = f̂2(p) =
1

2
‖i[p]− ā‖2Ā (18)

Therefore, using the previous project-out trick, the

minimization problems defined by Equations 11 and 12

reduce to:

p∗ = arg min
p

1

2
||i[p]− ā||2Ā︸ ︷︷ ︸
D(i[p])

(19)
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and

p∗ = arg min
p

1

2
||p||2︸ ︷︷ ︸
R(p)

+
1

2
||i[p]− ā||2Ā︸ ︷︷ ︸
D(i[p])

(20)

respectively.

Probabilistic Formulation

Assuming the probabilistic models defined in Section

2.1, a Bayesian formulation of the previous project-out

data term can be naturally derived by marginalizing

over the appearance parameters to obtain the following

marginalized density:

p(i[p]|p, Θ) =

∫
c

p(i[p]|p, c, Θ)p(c|Σ)dc

= N (ā,AΣAT + σ2I)

(21)

and applying the Woodbury formula9 [54] to decompose

the natural logarithm of the previous density into the

sum of two different terms:

ln p(i[p]|p, Θ) =
1

2
||i[p]− ā||2(AΣAT+σ2I)−1

=
1

2
||i[p]− ā||2AD−1AT +

1

2σ2
||i[p]− ā||2Ā

(22)

where D = diag(λa1 + σ2, · · · , λam + σ2).

As depicted by Figure 2, the previous two terms

define respectively: i) the Mahalanobis distance within

the linear appearance subspace; and ii) the Euclidean

distance to the linear appearance subspace (i.e. the

Euclidean distance within its orthogonal complement)

weighted by the inverse of the estimated image noise.

Note that when the variance Σ of the prior distribution

over the latent appearance space increases (and espe-

cially as Σ→∞) c becomes uniformly distributed and

the contribution of the first term 1
2 ||i[p] − ā||2AD−1AT

vanishes; in this case, we obtain a weighted version

of the project-out data term defined by Equation 19.

Hence, given our Bayesian formulation, the project-out

9 Using the Woodbury formula:

(AΣAT + σ2I)−1 =
1

σ2
I−

1

σ4
A (Σ−1 +

1

σ2
I)−1︸ ︷︷ ︸

reapply Woodbury

AT

=
1

σ2
I−

1

σ4
A(σ2I− σ4(Σ + σ2I)−1)AT

=
1

σ2
I−

1

σ4
A(σ2I− σ4D−1)AT

= AD−1AT +
1

σ2
(I−AAT )

Fig. 2: The Bayesian project-out formulation fits AAMs

by minimizing two different distances: i) the Maha-

lanobis distance within the linear appearance subspace;

and ii) the Euclidean distance to the linear appearance

subspace (i.e. the Euclidean distance within its orthog-

onal complement) weighted by the inverse of the esti-

mated image noise.

loss arises naturally by assuming a uniform prior over

the latent appearance space.

The probabilistic formulations of the minimization

problems defined by Equations 19 and 20 can be de-

rived, from the previous Bayesian Project-Out (BPO)

cost function, as

p∗ = arg max
p

ln p(i[p]|p, Θ)

= arg min
p

1

2σ2
||i[p]− ā||2Q︸ ︷︷ ︸
D(i[p])

(23)

and

p∗ = arg max
p

p(p, i[p]|Θ)

= arg max
p

p(p|Λ)p(i[p]|p, Θ)

= arg max
p

ln p(p|Λ) + ln p(i[p]|p, Θ)

= arg min
p

1

2
||p||2Λ−1︸ ︷︷ ︸
R(p)

+
1

2σ2
||i[p]− ā||2Q︸ ︷︷ ︸
D(i[p])

(24)

respectively. Where we have defined the BPO operator

as Q = I−A(I− σ2D−1)AT .

3.2 Type of Composition

Assuming, for the time being, that the true appear-

ance parameters c∗ are known, the problem defined by

Equation 11 reduces to a non-rigid image alignment

problem [7, 35] between the particular instance of the
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object present in the image and its optimal appearance

reconstruction by the appearance model:

p∗ = arg min
p

1

2
‖i[p]− a‖2 (25)

where a = ā + Ac∗ is obtained by directly evaluating

Equation 4 given the true appearance parameters c∗.

CGD algorithms iteratively solve the previous non-

linear optimization problem with respect to the shape

parameters p by:

1. Introducing an incremental warp W(x;∆p) accord-

ing to the particular composition scheme being used.

2. Linearizing the previous incremental warp around

the identity warp W(x;∆p) =W(x; 0) = x.

3. Solving for the parameters ∆p of the incremental

warp.

4. Updating the current warp estimate by using an ap-

propriate compositional update rule.

5. Going back to Step 1 until a particular convergence

criterion is met.

Existent CGD algorithms for fitting AAMs have in-

troduced the incremental warp either on the image or

the model sides in what are known as forward and in-

verse compositional frameworks [29, 19, 38, 2, 28, 49]

respectively. Inspired by related works in field of im-

age alignment [27, 32, 5, 33], we notice that novel CGD

algorithms can be derived by introducing incremental

warps on both image and model sides simultaneously.

Depending on the exact relationship between these in-

cremental warps we define two novel types of composi-

tion: asymmetric and bidirectional.

The following subsections explain how to introduce

the incremental warp into the cost function and how to

update the current warp estimate for the four types

of composition considered in this paper: i) forward;

ii) inverse; iii) asymmetric; and iv) bidirectional. For

convenience, in these subsections we will use the sim-

plified cost function defined by Equation 25. Further-

more, to maintain consistency with the vector notation

used through out the paper, we will abuse the nota-

tion and write the operations of warp composition10

W(x; p) ◦W(x;∆p) and inversion10 W(x; p)−1 as sim-

ply p ◦∆p and p−1 respectively.

3.2.1 Forward

In the forward compositional framework the incremen-

tal warp ∆p is introduced on the image side at each

10 Further details regarding composition, p◦∆p, and inver-
sion, ∆p−1, of typical AAMs’ motion models such as PWA
and TPS warps can be found in [29, 38].

iteration by composing it with the current warp esti-

mate p:

∆p∗ = arg min
∆p

1

2
||i[p ◦∆p]− a||2 (26)

Once the optimal values for the parameters of the

incremental warp are obtained, the current warp esti-

mate is updated according to the following composi-

tional update rule:

p← p ◦∆p (27)

3.2.2 Inverse

On the other hand, the inverse compositional frame-

work inverts the roles of the image and the model by

introducing the incremental warp on the model side:

∆p∗ = arg min
∆p

1

2
||i[p]− a[∆p]||2 (28)

Note that, in this case, the model is the one we seek to

deform using the incremental warp.

Because the incremental warp is introduced on the

model side, the solution ∆p needs to be inverted before

it is composed with the current warp estimate:

p← p ◦∆p−1 (29)

3.2.3 Asymmetric

Asymmetric composition introduces two related incre-

mental warps onto the cost function; one on the image

side (forward) and the other on the model side (inverse):

∆p∗ = arg min
∆p

1

2
||i[p ◦ α∆p]− a[β∆p−1]||2 (30)

Note that the previous two incremental warps are de-

fined to be each others inverse. Consequently, using the

first order approximation to warp inversion for typi-

cal AAMs warps ∆p−1 = −∆p defined in [29], we can

rewrite the previous asymmetric cost function as:

∆p∗ = arg min
∆p

1

2
||i[p ◦ α∆p]− a[−β∆p||2 (31)

Although this cost function will need to be linearized

around both incremental warps, the parameters ∆p

controlling both warps are the same. Also, note that

the parameters α ∈ [0, 1] and β = (1 − α) control the

relative contribution of both incremental warps in the

computation of the optimal value for ∆p.

In this case, the update rule for the current warp es-

timate is obtained by combining the previous forward
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and inverse compositional update rules into a single

compositional update rule:

p← p ◦ α∆p ◦ β∆p (32)

Note that, the special case in which α = β = 0.5

is also referred to as symmetric composition [32, 5, 33]

and that the previous forward and inverse compositions

can also be obtained from asymmetric composition by

setting α = 1 , β = 0 and α = 0 , β = 1 respectively.

3.2.4 Bidirectional

Similar to the previous asymmetric composition, bidi-

rectional composition also introduces incremental warps

on both image and model sides. However, in this case,

the two incremental warps are assumed to be indepen-

dent from each other:

∆p∗, ∆q∗ = arg min
∆p,∆q

1

2
||i[p ◦∆p]− a[∆q]||2 (33)

Consequently, in Step 4, the cost function needs to be

linearized around both incremental warps and solved

with respect to the parameters controlling both warps,

∆p and ∆q.

Once the optimal value for both sets of parameters

is recovered, the current estimate of the warp is updated

using:

p← p ◦∆p ◦∆q−1 (34)

3.3 Optimization Method

Step 2 and 3 in CGD algorithms, i.e. linearizing the

cost and solving for the incremental warp respectively,

depend on the specific optimization method used by the

algorithm. In this paper, we distinguish between three

main optimization methods11: i) Gauss-Newton [11, 29,

19, 28, 38, 49]; ii) Newton [11, 21]; and iii) Wiberg [37,

45, 38, 49].

These methods can be used to iteratively solve the

non-linear optimization problems defined by Equations

14 and 22. The main differences between them are:

1. The term being linearized. Gauss-Newton and Wiberg

linearize the residual r while Newton linearizes the

whole data term D.

11 Amberg et al. proposed the use of the Steepest Descent
method [11] in [2]. However, their approach requires a special
formulation of the motion model and it performs poorly using
the standard independent AAM formulation [29] used in this
work.

2. The way in which each method solves for the incre-

mental parameters ∆c, ∆p and ∆q. Gauss-Newton

and Newton can either solve for them simultane-

ously or in an alternated fashion while Wiberg de-

fines its own procedure to solve for different sets of

parameters12.

The following subsections thoroughly explain how

the previous optimization methods are used in CGD

algorithms. In order to simplify their comprehension

full derivations will be given for all methods using the

SSD data term (Equation 11) with both asymmetric

(Section 3.2.3) and bidirectional (Section 3.2.4) com-

positions13 while only direct solutions will be given for

the Project-Out data term (Equation 19).

3.3.1 Gauss-Newton

When asymmetric composition is used, the optimiza-

tion problem defined by the SSD data term is:

∆c∗, ∆p∗ = arg min
∆c,∆p

1

2
rTa ra (35)

with the asymmetric residual ra defined as:

ra = i[p ◦ α∆p]− (a + A(c +∆c))[β∆p−1] (36)

and where we have introduced the incremental appear-

ance parameters∆c14. The Gauss-Newton method solves

the previous optimization problem by performing a first

order Taylor expansion of the residual:

ra(∆`) ≈ r̂a(∆`)

≈ ra +
∂ra
∂∆`

∆`
(37)

and solving the following approximation of the original

problem:

∆`∗ = arg min
∆`

1

2
r̂Ta r̂a (38)

where, in order to unclutter the notation, we have de-

fined ∆` = (∆cT , ∆pT )T and the partial derivative of

12 Wiberg reduces to Gauss-Newton when only a single set
of parameters needs to be inferred.
13 These represent the most general cases because the
derivations for forward, inverse and symmetric compositions
can be directly obtained from the asymmetric one and they
require solving for both shape and appearance parameters.
14 The value of the current estimate of appearance parame-
ters is updated at each iteration using the following additive
update rule: c← c +∆c
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the residual with respect to the previous parameters,

i.e. the Jacobian of the residual, is defined as:

∂ra
∂∆`

=

(
∂ra
∂∆c

,
∂ra
∂∆p

)
=

(
−A,∇t

∂W
∂∆p

)
= (−A,Jt)

(39)

where ∇t = (α∇i[p] + β∇(a + Ac)).

When bidirectional composition is used, the opti-

mization problem is defined as:

∆c∗, ∆p∗, ∆q∗ = arg min
∆c,∆p,∆q

1

2
rTb rb (40)

where the bidirectional residual rb reduces to:

rb = i[p ◦∆p]− (a + A(c +∆c))[∆q] (41)

The Gauss-Newton method proceeds in exactly the same

manner as before, i.e. performing a first order Taylor

expansion:

rb(∆`) ≈ r̂b(∆`)

≈ rb +
∂rb
∂∆`

∆`
(42)

and solving the approximated problem:

∆`∗ = arg min
∆`

1

2
r̂Tb r̂b (43)

where, in this case, ∆` = (∆cT , ∆pT , ∆qT )T and the

Jacobian of the residual is defined as:

∂rb
∂∆`

=

(
∂rb
∂∆c

,
∂rb
∂∆p

,
∂rb
∂∆q

)
= (−A,Ji,−Ja)

(44)

where Ji = ∇i[p] ∂W∂∆p and Ja = ∇(a + Ac) ∂W∂∆q .

Simultaneous

The optimization problem defined by Equations 38 and

43 can be solved with respect to all parameters simul-

taneously by simply equating their derivative to 0:

0 =
∂ 1

2 r̂T r̂

∂∆`

=
∂ 1

2 (r + ∂r
∂∆`∆`)

T (r + ∂r
∂∆`∆`)

∂∆`

=

(
r +

∂r

∂∆`
∆`

)
∂r

∂∆`

T

(45)

The solution is given by:

∆`∗ = −

(
∂r

∂∆`

T ∂r

∂∆`

)−1
∂r

∂∆`

T

r (46)

where
(
∂r
∂∆`

T ∂r
∂∆`

)
is known as the Gauss-Newton ap-

proximation to the Hessian matrix.

Directly inverting
(
∂r
∂∆`

T ∂r
∂∆`

)
has complexity15 O((n+

m)3) for asymmetric composition and O((2n+m)3) for

bidirectional composition. However, one can take ad-

vantage of the problem structure and derive an algo-

rithm with smaller complexity by using the Schur com-

plement16 [11].

For asymmetric composition we have:

−

(
∂ra
∂∆`

T ∂ra
∂∆`

)
∆` =

∂ra
∂∆`

T

r−ATA︸ ︷︷ ︸
I

ATJt

JTt A −JTt Jt

(∆c

∆p

)
=

(
−AT

JTt

)
ra

(47)

Applying the Schur complement, the solution for ∆p is

given by:

−(JTt Jt + JTt AATJTt )∆p = JTt r− JTt AAT ra

−JTt (I−AAT )Jt∆p = JTt (I−AAT )ra

−JTt ĀJt∆p = JTt Āra

∆p = −
(
JTt ĀJt

)−1
JTt Āra

(48)

and plugging the solution for ∆p into equation 47 the

optimal value for ∆c is obtained by:

−∆c + ATJt∆p∗ = −AT ra

∆c = AT (ra + Jt∆p∗)
(49)

Using the above procedure the complexity15 of solving

each Gauss-Newton step is reduced to:

O(nmF︸ ︷︷ ︸
JTt Ā

+ n2F + n3︸ ︷︷ ︸
(JTt ĀJt)

−1

)
(50)

Using bidirectional composition, we can apply the

Schur complement either one or two times in order to

15 m and n denote the number of shape and appearance
parameters respectively while F denotes the number of pixels
on the reference frame.
16 Applying the Schur complement to the following system
of equations:

Ax + By = a

Cx + Dy = b

the solution for x is given by:

(A−BD−1C)x = a−BD−1b

and the solution for y is obtained by substituting the value
of x into the original system.
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take advantage of the 3×3 block structure of the matrix(
∂rb
∂∆`

T ∂rb
∂∆`

)
:

−

(
∂rb
∂∆`

T ∂rb
∂∆`

)
∆` =

∂rb
∂∆`

T

rb
−ATA︸ ︷︷ ︸

I

ATJi −ATJa

JTi A −JTi Ji JTi Ja

−JTa A JTa Ji −JTa Ja


∆c

∆p

∆q

 =

−AT

JTi
−JTa

 rb

(51)

Applying the Schur complement once, the combined so-

lution for (∆pT , ∆qT )T is given by:(
−JTi ĀJi JTi ĀJa

JTa ĀJi −JTa ĀJa

)(
∆p

∆q

)
=

(
JTi Ā

−JTa Ā

)
rb(

∆p

∆q

)
=

(
−JTi ĀJi JTi ĀJa

JTa ĀJi −JTa ĀJa

)−1

(
JTi Ā

−JTa Ā

)
rb

(52)

Note that the complexity of inverting this new approx-

imation to the Hessian matrix is O((2n)3)17. Similar

to before, plugging the solutions for ∆p and ∆q into

Equation 51 we can infer the optimal value for ∆c us-

ing:

∆c = AT (rb − Ji∆p + Ja∆q) (53)

The total complexity per iteration of the previous ap-

proach is:

O( 2nmF︸ ︷︷ ︸ JTi Ā

−JTa Ā


+ (2n)2F + (2n)3︸ ︷︷ ︸−JTi ĀJi JTi ĀJa

JTa ĀJi −JTa ĀJa

−1

)

(54)

The Schur complement can be re-applied to Equa-

tion 52 to derive a solution for ∆q that only requires

inverting a Hessian approximation matrix of size n×n:

(
JTa PJa

)
∆q = JTa Prb

∆q =
(
JTa PJa

)−1
JTa Prb

(55)

where we have defined the projection matrix P as:

P = Ā− ĀJi

(
JTi ĀJi

)−1
JTi Ā (56)

and the solutions for ∆p and ∆c can be obtained by

plugging the solutions for ∆q into Equation 52 and the

17 This is an important reduction in complexity because usu-
ally m >> n in CGD algorithms.

solutions for ∆q and ∆p into Equation 51 respectively:

∆p = −
(
JTi ĀJi

)−1
JTi Ā (rb − Ja∆q)

∆c = AT (rb + Ji∆p− Ja∆q)
(57)

The total complexity per iteration of the previous ap-

proach reduces to:

O( 2nmF︸ ︷︷ ︸
JTa P & JTi Ā

+ 2n2F + 2n3︸ ︷︷ ︸
(JTa PJa)−1 & (JTi ĀJi)

−1

)
(58)

Note that because of their reduced complexity, the so-

lutions defined by Equations 55 and 57 are preferred

over the ones defined by Equations 52 and 53.

Finally, the solutions using the Project-Out cost

function are:

– For asymmetric composition:

∆p = −
(
JTt ĀJt

)−1
JTt Ār (59)

with complexity18 given by Equation 50.

– For bidirectional composition:

∆q =
(
JTā PJā

)−1
JTā Pr

∆p = −
(
JTi ĀJi

)−1
JTi Ā (r− Ja∆q)

(60)

with complexity18 given by Equation 58.

where, in both cases, r = i[p]− ā.

Alternated

Another way of solving optimization problems with two

or more sets of variables is to use alternated optimiza-

tion [17]. Hence, instead of solving the previous problem

simultaneously with respect to all parameters, we can

update one set of parameters at a time while keeping

the other sets fixed.

More specifically, using asymmetric composition we

can alternate between updating ∆c given the previous

∆p and then update ∆p given the updated ∆c in an

alternate manner. Taking advantage of the structure of

the problem defined by Equation 47, we can obtain the

following system of equations:

−∆c + ATJt∆p = −AT ra

JTt A∆c− JTt Jt∆p = JTt ra
(61)

18 In practice, the solutions for the Project-Out cost func-
tion can be computed slightly faster than those for the SSD
because they do not need to explicitly solve for ∆c. This is
specially important in the inverse compositional case because
expressions of the form (JTUJ)−1JTU can be completely
precomputed and the computational cost per iteration re-
duces to O(nF ).
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which we can rewrite as:

∆c = AT (ra + Jt∆p)

∆p = −
(
JTt Jt

)−1
JTt (ra −A∆c)

(62)

in order to obtain the analytical expression for the pre-

vious alternated update rules. The complexity at each

iteration is dominated by:

O(n2F + n3︸ ︷︷ ︸
(JTt Jt)−1

)
(63)

In the case of bidirectional composition we can pro-

ceed in two different ways: a) update ∆c given the pre-

vious ∆p and ∆q and then update (∆pT , ∆qT )T from

the updated ∆c, or b) update ∆c given the previous

∆p and ∆q, then ∆p given the updated ∆c and the

previous ∆q and, finally, ∆q given the updated ∆c and

∆p.

From Equation 51, we can derive the following sys-

tem of equations:

−∆c + ATJi∆p−ATJa∆q = −AT rb

JTi A∆c− JTi Ji∆p + JTi Ja∆q = JTi rb

−JTa A∆c + JTa Ji∆p− JTa Ja∆q = −JTa rb

(64)

from which we can define the alternated update rules

for the first of the previous two options:

∆c = AT (rb + Ji∆p− Ja∆q)(
∆p

∆q

)
=

(
−JTi Ji JTi Ja

JTa Ji −JTa Ja

)−1(
JTi
−JTa

)
(rb −A∆c)

(65)

with complexity:

O( (2n)2F + (2n)3︸ ︷︷ ︸−JTi Ji JTi Ja

JTa Ji −JTa Ja

−1

)

(66)

The rules for the second options are:

∆c = AT (rb + Ji∆p− Ja∆q)

∆p = −(JTi Ji)
−1JTi (rb −A∆c− Ja∆q)

∆q = (JTa Ja)−1JTa (rb −A∆c + Ji∆p)

(67)

and their complexity is dominated by:

O( 2n2F + 2n3︸ ︷︷ ︸
(JTi Ji)−1 & (JTa Ja)−1

)
(68)

On the other hand, the alternated update rules us-

ing the Project-Out cost function are:

– For asymmetric composition: There is no proper al-

ternated rule because the Project-Out cost function

only depends on one set of parameters, ∆p.

– For bidirectional composition:

∆q =
(
JTā ĀJā

)−1
JTā Ā (r + Ji∆p)

∆p = −
(
JTi ĀJi

)−1
JTi Ā (r− Ja∆q)

(69)

with equivalent complexity to the one given by Equa-

tion 50 because, in this case, the term
(
JTā ĀJā

)−1
JTā Ā

can be completely precomputed.

Note that all previous alternated update rules, Equa-

tions 62, 65, 67 and 98, are similar but slightly different

from their simultaneous counterparts, Equations 48 and

49, 52 and 53, 55 and 57, and 60.

3.3.2 Newton

The Newton method performs a second order Taylor

expansion of the entire data term D:

D(∆`) ≈ D̂(∆`)

≈ D +
∂D
∂∆`

∆`+
1

2
∆`T

∂2D
∂2∆`

∆`
(70)

and solves the approximate problem:

∆`∗ = arg min
∆`

D̂ (71)

Assuming asymmetric composition, the previous data

term is defined as:

Da(∆`) =
1

2
rTa ra (72)

and the matrix containing the first order partial deriva-

tives with respect to the parameters, i.e. the data term’s

Jacobian, can be written as:

∂Da
∂∆`

=

(
∂Da
∂∆c

,
∂Da
∂∆p

)
=
(
−AT ra,J

T
t ra

) (73)

On the other hand, the matrix ∂2Da
∂2∆` of the second order

partial derivatives, i.e. the Hessian of the data term,

takes the following form:

∂2Da
∂2∆`

=

(
∂2Da
∂2∆c

∂2Da
∂∆c∂∆p

∂2Da
∂∆p∂∆c

∂2Da
∂2∆p

)

=

 ∂2Da
∂2∆c

∂2Da
∂∆c∂∆p(

∂2Da
∂∆c∂∆p

)T
∂2Da
∂2∆p

 (74)

Note that the Hessian matrix is, by definition, symmet-

ric. The definition of its individual terms is provided in

Appendix A.1.
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A similar derivation can be obtained for bidirec-

tional composition where, as expected, the data term

is defined as:

Db(∆`) =
1

2
rTb rb (75)

In this case, the Jacobian matrix becomes:

∂Db
∂∆`

=

(
∂Db
∂∆c

,
∂Db
∂∆p

,
∂Db
∂∆q

)
=
(
−AT ra,J

T
i ra,−JTa ra

) (76)

and the Hessian matrix takes the following form:

∂2Db
∂2∆`

=


∂2Db
∂2∆c

∂2Db
∂∆c∂∆p

∂2Db
∂∆c∂∆q

∂2Db
∂∆p∂∆c

∂2Db
∂2∆p

∂2Db
∂∆p∂∆q

∂2Db
∂∆q∂∆c

∂2Db
∂∆q∂∆p

∂2Db
∂2∆q



=


∂2Db
∂2∆c

∂2Db
∂∆c∂∆p

∂2Db
∂∆c∂∆q(

∂2Db
∂∆c∂∆p

)T
∂2Db
∂2∆p

∂2Db
∂∆p∂∆q(

∂2Db
∂∆c∂∆q

)T (
∂2Db

∂∆p∂∆q

)T
∂2Db
∂2∆q


(77)

Notice that the previous matrix is again symmetric.

The definition of its individual terms is provided in Ap-

pendix A.2.

Simultaneous

Using the Newton method we can solve for all param-

eters simultaneously by equating the partial derivative

of Equation 71 to 0:

0 =
∂D̂
∂∆`

=
∂
(
D + ∂D

∂∆`∆`+ 1
2∆`

T ∂2D
∂2∆`∆`

)
∂∆`

=
∂D
∂∆`

+
∂2D
∂2∆`

∆`

(78)

with the solution given by:

∆`∗ = − ∂2D
∂2∆`

−1
∂D
∂∆`

(79)

Note that, similar to the Gauss-Newton method,

the complexity of inverting the Hessian matrix ∂2D
∂2∆` is

O((m+2n)3) for asymmetric composition and O((2n+

m)3) for bidirectional composition. As shown by Kos-

saifi et al. [21]19, we can take advantage of the structure

19 In [21], Kossaifi et al. applied the Schur complement to the
Newton method using only inverse composition while we ap-
ply it here using the more general asymmetric (which includes
forward, inverse and symmetric) and bidirectional composi-
tions.

of the Hessian in Equations 74 and 77 and apply the

Schur complement to obtain more efficient solutions.

The solutions for∆p and∆c using asymmetric com-

position are given by the following expressions:

∆p =

(
∂2Da
∂2∆p

− ∂2Da
∂∆p∆c

∂2Da
∂∆c∆p

)−1

(
∂Da
∂∆p

− ∂2Da
∂∆p∆c

∂Da
∂∆c

)
∆c =

∂Da
∂∆c

− ∂2Da
∂∆c∂∆p

∆p∗

(80)

with complexity:

O( nmF︸ ︷︷ ︸
∂2Da

∂∆p∂∆c

+ n2m︸︷︷︸
∂2Da

∂∆p∂∆c
∂2Da

∂∆c∂∆p

+ 2n2F︸ ︷︷ ︸
∂2Da
∂2∆p

+ n3︸︷︷︸
H−1

)
(81)

where we have defined H =
(
∂2Da
∂2∆p −

∂2Da
∂∆p∆c

∂2Da
∂∆c∆p

)−1

in order to unclutter the notation.

On the other hand, the solutions for bidirectional

composition are given either by:(
∆p

∆q

)
=

(
V WT

W U

)−1(
v

u

)
∆c =

∂Db
∂∆c

− ∂2Db
∂∆c∂∆p

∆p− ∂2Db
∂∆c∂∆q

∆q

(82)

or

∆p =
(
U−WV−1WT

)−1 (
u−WV−1v

)
∆p = V−1

(
v −WT∆q

)
∆c =

∂Db
∂∆c

− ∂2Db
∂∆c∂∆p

∆p− ∂2Db
∂∆c∂∆q

∆q

(83)

where we have defined the following auxiliary matrices

V =
∂2Db
∂2∆p

− ∂2Db
∂∆p∆c

∂2Db
∂∆c∆p

W =
∂2Db

∂∆q∂∆p
− ∂2Db
∂∆q∆c

∂2Db
∂∆c∆p

U =
∂2Db
∂2∆q

− ∂2Db
∂∆q∆c

∂2Db
∂∆c∆q

(84)

and vectors

v =
∂Db
∂∆p

− ∂2Db
∂∆p∆c

∂Db
∂∆c

u =
∂Db
∂2∆q

− ∂2Db
∂∆q∆c

∂Db
∂∆c

(85)

The complexity of the previous solutions is of:

O(nmF︸ ︷︷ ︸
v

+ 2nmF︸ ︷︷ ︸
u

+ 4n2F + 2n2m︸ ︷︷ ︸
U & V

+

2n2F + n2m︸ ︷︷ ︸
W

+ (2n)3︸ ︷︷ ︸V WT

W U

−1

) (86)
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and

O(nmF︸ ︷︷ ︸
v

+ 2nmF︸ ︷︷ ︸
u

+

4n2F + 2n2m︸ ︷︷ ︸
U & V

+ 2n2F + n2m︸ ︷︷ ︸
W

+

4n3︸︷︷︸
V−1 & (U−WV−1WT )−1

)

(87)

respectively.

The solutions using the Project-Out cost function

are:

– For asymmetric composition:

∆p = −

(
∂W
∆p

T

∇2t
∂W
∆p

Ār + JTt ĀJt

)−1

JTt Ār

(88)

with complexity20 given by Equation 81.

– For bidirectional composition:

∆q =

(
∂W
∆p

T

∇2ā
∂W
∆p

Ār + JTā P̃Jā

)−1

JTā P̃r

∆p = −H−1
i JTi Ā (r− Ja∆q)

(89)

where the projection operator P̃ is defined as:

P̃ = Ā− ĀJTi H−1
i JTi Ā (90)

and where we have defined:

Hi =

(
∂W
∆p

T

∇2i[p]
∂W
∆p

Ār + JTi ĀJTi

)
(91)

to unclutter the notation. The complexity per iter-

ation20 is given by Equation 87.

Note that, the derivations of the previous solutions,

for both types of composition, are analogous to the ones

shown in Section 3.3.1 for the Gauss-Newton method

and, consequently, have been omitted here.

20 In practice, the solutions for the project-out cost function
can also be computed slightly faster because they do not need
to explicitly solve for ∆c. However, in this case, using inverse
composition we can only precompute terms of the form JTU
and JTUJ but not the entire H−1JTU because of the ex-
plicit dependence between H and the current residual r.

Alternated

Alternated optimization rules can also be derived for

the Newton method following the strategy shown in

Section 3.3.1 for the Gauss-Newton case. Again, we will

simply provide update rules and computational com-

plexity for both types of composition and will omit the

details of their full derivation.

For asymmetric composition the alternated rules are

defined as:

∆c =
∂Da
∂∆c

− ∂2Da
∂∆c∂∆p

∆p

∆p =
∂2Da
∂2∆p

−1(
∂Da
∂∆p

− ∂2Da
∂∆p∂∆c

∆c

) (92)

with complexity:

O( nmF︸ ︷︷ ︸
∂2Da

∂∆p∂∆c

+ 2n2F + n3︸ ︷︷ ︸
∂2Da
∂2∆p

−1

)
(93)

The alternated rules for bidirectional composition

case are given either by:

∆c =
∂Db
∂∆c

− ∂2Db
∂∆c∂∆p

∆p−

∂2Db
∂∆c∂∆q

∆q(
∆p

∆q

)
=

(
∂2Db
∂2∆p

∂2Db
∂∆p∂∆q

∂2Db
∂∆q∂∆p

∂2Db
∂2∆p

)−1

(
∂Db
∂∆p −

∂2Db
∂∆p∂∆c∆c

∂Db
∂∆q −

∂2Db
∂∆q∂∆c∆c

)
(94)

with complexity:

O( nmF︸ ︷︷ ︸
∂2D

∂∆p∂∆p

+ 4n2F︸ ︷︷ ︸
∂2D
∂2∆p

& ∂2D
∂2∆q

+

(2n)3︸ ︷︷ ︸ ∂2Db
∂2∆p

∂2Db
∂∆p∂∆q

∂2Db
∂∆q∂∆p

∂2Db
∂2∆p


−1

) (95)

or:

∆c =
∂Db
∂∆c

− ∂2Db
∂∆c∂∆p

∆p− ∂2Db
∂∆c∂∆q

∆q

∆p =
∂2Db
∂2∆p

−1

(
∂Db
∂∆p

− ∂2Db
∂∆p∂∆c

∆c− ∂2Db
∂∆p∂∆q

∆q

)
∆q =

∂2Db
∂2∆q

−1

(
∂Db
∂∆q

− ∂2Db
∂∆q∂∆c

∆c− ∂2Db
∂∆q∂∆p

∆p

)
(96)
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with complexity:

O( nmF︸ ︷︷ ︸
∂2D

∂∆p∂∆p

+ 4n2F︸ ︷︷ ︸
∂2D
∂2∆p

& ∂2D
∂2∆q

+ 2n3︸︷︷︸
∂2Db
∂2∆p

−1
&
∂2Db
∂2∆q

−1

)
(97)

On the other hand, the alternated update rules for

the Newton method using the project-out cost function

are:

– For asymmetric composition: Again, there is no proper

alternated rule because the project-out cost function

only depends on one set of parameters, ∆p.

– For bidirectional composition:

∆q = H−1
a JTā Ā (r + Ji∆p)

∆p = −H−1
i JTi Ā (r− Ja∆q)

(98)

where we have defined:

Ha =

(
∂W
∆p

T

∇2ā
∂W
∆p

Ār + JTā ĀJā

)
(99)

and the complexity at every iteration is given by the

following expression complexity:

O(nmF︸ ︷︷ ︸
JTi Ā

+ 3n2F + 2n3︸ ︷︷ ︸
H−1

i & H−1
a

)
(100)

Efficient Second-order Minimization (ESM)

Notice that, the second order Taylor expanison used by

the Newton method means that Newton algorithms are

second order optimizations algorithms with respect to

the incremental warps. However, as shown in the previ-
ous section, this property comes at expenses of a signifi-

cant increase in computational complexity with respect

to (first order)Gauss-Newton algorithms. In this sec-

tion, we show that the Asymmetric Gauss-Newton al-

gorithms derived in Section 3.3.1 are, in fact, also true

second order optimization algorithms with respect to

the incremental warp ∆p.

The use of asymmetric composition together with

the Gauss-Newton method has been proven to naturally

lead to Efficient Second order Minimization (ESM) al-

gorithms in the related field of parametric image align-

ment [27, 10, 32, 33]. Following a similar line of reason-

ing, we will show that Asymmetric Gauss-Newton al-

gorithms for fitting AAMs can also be also interpreted

as ESM algorithms.

In order to show the previous relationship we will

make use of the simplified data term21 introduced by

21 Notice that similar derivations can also be obtained using
the SSD and Project-Out data terms, but we use the simpli-
fied one here for clarity.

Equation 25. Using forward composition, the optimiza-

tion problem defined by:

∆p∗ = arg min
∆p

1

2
rTf Ārf (101)

where the forward residual rf is defined as:

rf = i[p ◦∆p]− ā (102)

As seen before, Gauss-Newton solves the previous op-

timization problem by performing a first order Taylor

expansion of the residual around ∆p:

r̂f (∆p) = rf +
∂rf
∂∆p

∆p +Orf (∆p2)︸ ︷︷ ︸
remainder

= i[p]− ā + Ji∆p +Orf (∆p2)

(103)

and solving the following approximation of the original

problem:

∆p∗ = arg min
∆p

1

2
r̂Tf r̂f (104)

However, note that, instead of performing a first

order Taylor expansion, we can also perform a second

order Taylor expansion of the residual:

řf (∆p) = rf +
∂rf
∂∆p

∆p +

1

2
∆pT

∂2rf
∂2∆p

∆p +Orf (∆p3)

= i[p]− ā + Ji∆p +

1

2
∆pTHi∆p +Orf (∆p3)

(105)

Then, given the second main assumption behind AAMs

(Equation 7) the following approximation must hold:

∇i[p]
∂W
∂∆p

≈ ∇a
∂W
∂∆p

Ji ≈ Ja

(106)

and, because the previous Ji and Ja are functions of

∆p, we can perform a first order Taylor expansion of

Ji to obtain:

Ji(∆p) ≈ Ji +∆pT
∂Ji

∂∆p
+OJi

(∆p2)︸ ︷︷ ︸
remainder

≈ Ji +∆pTHi +OJi
(∆p2)

Ja ≈ Ji +∆pTHi +OJi
(∆p2)

∆pTHi ≈ Ja − Ji −OJi
(∆p2)

(107)
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Finally, substituting the previous approximation for

∆pTHi into Equation 105 we arrive at:

řf (∆p) = i[p]− ā + Ji∆p +

1

2
∆pTHi∆p +Orf (∆p3)

= i[p]− ā + Ji∆p +

1

2

(
Ja − Ji −OJi

(∆p2)
)
∆p +

Orf (∆p3)

= i[p]− ā +
1

2
(Ji + Ja)∆p +

Ototal(∆p3)

(108)

where the total remainder is cubic with respect to ∆p:

Ototal(∆p3) = Orf (∆p3)−OJi
(∆p2)∆p (109)

The previous expression constitutes a true second or-

der approximation of the forward residual rf where the

term 1
2 (Ji + Ja) is equivalent to the asymmetric Jaco-

bian in Equation 38 when α = β = 0.5:

1

2
(Ji + Ja) =

(
1

2
Ji +

1

2
Ja

)
=

(
1

2
∇i[p]

∂W
∂∆p

+
1

2
∇a

∂W
∂∆p

)
=

(
1

2
∇i[p] +

1

2
∇a

)
∂W
∂∆p

= (∇t)
∂W
∂∆p

= Jt

(110)

and, consequently, Asymmetric Gauss-Newton algorithms

for fitting AAMs can be viewed as ESM algorithms that

only require first order partial derivatives of the resid-

ual and that have the same computational complexity

as first order algorithms.

3.3.3 Wiberg

The idea behind the Wiberg method is similar to the

one used by the alternated Gauss-Newton method in

Section 3.3.1, i.e. solving for one set of parameters at

a time while keeping the other sets fixed. However,

Wiberg does so by rewriting the asymmetric ra(∆c, ∆p)

and bidirectional rb(∆c, ∆p, ∆q) residuals as functions

that only depend on ∆p and ∆q respectively.

For asymmetric composition, the residual r̄a(∆p) is

defined as follows:

r̄a(∆p) = ra(∆̄c, ∆p)

= i[p ◦ α∆p]− (a + A(c + ∆̄ca))[β∆p]
(111)

where the function ∆̄ca(∆p) is obtained by solving for

∆c while keeping ∆p fixed:

∆̄ca(∆p) = AT ra (112)

Given the previous residual, the Wiberg method pro-

ceeds to define the following optimization problem with

respect to ∆p:

∆p∗ = arg min
∆p

r̄Ta r̄a (113)

which then solves approximately by performing a first

order Taylor of the residual around the incremental

warp:

∆p∗ = arg min
∆p

∥∥∥∥r̄a(∆p) +
∂r̄a
∂∆p

∆p

∥∥∥∥2

(114)

In this case, the Jacobian ∂r̄
∂∆p can be obtain by direct

application of the chain rule and it is defined as follows:

dr̄a
d∆p

=
∂r̄a
∂∆p

+
∂r̄a
∂∆̄ca

∂∆̄ca
∂∆p

= Jt −AATJt

= ĀJt

(115)

The solution for ∆p is obtained as usual by equating

the derivative of 113 with respect to ∆p to 0:

∆p∗ = −
((

ĀJt

)T
ĀJt

)−1 (
ĀJt

)T
r̄a

= −
(
JTt ĀJt

)−1
JTt Ār̄a

(116)

where we have used the fact that the matrix Ā is idem-

potent22.

Therefore, the Wiberg method solves explicitly, at

each iteration, for ∆p using the previous expression

and implicitly for ∆c (through ∆̄ca(∆p)) using Equa-

tion 112. The complexity per iteration of the Wiberg

method is the same as the one of the Gauss-Newton

method after applying the Schur complement, Equa-

tion 50. In fact, note that the Wiberg solution for ∆p

(Equation 116) is the same as the one of the Gauss-

Newton method after applying the Schur complement,

Equation 48; and also note the similarity between the

22 Ā is idempotent:

ĀĀ =
(
I−AAT

) (
I−AAT

)
= IT I− 2AAT + A ATA︸ ︷︷ ︸

I

AT

= I− 2AAT + AAT

= I−AAT

= Ā
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solutions for ∆c of both methods, Equations 112 and

49. Finally, note that, due to the close relation between

the Wiberg and Gauss-Newton methods, Asymmetric

Wiberg algorithms are also ESM algorithms for fitting

AAMs.

On the other hand, for bidirectional composition,

the residual r̄b(∆p) is defined as:

r̄b(∆q) = rb(∆̄cb, ∆̄pb, ∆q)

= i[p ◦ ∆̄pb]− (a−A(c + ∆̄cb))[∆q]
(117)

where, similarly as before, the function ∆̄cb(∆p, ∆q)

is obtained solving for ∆c while keeping both ∆p and

∆q fixed:

∆̄cb(∆p, ∆q) = AT rb (118)

and the function ∆̄pb(∆̄cb, ∆q) is obtained by solv-

ing for ∆p using the Wiberg method while keeping ∆q

fixed:

∆̄pb(∆̄cb, ∆q) = −
(
JTi ĀJi

)−1
JTi Ār̄b (119)

At this point, the Wiberg method proceeds to define the

following optimization problem with respect to ∆q:

∆q∗ = arg min
∆q

r̄Tb r̄b (120)

which, as before, then solves approximately by perform-

ing a first order Taylor expansion around ∆q:

∆q∗ = arg min
∆q

∥∥∥∥r̄b(∆q) +
∂r̄b
∂∆q

∆q

∥∥∥∥2

(121)

In this case, the Jacobian of the residual can also be

obtained by direct application of the chain rule and

takes the following form:

dr̄b
d∆q

=
∂r̄b
∂∆q

+
∂r̄b
∂∆̄pb

∂∆̄pb
∂∆q

+(
∂r̄b
∂∆̄cb

+
∂r̄b
∂∆̄pb

∂∆̄pb
∂∆̄c

)
∂∆̄cb
∂∆q

= −Ja + Ji

(
JTi ĀJi

)−1
JTi ĀJa+(

A− Ji

(
JTi ĀJi

)−1
JTi ĀA

)
ATJa

= −Ja + AATJa+

Ji

(
JTi ĀJi

)−1
JTi ĀJa−

Ji

(
JTi ĀJi

)−1
JTi ĀAATJa

= −
(
I−AAT

)
Ja+

Ji

(
JTi ĀJi

)−1
JTi Ā

(
I−AAT

)
Ja

= −ĀJa + Ji

(
JTi ĀJi

)−1
JTi ĀĀJa

=
(
−I + Ji

(
JTi ĀJi

)−1
JTi Ā

)
ĀJa

= −PJa

(122)

And, again, the solution for ∆q is obtained as usual by

equating the derivative of 121 with respect to ∆q to 0:

∆q∗ =
(

(PJt)
T

PJt

)−1

(PJt)
T

r̄a (123)

In this case, the Wiberg method solves explicitly, at

each iteration, for ∆p using the previous expression

and implicitly for ∆p and ∆c (through ∆̄pb(∆̄cb, ∆q)

and ∆̄cb(∆p, ∆q)) using Equations 119 and 118 respec-

tively. Again, the complexity per iteration is the same

as the one of the Gauss-Newton method after applying

the Schur complement, Equation 58; and the solutions

for both methods are almost identical, Equations 123,

119 and 118 and Equations 52, 53 and 55.

On the other hand, the Wiberg solutions for the

project-out cost function are:

– For asymmetric composition: Because the project-

out cost function only depends on one set of param-

eters, ∆p, in this case Wiberg reduces to Gauss-

Newton.

– For bidirectional composition:

∆̄p = −
(
JTi ĀJi

)−1
JTi Ār

∆q =
(
JTā PJā

)−1
JTā Pr

(124)

Again, in this case, the solutions obtained with the

Wiberg method are almost identical to the ones ob-

tained using Gauss-Newton after applying the Schur

complement, Equation 60.

4 Relation to Prior Work

In this section we relate relevant prior work on CGD

algorithms for fitting AAMs [29, 19, 38, 2, 28, 49, 21]

to the unified and complete view introduced in the pre-

vious Section.

4.1 Project-Out algorithms

In their seminal work [29], Matthews and Baker pro-

posed the first CGD algorithm for fitting AAMs, the

so-called Project-out Inverse Compositional (PIC) al-

gorithm. This algorithm uses Gauss-Newton to solve

the optimization problem posed by the project-out cost

function using inverse composition. The use of the project-

out norm removes the need to solve for the appearance

parameters and the use of inverse composition allows

for the precomputation of the pseudo-inverse of the Ja-

cobian with respect to ∆p, i.e.
(
JTā ĀJā

)−1
JāĀ. The

PIC algorithm is very efficient (O(nF )) but it has been

shown to perform poorly in generic and unconstrained
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scenarios [19, 38]. In this paper, we refer to this algo-

rithm as the Project-Out Inverse Gauss-Newton algo-

rithm.

The forward version of the previous algorithm, i.e.

the Project-Out Forward Gauss-Newton algorithm, was

proposed by Amberg et al. in [2]. In this case, the use

of forward composition prevents the precomputation

of the Jacobian pseudo-inverse and its complexity in-

creases to O(nmF+n2F+n3). However, this algorithm

has been shown to largely outperform its inverse coun-

terpart, and obtains good performance under generic

and unconstrained conditions [2, 49]23

To the best of our knowledge, the rest of Project-

Out algorithms derived in Section 3, i.e.:

– Project-Out Forward Newton

– Project-Out Inverse Newton

– Project-Out Asymmetric Gauss-Newton

– Project-Out Asymmetric Newton

– Project-Out Bidirectional Gauss-Newton Schur

– Project-Out Bidirectional Gauss-Newton Alternated

– Project-Out Bidirectional Newton Schur

– Project-Out Bidirectional Newton Alternated

– Project-Out Bidirectional Wiberg

have never been published before and are a significant

contribution of this work.

4.2 SSD algorithms

In [19] Gross et al. presented the Simultaneous Inverse

Compositional (SIC) algorithm and show that it largely

outperforms the Project-Out Inverse Gauss-Newton al-

gorithm in terms of fitting accuracy. This algorithm

uses Gauss-Newton to solve the optimization problem

posed by the SSD cost function using inverse compo-

sition. In this case, the Jacobian with respect to ∆p,

depends on the current value of the appearance param-

eters and needs to be recomputed at every iteration.

Moreover, the inclusion of the Jacobian with respect to

the appearance increments δc, increases the size of the

simultaneous Jacobian to ∂r
∂∆` = (−A,−Ja) ∈ RF×(m+n)

and, consequently, the computational cost per iteration

of the algorithm is O((m+ n)2F + (m+ n)3).

As we shown in Sections 3.3.1, 3.3.1 and 3.3.3 the

previous complexity can be dramatically reduced by

taking advantage of the problem structure in order to

derive more efficient and exact algorithm by: a) ap-

plying the Schur complement; b) adopting an alter-

nated optimization approach; or c) or using the Wiberg

23 Notice that, in [2], Amberg et al. also introduced a hybrid
forward/inverse algorithm, coined CoLiNe. This algorithm is
a compromise between the previous two algorithms in terms
of both complexity and accuracy. Due to its rather ad-hoc
derivation, this algorithm was not considered in this paper.

method. Papandreou and Maragos [38] proposed an al-

gorithm that is equivalent to the solution obtained by

applying the Schur complement to the problem, as de-

scribed in Section 3.3.1. The same algorithm was rein-

troduced in [49] using a somehow ad-hoc derivation

(reminiscent of the Wiberg method) under the name

Fast-SIC. This algorithm has a computational cost per

iteration of O(nmF + n2F + n3). In this paper, follow-

ing our unified view on CGD algorithm, we refer to the

previous algorithm as the SSD Inverse Gauss-Newton

Schur algorithm. The alternated optimization approach

was used in [51] and [3] with complexity O(n2F + n3)

per iteration. We refer to it as the SSD Inverse Gauss-

Newton Alternated algorithm.

On the other hand, the forward version of the pre-

vious algorithm was first proposed by Martins et al. in

[28]24. In this case, the Jacobian with respect to ∆p

depends on the current value of the shape parameters

p through the warped image i[p] and also needs to be

recomputed at every iteration. Consequently, the com-

plexity if the algorithm is the same as in the naive in-

verse approach of Gross et al. In this paper, we refer

to this algorithm as the SSD Forward Gauss-Newton

algorithm. It is important to notice that Tzimiropoulos

and Pantic [49] derived a more efficient version of this

algorithm (O(nmF +n2F +n3)), coined Fast-Forward,

by applying the same derivation used to obtain their

Fast-SIC algorithm. They showed that in the forward

case their derivation removed the need to explicitly

solve for the appearance parameters. Their algorithm is

equivalent to the previous Project-Out Forward Gauss-

Newton.

Finally, Kossaifi et al. derived the SSD Inverse New-

ton Schur algorithm in [21]. This algorithm has a total
complexity per iteration of O(nmF +n2m+2n2F +n3)

and was shown to slightly underperform its equivalent

Gauss-Newton counterpart.

The remaining SSD algorithms derived in Section 3,

i.e.:

– SSD Inverse Wiberg

– SSD Forward Gauss-Newton Alternated

– SSD Forward Newton Schur

– SSD Forward Newton Alternated

– SSD Forward Wiberg

– SSD Asymmetric Gauss-Newton Schur

– SSD Asymmetric Gauss-Newton Alternated

– SSD Asymmetric Newton Schur

– SSD Asymmetric Newton Alternated

– SSD Asymmetric Wiberg

24 Note that Martins et al. used an additive update rule for
the shape parameters, p∗ = p+∆p, so strictly speaking they
derived an additive version of the algorithm i.e the Simulta-
neous Forward Additive (SFA) algorithm.
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(a) 0% (b) 2.5% (c) 5% (d) 7.5% (e) 10%

Fig. 3: Exemplar initializations obtained by varying the percentage of uniform noise added to the similarity

parameters. Note that, increasing the percentage of noise produces more challenging initialization.

– SSD Bidirectional Gauss-Newton Schur

– SSD Bidirectional Gauss-Newton Alternated

– SSD Bidirectional Newton Schur

– SSD Bidirectional Newton Alternated

– SSD Bidirectional Wiberg

have never been published before and are also a key

contribution of the presented work.

Notice that, the iterative solutions of all CGD al-

gorithms studied in this paper are given in Appendix

B.

5 Experiments

In this section, we analyze the performance of the CGD

algorithms derived in Section 3 on the specific problems

of non-rigid face alignment in-the-wild. Results for five

experiments are reported. The first experiment com-

pares the fitting accuracy and convergence properties

of all algorithms on the test set of the popular Labeled

Faces in-the-Wild (LFPW) [9] database. The second ex-

periment quantifies the importance of the two terms in

the Bayesian project-out cost function in relation to the

fitting accuracy obtained by Project-Out algorithms. In

the third experiment, we study the effect that varying

the value of the parameters α and β has on the perfor-

mance of Asymmetric algorithms. The fourth experi-

ment explores the effect of optimizing the cost functions

using reduced subsets of the total number of pixels and

quantifies the impact that this has on the accuracy and

computational efficiency of CGD algorithms. Finally, in

the fifth experiment, we report the performance of the

most accurate CGD algorithms on the test set of the

Helen [22] database and on the entire Annotated Faces

in-the-Wild (AFW) [56] database.

Throughout this section, we abbreviate CGD algo-

rithms using the following convention: CF TC OM( OS)

where: a) CF stands for Cost Function and can be ei-

ther SSD or PO depending on whether the algorithm

uses the Sum of Squared Differences or the Project Out

cost function; b) TC stands for Type of Composition

and can be For, Inv, Asy or Bid depending on whether

the algorithm uses Forward, Inverse, Asymmetric or

Bidirectional compositions; c) OM stands for Optimiza-

tion Method and can be GN, N or W depending on

whether the algorithm uses the Gauss-Newton, New-

ton or Wiberg optimization methods; and, finally, d) if

Gauss-Newton or Newton methods are used, the op-

tional field OS, which stands for Optimization Strat-

egy, can be Sch or Alt depending on whether the algo-

rithm solves for the parameters simultaneously using

the Schur complement or using Alternated optimiza-

tion. For example, following the previous convention

the Project Out Bidirectional Gauss-Newton Schur al-

gorithm is denoted by PO Bid GN Sch.

Landmark annotations for all databases are pro-

vided by the iBUG group25 [41, 42] and fitting accu-

racy is reported using the point-to-point error measure

normalized by the face size26 proposed in [56] over the

49 interior points of the iBug annotation scheme.

In all face alignment experiments, we use a single

AAM, trained using the ∼ 800 and ∼ 2000 training

images of the LFPW and Helen databases. Similar to

[50], we use a modified version of the Dense Scale In-

variant Feature Transform (DSIFT) [24, 16] to define

the appearance representation of the previous AAM. In

particular, we describe each pixel with a reduced SIFT

descriptor of length 8 using the public implementation

provided by the authors of [52]. All algorithms are im-

plemented in a coarse to fine manner using a Gaussian

pyramid with 2 levels (face images are normalized to a

face size26 of roughly 150 pixels at the top level). In all

experiments, we optimize over 7 shape parameters (4

similarity transform and 3 non-rigid shape parameters)

at the first pyramid level and over 16 shape parame-

ters (4 similarity transform and 12 non-rigid shape pa-

rameters) at the second one. The dimensionality of the

appearance models is kept to represent 75% of the to-

tal variance in both levels. This results in 225 and 280

25 http://ibug.doc.ic.ac.uk/resources/300-W/
26 The face size is computed as the mean of the height and
width of the bounding box containing a face.

http://ibug.doc.ic.ac.uk/resources/300-W/
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appearance parameters at the first and second pyra-

mid levels respectively. The previous choices were deter-

mined by testing on a small hold out set of the training

data.

In all experiments, algorithms are initialized by per-

turbing the similarity transform that perfectly aligns

the model’s mean shape (a frontal pose and neutral ex-

pression looking shape) with the ground truth shape of

each image. These transforms are perturbed by adding

uniformly distributed random noise to their scale, ro-

tation and translation parameters. Exemplar initializa-

tions obtained by this procedure for different amounts

of noise are shown in Figure 3. Notice that, we found

that initializing using 5% uniform noise is (statistically)

equivalent to initializing with the popular OpenCV [12]

implementation of the well-known Viola and Jones face

detector [53] on the test images of the LFPW database.

Unless stated otherwise: i) algorithms are initial-

ized with 5% uniform noise ii) test images are fitted

three times using different random initializations (the

same exact random initializations are used for all al-

gorithms); iii) algorithms are left to run for 40 itera-

tions (24 iterations at the first pyramid level and 16 at

the second); iv) results for Project-Out algorithms are

obtained using the Bayesian project-out cost function

defined by Equation 22; and v) results for Asymmetric

algorithms are reported for the special case of symmet-

ric composition i.e. α = β = 0.5 in Equation 30.

In order to showcase the broader applicability of

AAMs, we complete the previous performance analysis

by performing a sixth and last experiment on the prob-

lem of non-rigid car alignment in-the-wild. To this end,

we report the fitting accuracy of the best performing

CGD algorithms on the MIT StreetScene27 database.

Finally, in order to encourage open research and fa-

cilitate future comparisons with the results presented

in this section, we make the implementation of all algo-

rithms publicly available as part of the Menpo Project1

[1].

5.1 Comparison on LFPW

In this experiment, we report the fitting accuracy and

convergence properties of all CGD algorithms studied

in this paper. Results are reported on the ∼ 220 test

images of the LFPW database. In order to keep the

information easily readable and interpretable, we group

algorithms by cost function (i.e. SSD or Project-Out),

and optimization method (i.e. Gauss-Newton, Newton

or Wiberg).

27 http://cbcl.mit.edu/software-datasets/

streetscenes

Results for this experiment are reported in Figures

5, 6, 7, 8, 9 and 10. These figures have all the same

structure and are composed of four figures and a table.

Figures 5a, 6a, 7a, 8a, 9a and 10a report the Cumulative

Error Distribution (CED), i.e the proportion of images

vs normalized point-to-point error for each of the algo-

rithms’ groups. Tables 5e, 6e, 7e, 8e, 9e, and 10e sum-

marize and complete the information on the previous

CEDs by stating the proportion of images fitted with a

normalized point-to-point error smaller than 0.02, 0.03

and 0.04; and by stating the mean, std and median of

the final normalized point-to-point error. The aim of

the previous figures and tables is to help us compare

the final fitting accuracy obtained by each algorithm.

On the other hand, Figures 5b, 6b, 7b, 8b, 9b and 10b

report the mean normalized point-to-point error at each

iteration while Figures 5c, 5d, 6c, 6d, 7c, 7d, 8c, 8d, 9c,

9d and 10c, 10d report the mean normalized cost at

each iteration28. The aim of these figures is to help us

compare the convergence properties of every algorithm.

5.1.1 SSD Gauss-Newton algorithms

Results for SSD Gauss-Newton algorithms are reported

in Figure 5. We can observe that Inverse, Asymmet-

ric and Bidirectional algorithms obtain a similar per-

formance and significantly outperform Forward algo-

rithms in terms of fitting accuracy, Figure 5a and Table

5e. In absolute terms, Bidirectional algorithms slightly

outperform Inverse and Asymmetric algorithms. On

the other hand, the difference in performance between

the Simultaneous Schur and Alternated optimizations

strategies are minimal for all algorithms and they were

found to have no statistical significance.

Looking at Figures 5b, 5c and 5d there seems to be

a clear (and obviously expected) correlation between

the normalized point-to-point error and the normalized

value of the cost function at each iteration. In terms

of convergence, it can be seen that Forward algorithms

converge slower than Inverse, Asymmetric and Bidirec-

tional. Bidirectional algorithms converge slightly faster

than Inverse algorithms and these slightly faster than

Asymmetric algorithms. In this case, the Simultaneous

Schur optimization strategy seems to converge slightly

faster than the Alternated one for all SSD Gauss-Newton

algorithms.

5.1.2 SSD Newton algorithms

Results for SSD Newton algorithms are reported on

Figure 6. In this case, we can observe that the fitting

28 These figures are produced by dividing the value of the
cost function at each iteration by its initial value and averag-
ing for all images.

http://cbcl.mit.edu/software-datasets/streetscenes
http://cbcl.mit.edu/software-datasets/streetscenes
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performance of all algorithms decreases with respect to

their Gauss-Newton counterparts Figure 6a and Table

6e. This is most noticeable in the case of Forward algo-

rithms for which there is ∼ 20% drop in the proportion

of images fitted below 0.02, 0.03 and 0.04 with respect

to its Gauss-Newton equivalents. For these algorithms

there is also a significant increase in the mean and me-

dian of the normalized point-to-point error. Asymmet-

ric Newton algorithms also perform considerably worse,

between 5% and 10%, than their Gauss-Newton ver-

sions. The drop in performance is reduced for Inverse

and Bidirectional Newton algorithms for which accu-

racy is only reduced by around 3% with respect their

Gauss-Newton equivalent.

Within Newton algorithms, there are clear differ-

ences in terms of speed of convergence 6b, 6c and 6d.

Bidirectional algorithms are the fastest to converge fol-

lowed by Inverse and Asymmetric algorithms, in this

order, and lastly Forward algorithms. In this case, the

Simultaneous Schur optimization strategy seems to con-

verge again slightly faster than the Alternated one for

all algorithms but Bidirectional algorithms, for which

the Alternated strategy converges slightly faster. Over-

all, SSD Newton algorithms converge slower than SSD

Gauss-Newton algorithms.

5.1.3 SSD Wiberg algorithms

Results for SSD Wiberg algorithms are reported on Fig-

ure 7. Figure 7a and Table 7e and Figures 7b, 7c and

7d show that these results are (as one would expect)

virtually equivalent to those obtained by their Gauss-

Newton counterparts.

5.1.4 Project-Out Gauss-Newton algorithms

Results for Project-Out Gauss-Newton algorithms are

reported on Figure 8. We can observe that, there is sig-

nificant drop in terms of fitting accuracy for Inverse

and Bidirectional algorithms with respect to their SSD

versions, 8a and Table 8e. As expected, the Forward al-

gorithm achieves virtually the same results as its SSD

counterpart. The Asymmetric algorithm obtains simi-

lar accuracy to that of the best performing SSD algo-

rithms.

Looking at Figures 8b, 8c and 8d we can see that

Inverse and Bidirectional algorithms converge slightly

faster than the Asymmetric algorithm. However, the

Asymmetric algorithm ends up descending to a signifi-

cant lower value of the mean normalized cost which also

translates to a lower value for the final mean normal-

ized point-to-point error. Similar to SSD algorithms,

the Forward algorithm is the worst convergent algo-

rithm.

Finally notice that, in this case, there is virtually

no difference, in terms of both final fitting accuracy

and speed of convergence, between the Simultaneous

Schur and Alternated optimizations strategies used by

the Bidirectional algorithm.

5.1.5 Project-Out Newton algorithms

Results for Project-Out Newton algorithms are reported

on Figure 9. It can be clearly seen that Project-Out

Newton algorithms perform much worse than their Gauss-

Newton and SSD counterparts. The final fitting accu-

racy obtained by these algorithms is very poor com-

pared to the one obtained by the best SSD and Project-

Out Gauss-Newton algorithms, Figures 9a and Table

9e. In fact, by looking at Figures 9b, 9c and 9d only the

Forward and Asymmetric algorithms seem to be stable

at the second level of the Gaussian pyramid with In-

verse and Bidirectional algorithms completely diverg-

ing for some of the images as shown by the large mean

and std of their final normalized point-to-point errors.

5.1.6 Project-Out Wiberg algorithms

Results for the Project-Out Bidirectional Wiberg algo-

rithm are reported on Figure 9. As expected, the re-

sults are virtually identical to those of the obtained by

Project-Out Bidirectional Gauss-Newton algorithms.

5.2 Weighted Bayesian project-out

In this experiment, we quantify the importance of each

of the two terms in our Bayesian project-out cost func-

tion, Equation 22. To this end, we introduce the param-

eters, ρ ∈ [0, 1] and γ = 1− ρ, to weight up the relative

contribution of both terms:

ρ||i[p]− ā||2AD−1AT +
γ

σ2
||i[p]− ā||2Ā (125)

Setting ρ = 0, γ = 1 reduces the previous cost func-

tion to the original project-out loss proposed in [29];

completely disregarding the contribution of the prior

distribution over the appearance parameters i.e the Ma-

halanobis distance within the appearance subspace. On

the contrary, setting ρ = 1, γ = 0 reduces the cost

function to the first term; completely disregarding the

contribution of the project-out term i.e. the distance to

the appearance subspace. Finally setting ρ = γ = 0.5

leads to the standard Bayesian project-out cost func-

tion proposed in Section 3.1.2.
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(a) 100% (b) 50% (c) 25% (d) 12%

Fig. 4: Subset of pixels on the reference frame used to optimize the SSD and Project-Out cost functions for different

sampling rates.

In order to assess the impact that each term has on

the fitting accuracy obtained by the previous Project-

Out algorithm we repeat the experimental set up of

the first experiment and test all Project-Out Gauss-

Newton algorithms for different values of the param-

eters ρ = 1−γ. Notice that, in this case, we only report

the performance of Gauss-Newton algorithms because

they were shown to vastly outperform Newton algo-

rithms and to be virtually equivalent to Wiberg algo-

rithms in the first experiment.

Results for this experiment are reported by Figure

11. We can see that, regardless of the type of composi-

tion, a weighted combination of the two previous terms

always leads to a smaller mean normalized point-to-

point error compared to either term on its own. Note

that the final fitting accuracy obtained with the stan-

dard Bayesian project-out cost function is substantially

better than the one obtained by the original project-

out loss (this is specially noticeable for the Inverse and

Bidirectional algorithms); fully justifying the inclusion

of the first term, i.e the Mahalanobis distance within the

appearance subspace, into the cost function. Finally, in
this particular experiment, the final fitting accuracy of

all algorithms is maximized by setting ρ = 0.1, γ = 0.9,

further highlighting the importance of the first term in

the Bayesian formulation.

5.3 Optimal asymmetric composition

This experiment quantifies the effect that varying the

value of the parameters α ∈ [0, 1] and β = 1 − α in

Equation 30 has in the fitting accuracy obtained by the

Asymmetric algorithms. Note that for α = 1, β = 0

and α = 0, β = 1 these algorithms reduce to their

Forward and Inverse versions respectively. Recall that,

in previous experiments, we used the Symmetric case

α = β = 0.5 to generate the results reported for Asym-

metric algorithms. Again, we only report performance

for Gauss-Newton algorithms.

We again repeat the experimental set up described

in the first experiments and report the fitting accu-

racy obtained by the Project Out and SSD Asymmetric

Gauss-Newton algorithms for different values of the pa-

rameters α = 1−β. Results are shown in Figure 13. For

the BPO Asymmetric algorithm, the best results are

obtain by setting α = 0.4, β = 0.6, Figures 13a (top)

and 13b. These results slightly outperform those obtain

by the default Symmetric algorithm and this particular

configuration of the BPO Asymmetric algorithm is the

best performing one on the LFPW test dataset. For the

SSD Asymmetric Gauss-Newton algorithm the best re-

sults are obtained by setting α = 0.2, β = 0.8, Figures

13a (bottom) and 13c. In this case, the boost in perfor-

mance with respect to the default Symmetric algorithm

is significant and, with this particular configuration, the

SSD Asymmetric Gauss-Newton algorithm is the best

performing SSD algorithm on the LFPW test dataset,

outperforming Inverse and Bidirectional algorithms.

5.4 Sampling and Number of Iterations

In this experiment, we explore two different strategies
to reduce the running time of the previous CGD algo-

rithms.

The first one consists of optimizing the SSD and

Project-Out cost functions using only a subset of all

pixels in the reference frame. In AAMs the total num-

ber of pixels on the reference frame, F , is typically sev-

eral orders of magnitude bigger than the number of

shape, n, and appearance, m, components i.e. F >>

m >> n. Therefore, a significant reduction in the com-

plexity (and running time) of CGD algorithms can be

obtained by decreasing the number of pixels that are

used to optimize the previous cost functions. To this

end, we compare the accuracy obtained by using 100%,

50%, 25% and 12% of the total number of pixels on the

reference frame. Note that, pixels are (approximately)

evenly sampled across the reference frame in all cases,

Figure 4.

The second strategy consists of simply reducing the

number of iterations that each algorithm is run. Based

on the figures used to assess the convergence properties
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of CGD algorithms in previous experiments, we com-

pare the accuracy obtained by running the algorithms

for 40 (24 + 16) and 20 (12 + 8) iterations.

Note that, in order to further highlight the advan-

tages and disadvantages of using the previous strategies

we report the fitting accuracy obtained by initializing

the algorithms using different amounts of uniform noise.

Once more we repeat the experimental set up of

the first experiment and report the fitting accuracy ob-

tained by the Project Out and SSD Asymmetric Gauss-

Newton algorithms. Results for this experiment are shown

in Figure 12. It can be seen that reducing the number of

pixels up to 25% while maintaining the original number

of iterations to 40 (24 + 16) has little impact on the fit-

ting accuracy achieved by both algorithms while reduc-

ing them to 12% has a clear negative impact, Figures

12a and 12b. Also, performance seems to be consistent

along the amount of noise. In terms of run time, Table

12c, reducing the number of pixels to 50%, 25% and

12% offers speed ups of ∼ 2.0x, ∼ 2.9x and ∼ 3.7x for

the BPO algorithm and of ∼ 1.8x, ∼ 2.6x and ∼ 2.8x

for the SSD algorithm respectively.

On the other hand, reducing the number of itera-

tions from 40 (24 + 16) to 20 (12 + 8) has no nega-

tive impact in performance for levels of noise smaller

than 2% but has a noticeable negative impact for levels

of noise bigger than 5%. Notice that remarkable speed

ups, Table 12f, can be obtain for both algorithms by

combining the previous two strategies at the expenses

of small but noticeable decreases in fitting accuracy.

5.5 Comparison on Helen and AFW

In order to facilitate comparisons with recent prior work

on AAMs [49, 3, 21] and with other state-of-the-art

approaches in face alignment [55, 4], in this experi-

ment, we report the fitting accuracy of the SSD and

Project-Out Asymmetric Gauss-Newton algorithms on

the widely used test set of the Helen database and on

the entire AFW database. Furthermore we compare the

performance of the previous two algorithms with the

one obtained by the recently proposed Gauss-Newton

Deformable Part Models (GN-DPMs) proposed by Tz-

imiropoulos and Pantic in [50]; which was shown to

achieve state-of-the-art results in the problem of face

alignment in-the-wild.

For both our algorithms, we report two different

types of results: i) sampling rate of 25% and 20 (12+8)

iterations; and ii) sampling rate of 50% and 40 (24+16)

iterations, . For GN-DPMs we use the authors public

implementation to generate the results. In this case, we

report, again, two different types of results by letting

the algorithm run for 20 and 40 iterations.

Result for this experiment are shown in Figure 14.

Looking at Figure 14a we can see that both, SSD and

Project-Out Asymmetric Gauss-Newton algorithms, ob-

tain similar fitting accuracy on the Helen test dataset.

Note that, in all cases, their accuracy is comparable to

the one achieved by GN-DPMs for normalized point-

to-point errors < 0.2 and significantly better for < 0.3,

< 0.4. As expected, the best results for both our al-

gorithms are obtained using 50% of the total amount

of pixels and 40 (24 + 16) iterations. However, the re-

sults obtained by using only 25% of the total amount of

pixels and 20 (12 + 8) iterations are comparable to the

previous ones; specially for the Project-Out Asymmetric

Gauss-Newton. In general, these results are consistent

with the ones obtained on the LFPW test dataset, Ex-

periments 5.1 and 5.3.

On the other hand, the performance of both algo-

rithms drops significantly on the AFW database, Fig-

ure 14b . In this case, GN-DPMs achieves slightly bet-

ter results than the SSD and Project-Out Asymmet-

ric Gauss-Newton algorithms for normalized point-to-

point errors < 0.2 and slightly worst for < 0.3, < 0.4.

Again, both our algorithms obtain better results by

using 50% sampling rate and 40 (24 + 16) iterations

and the difference in accuracy with respect to the ver-

sions using 25% sampling rate and 20 (12 + 8) itera-

tions slightly widens when compared to the results ob-

tained on the Helen test dataset. This drop in perfor-

mance is consistent with other recent works on AAMs

[50, 30, 3, 31] and it is attributed to large difference in

terms of shape and appearance statistics between the

images of the AFW dataset and the ones of the training

sets of the LFPW and Helen datasets where the AAM

model was trained on.

Exemplar results for this experiment are shown in

Figures 16 and 17.

5.6 Comparison on MIT StreetScene

In this final experiment, we present results for a differ-

ent type of object: cars. To this end, we use the first

view of the MIT StreetScene27 dataset containing a

wide variety of frontal car images obtained in the wild.

We use 10-fold cross-validation on the ∼ 500 images of

the previous dataset to train and test our algorithms.

We report results for the two versions of the SSD Asym-

metric Gauss-Newton and the Project-Out Asymmetric

Gauss-Newton algorithms used in Experiment 5.5.

Result for this experiment are shown in Figure 15.

We can observe that all algorithms obtain similar per-

formance and that they vastly improve upon the origi-

nal initialization.
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Exemplar results for this experiment are shown in

Figure 18.

5.7 Analysis

Given the results reported by the previous six experi-

ments we conclude that:

1. Overall, Gauss-Newton and Wiberg algorithms vastly

outperform Newton algorithms for fitting AAMs.

Experiment 5.1 clearly shows that the former al-

gorithms provide significantly higher levels of fit-

ting accuracy at considerably lower computational

complexities and run times. These findings are con-

sistent with existent literature in the related field of

parametric image alignment [29] and also, to certain

extend, with prior work on Newton algorithms for

AAM fitting [21]. We attribute the bad performance

of Newton algorithms to the difficulty of accurately

computing a (noiseless) estimate of the full Hessian

matrix using finite differences.

2. Gauss-Newton and Wiberg algorithms are virtually

equivalent in performance. The results in Experi-

ment 5.1 show that the difference in accuracy be-

tween both types of algorithms is minimal and the

small differences in their respective solutions are, in

practice, insignificant.

3. Our Bayesian project-out formulation leads to sig-

nificant improvements in fitting accuracy without

adding extra computational cost. Experiment 5.2

shows that a weighted combination of the two terms

forming Bayesian project-out loss always outper-

forms the classic project out formulation.

4. The Asymmetric composition proposed in this work

leads to CGD algorithms that are more accurate

and that converge faster. In particular, the SSD

and Project-Out Asymmetric Gauss-Newton algo-

rithms are shown to achieve significantly better per-

formance than their Forward and Inverse counter-

parts in Experiments 5.1 and 5.3.

5. Finally, a significant reduction in the computational

complexity and runtime of CDG algorithms can be

obtained by limiting the number of pixels considered

during optimization of the loss function and by ad-

justing the number of iterations that the algorithms

are run for, Experiment 5.4.

6 Conclusion

In this paper we have thoroughly studied the problem

of fitting AAMs using CGD algorithms. We have pre-

sented a unified and complete framework for these al-

gorithms and classified them with respect to three of

their main characteristics: i) cost function; ii) type of

composition; and iii) optimization method.

Furthermore, we have extended the previous frame-

work by:

– Proposing a novel Bayesian cost function for fitting

AAMs that can be interpreted as a more general

formulation of the well-known project-out loss. We

have assumed a probabilistic model for appearance

generation with both Gaussian noise and a Gaussian

prior over a latent appearance space. Marginalizing

out the latent appearance space, we have derived a

novel cost function that only depends on shape pa-

rameters and that can be interpreted as a valid and

more general probabilistic formulation of the well-

known project-out cost function [29]. In the experi-

ments, we have showed that our Bayesian formula-

tion considerably outperforms the original project-

out cost function.

– Proposing asymmetric and bidirectional composi-

tions for CGD algorithms. We have shown the con-

nection between Gauss-Newton Asymmetric algo-

rithms and ESM algorithms and experimentally proved

that these two novel types of composition lead to

better convergent and more robust CGD algorithm

for fitting AAMs.

– Providing new valuable insights into existent CGD

algorithms by reinterpreting them as direct appli-

cations of the Schur complement and the Wiberg

method.

Finally, in terms of future work, we plan to:

– Adapt existent Supervised Descent (SD) algorithms

for face alignment [55, 48] to AAMs and investigate

their relationship with the CGD algorithms studied

in this paper.

– Investigate if our Bayesian cost function and the

proposed asymmetric and bidirectional compositions

can also be successfully applied to similar genera-

tive parametric models, such as the Gauss-Newton

Parts-Based Deformable Model (GN-DPM) proposed

in [50].
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SSD Asy GN Sch 0.640 0.891 0.929 0.023 0.021 0.018
SSD Asy GN Alt 0.635 0.882 0.924 0.023 0.021 0.018
SSD Bid GN Sch 0.674 0.917 0.946 0.022 0.019 0.017
SSD Bid GN Alt 0.680 0.924 0.951 0.021 0.019 0.017

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all SSD Gauss-Newton algorithms initialized with 5%
uniform noise.

Fig. 5: Results showing the fitting accuracy and convergence properties of the SSD Gauss-Newton algorithms on

the LFPW test dataset initialized with 5% uniform noise.
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(a) Cumulative error distribution on the LFPW test dataset
for all SSD Newton algorithms initialized with 5% uniform
noise.

(b) Mean normalized point-to-point error vs number of iter-
ations on the LFPW test dataset for all SSD Newton algo-
rithms initialized with 5% uniform noise.

(c) Mean normalized cost vs number of first scale iterations
on the LFPW test dataset for all SSD Newton algorithms
initialized with 5% uniform noise.

(d) Mean normalized cost vs number of second scale itera-
tions on the LFPW test dataset for all SSD Newton algo-
rithms initialized with 5% uniform noise.

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median

Initialization 0.000 0.004 0.055 0.080 0.028 0.078
SSD For N Sch 0.249 0.479 0.603 0.044 0.033 0.031
SSD For N Alt 0.244 0.476 0.600 0.044 0.033 0.032
SSD Inv N Sch 0.626 0.876 0.909 0.024 0.022 0.018
SSD Inv N Alt 0.613 0.876 0.909 0.024 0.022 0.018
SSD Asy N Sch 0.562 0.812 0.863 0.030 0.076 0.019
SSD Asy N Alt 0.557 0.808 0.862 0.027 0.025 0.019
SSD Bid N Sch 0.641 0.897 0.932 0.023 0.022 0.018
SSD Bid N Alt 0.600 0.903 0.939 0.023 0.021 0.018

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error Mean, Std and Median for all SSD Newton algorithms initialized with 5% uniform
noise.

Fig. 6: Results showing the fitting accuracy and convergence properties of the SSD Newton algorithms on the

LFPW test dataset initialized with 5% uniform noise.
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(a) CED on the LFPW test dataset for all SSD Wiberg al-
gorithms initialized with 5% uniform noise.

(b) Mean normalized point-to-point error vs number of iter-
ations on the LFPW test dataset for all SSD Wiberg algo-
rithms initialized with 5% uniform noise.

(c) Mean normalized cost vs number of first scale iterations
on the LFPW test dataset for all SSD Wiberg algorithms
initialized with 5% uniform noise.

(d) Mean normalized cost vs number of second scale itera-
tions on the LFPW test dataset for all SSD Wiberg algo-
rithms initialized with 5% uniform noise.

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median

Initialization 0.000 0.004 0.055 0.080 0.028 0.078
SSD For W 0.457 0.707 0.777 0.33 0.030 0.021
SSD Inv W 0.689 0.903 0.939 0.22 0.019 0.017
SSD Asy W 0.635 0.887 0.926 0.23 0.021 0.018
SSD Bid W 0.686 0.911 0.942 0.22 0.019 0.017

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all SSD Wiberg algorithms initialized with 5% uniform
noise.

Fig. 7: Results showing the fitting accuracy and convergence properties of the SSD Wiberg algorithms on the

LFPW test dataset.



A Unified Framework for Compositional Fitting of Active Appearance Models 27

(a) CED graph on the LFPW test dataset for all Project-Out
Gauss-Newton algorithms initialized with 5% uniform noise.

(b) Mean normalized point-to-point error vs number of iter-
ations on the LFPW test dataset for all Project-Out Gauss-
Newton algorithms initialized with 5% uniform noise.

(c) Mean normalized cost vs number of first scale iterations
on the LFPW test dataset for all Project-Out Gauss-Newton
algorithms initialized with 5% uniform noise.

(d) Mean normalized cost vs number of second scale itera-
tions on the LFPW test dataset for all Project-Out Gauss-
Newton algorithms initialized with 5% uniform noise.

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median

Initialization 0.000 0.004 0.055 0.080 0.028 0.078
PO For GN Sch 0.470 0.729 0.799 0.031 0.029 0.021
PO For GN Alt 0.458 0.719 0.780 0.035 0.044 0.021
PO Inv GN Sch 0.637 0.891 0.938 0.023 0.021 0.018
PO Bid GN Sch 0.528 0.802 0.862 0.030 0.039 0.020
PO Bid GN Alt 0.528 0.805 0.865 0.030 0.040 0.019

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all Project-Out Gauss-Newton algorithms initialized with
5% uniform noise.

Fig. 8: Results showing the fitting accuracy and convergence properties of the Project-Out Gauss-Newton algo-

rithms on the LFPW test dataset.
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(a) CED graph on the LFPW test dataset for all Project-Out
Newton algorithms initialized with 5% uniform noise.

(b) Mean normalized point-to-point error vs number of iter-
ations on the LFPW test dataset for all Project-Out Newton
algorithms initialized with 5% uniform noise.

(c) Mean normalized cost vs number of first scale iterations
on the LFPW test dataset for all Project-Out Newton algo-
rithms initialized with 5% uniform noise.

(d) Mean normalized cost vs number of second scale itera-
tions on the LFPW test dataset for all Project-Out Newton
algorithms initialized with 5% uniform noise.

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median

Initialization 0.000 0.004 0.055 0.080 0.028 0.078
PO For N Sch 0.280 0.503 0.626 0.043 0.033 0.030
PO Inv N Alt 0.265 0.516 0.586 11.929 179.525 0.029
PO Asy N Sch 0.494 0.744 0.826 0.030 0.028 0.020
PO Bid N Sch 0.314 0.536 0.649 0.287 1.347 0.027
PO Bid N Alt 0.329 0.570 0.649 0.280 1.465 0.026

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all Project-Out Newton algorithms initialized with 5%
uniform noise.

Fig. 9: Results showing the fitting accuracy and convergence properties of the Project-Out Newton algorithms on

the LFPW test dataset.
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(a) Cumulative Error Distribution graph on the LFPW test
dataset for all Project-Out Wiberg algorithms initialized with
5% uniform noise.

(b) Mean normalized point-to-point error vs number of iter-
ations graph on the LFPW test dataset for all Project-Out
Wiberg algorithms initialized with 5% uniform noise.

(c) Mean normalized cost vs number of first scale iterations
graph on the LFPW test dataset for all Project-Out Wiberg
algorithms initialized with 5% uniform noise.

(d) Mean normalized cost vs number of second scale itera-
tions graph on the LFPW test dataset for all Project-Out
Wiberg algorithms initialized with 5% uniform noise.

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median

Initialization 0.000 0.004 0.055 0.080 0.028 0.078
PO Bid W Sch 0.524 0.801 0.862 0.030 0.039 0.020

(e) Table showing the proportion of images fitted with a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all Project-Out Wiberg algorithms initialized with 5%
uniform noise.

Fig. 10: Results showing the fitting accuracy and convergence properties of the Project-Out Wiberg algorithms on

the LFPW test dataset.
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(a) Proportion of images with normalized point-to-point errors smaller than 0.02, 0.03 and 0.04 for the Project-Out and SSD
Asymmetric Gauss-Newton algorithms for different values of ρ = 1 − γ and initialized with 5% noise. Colors encode overall
fitting accuracy, from highest to lowest: red, orange, yellow, green, blue and purple.

(b) CED on the LFPW test dataset for Project-Out Forward
Gauss-Newton algorithms for different values of ρ = 1 − γ
and initialized with 5% noise.

(c) CED on the LFPW test dataset for Project-Out Inverse
Gauss-Newton algorithms for different values of ρ = 1 − γ
and initialized with 5% noise.

(d) CED on the LFPW test dataset for Project-Out Asym-
metric Gauss-Newton algorithms for different values of ρ =
1− γ and initialized with 5% noise.

(e) CED on the LFPW test dataset for Project-Out Bidi-
rectional Gauss-Newton algorithms for different values of
ρ = 1− γ and initialized with 5% noise.

Fig. 11: Results quantifying the effect of varying the value of the parameters ρ = 1−γ in Project-Out Gauss-Newton

algorithms.
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(a) Proportion of images with normalized point-to-point er-
rors smaller than 0.02, 0.03 and 0.04 for the SSD Asymmetric
Gauss-Newton algorithm using different sampling rates, 40
(24 + 16) iterations, and initialized with different amounts of
noise. Colors encode overall fitting accuracy, from highest to
lowest: red, orange, yellow, green, blue and purple.

(b) Proportion of images with normalized point-to-point er-
rors smaller than 0.02, 0.03 and 0.04 for the Project-Out
Asymmetric Gauss-Newton algorithm using different sam-
pling rates, 40 (24+16) iterations, and initialized with differ-
ent amounts of noise. Colors encode overall fitting accuracy,
from highest to lowest: red, orange, yellow, green, blue and
purple.

100% < 50% < 25% < 12%

SSD Asy GN Sch ∼ 1680 ms ∼ 930 ms ∼ 650 ms ∼ 590 ms
PO Asy GN ∼ 1400 ms ∼ 680 ms ∼ 480 ms ∼ 380 ms

(c) Table showing run time of each algorithm for different amounts of sampling and 40 (24 + 16) iterations.

(d) Proportion of images with normalized point-to-point er-
rors smaller than 0.02, 0.03 and 0.04 for the Project-Out
Asymmetric Gauss-Newton algorithm using different sam-
pling rates, 20 (12+8) iterations, and initialized with different
amounts of noise. Colors encode overall fitting accuracy, from
highest to lowest: red, orange, yellow, green, blue and purple.

(e) Proportion of images with normalized point-to-point er-
rors smaller than 0.02, 0.03 and 0.04 for the SSD Asymmetric
Gauss-Newton algorithm using different sampling rates, 20
(12 + 8) iterations, and initialized with different amounts of
noise. Colors encode overall fitting accuracy, from highest to
lowest: red, orange, yellow, green, blue and purple.

100% < 50% < 25% < 12%

SSD Asy GN Sch ∼ 892 ms ∼ 519 ms ∼ 369 ms ∼ 331 ms
PO Asy GN ∼ 707 ms ∼ 365 ms ∼ 235 ms ∼ 211 ms

(f) Table showing run time of each algorithm for different amounts of sampling and 20 (12 + 8) iterations.

Fig. 12: Results assessing the effectiveness of sampling for the best performing Project-Out and SSD algorithms

on the LFPW database.
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(a) Proportion of images with normalized point-to-point errors smaller than 0.02, 0.03 and 0.04 for the Project-Out and SSD
Asymmetric Gauss-Newton algorithms for different values of α = 1 − β and initialized with 5% noise. Colors encode overall
fitting accuracy, from highest to lowest: red, orange, yellow, green, blue and purple.

(b) CED on the LFPW test dataset for Project-Out Asym-
metric Gauss-Newton algorithm for different values of α =
1− β and initialized with 5% noise.

(c) CED on the LFPW test dataset for the the SSD Asym-
metric Gauss-Newton algorithm for different values of α =
1− β and initialized with 5% noise.

Fig. 13: Results quantifying the effect of varying the value of the parameters α = 1−β in Asymmetric algorithms.

(a) CED on the Helen test dataset for the Project-Out and
SSD Asymmetric Gauss-Newton algorithms initialized with
5% noise.

(b) CED on the AFW database for the Project-Out and
SSD Asymmetric Gauss-Newton algorithm initialized with
5% noise.

Fig. 14: Results showing the fitting accuracy of the SSD and Project-Out Asymmetric Gauss-Newton algorithms

on the Helen and AFW databases.
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Fig. 15: CED on the first view of the MIT StreetScene test dataset for the Project-Out and SSD Asymmetric

Gauss-Newton algorithms initialized with 5% noise.

(a) Exemplar results from the Helen test dataset obtained by the Project-Out Asymmetric Gauss-Newton Schur algorithm.

(b) Exemplar results from the Helen test dataset obtained by the SSD Asymmetric Gauss-Newton Schur algorithm.

Fig. 16: Exemplar results from the Helen test dataset.

(a) Exemplar results from the Helen test dataset obtained by the Project-Out Asymmetric Gauss-Newton Schur algorithm.

(b) Exemplar results from the AFW dataset obtained by the SSD Asymmetric Gauss-Newton Schur algorithm.

Fig. 17: Exemplar results from the AFW dataset.
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(a) Exemplar results from the MIT StreetScene test dataset obtained by the Project-Out Asymmetric Gauss-Newton Schur
algorithm.

(b) Exemplar results from the MIT StreetScene test dataset obtained by the SSD Asymmetric Gauss-Newton Schur algorithm.

Fig. 18: Exemplar results from the MIT StreetScene test dataset.
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35. Muñoz E, Márquez-Neila P, Baumela L (2014) Ra-

tionalizing efficient compositional image alignment.

International Journal of Computer Vision (IJCV)

36. Nicolaou MA, Zafeiriou S, Pantic P (2014) A uni-

fied framework for probabilistic component analy-

sis. In: Machine Learning and Knowledge Discovery

in Databases (ECML PKDD)

37. Okatani T, Deguchi K (2006) On the wiberg al-

gorithm for matrix factorization in the presence of

missing components. International Journal of Com-

puter Vision (IJCV)

38. Papandreou G, Maragos P (2008) Adaptive and

constrained algorithms for inverse compositional

active appearance model fitting. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition

(CVPR)

39. Prince S, Li P, Fu Y, Mohammed U, Elder JH

(2012) Probabilistic models for inference about

identity. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI)

40. Roweis S (1998) Em algorithms for pca and spca.

Advances in Neural Information Processing Sys-

tems (NIPS)

41. Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic

M (2013) 300 faces in-the-wild challenge: The first

facial landmark localization challenge. In: IEEE In-

ternational Conference on Computer Vision Work-

shop (ICCV-W), pp 397–403

42. Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic

M (2013) A semi-automatic methodology for fa-

cial landmark annotation. In: IEEE Conference on

Computer Vision and Pattern Recognition Work-

shops (CVPRW), pp 896–903

43. Saragih J, Göcke R (2009) Learning aam fitting

through simulation. Pattern Recognition

44. Sauer P, Cootes T, Taylor C (2011) Accurate re-

gression procedures for active appearance models.

In: British Machine Vision Conference (BMVC)

45. Strelow D (2012) General and nested wiberg min-

imization: L2 and maximum likelihood. In: Euro-

pean Conference on Computer Vision (ECCV)

46. Tipping ME, Bishop CM (1999) Probabilistic prin-

cipal component analysis. Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology)

47. Tresadern PA, Sauer P, Cootes TF (2010) Additive

update predictors in active appearance models. In:

British Machine Vision Conference (BMVC)

48. Tzimiropoulos G (2015) Project-out cascaded re-

gression with an application to face alignment. In:

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR)



36 Joan Alabort-i-Medina, Stefanos Zafeiriou

49. Tzimiropoulos G, Pantic M (2013) Optimization

problems for fast aam fitting in-the-wild. In:

IEEE International Conference on Computer Vi-

sion (ICCV)

50. Tzimiropoulos G, Pantic M (2014) Gauss-newton

deformable part models for face alignment in-the-

wild. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR)

51. Tzimiropoulos G, Alabort-i-Medina J, Zafeiriou S,

Pantic M (2012) Generic active appearance models

revisited. In: IEEE Asian Conference on Computer

Vision (ACCV)

52. Vedaldi A, Fulkerson B (2010) VLFeat: An open

and portable library of computer vision algorithms

53. Viola P, Jones M (2001) Rapid object detection

using a boosted cascade of simple features. In:

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR)

54. Woodbury MA (1950) Inverting Modified Matrices,

Princeton University

55. Xiong X, De la Torre F (2013) Supervised descent

method and its applications to face alignment. In:

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR)

56. Zhu X, Ramanan D (2012) Face detection, pose es-

timation, and landmark localization in the wild.

In: Conference on Computer Vision and Pattern

Recognition (CVPR)

A Terms in SSD Newton Hessians

In this section we define the individual terms of the Hes-
sian matrices used by the SSD Asymmetric and Bidirectional
Newton optimization algorithms derived in Section 3.3.2.

A.1 Asymmetric

The individual terms forming the Hessian matrix of the SSD
Asymmetric Newton algorithm defined by Equation 74 are
defined as follows:

∂2Da
∂2∆c

=
∂ −AT ra

∂∆c

= −AT ∂ra

∂∆c

= ATA︸ ︷︷ ︸
I

(126)

∂2Da
∂∆c∂∆p

=
∂ −AT ra

∂∆p

=
∂ −AT

∂∆p
ra −AT ∂ra

∂∆p

= −βJTAra −ATJt

(127)

where we have defined JA = [∇a1, · · · ,∇am]T ∂W
∂∆p

.

∂2Da
∂2∆p

=
∂JTt ra

∂∆p

=
∂JTt
∂∆p
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=
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T
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+∇t
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(128)

A.2 Bidirectional

The individual terms forming the Hessian matrix of the SSD
Bidirectional Newton algorithm defined by Equation 77 are
defined as follows:

∂2Db
∂2∆c

=
∂ −AT rb

∂∆c

= −AT ∂rb

∂∆c

= ATA︸ ︷︷ ︸
I

(129)

∂2Db
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=
∂ −AT rb

∂∆p

= −AT ∂rb

∂∆p

= −ATJi

(130)
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B Iterative solutions of all algorithms

In this section we report the iterative solutions of all CGD
algorithms studied in this paper. In order to keep the informa-
tion structured algorithms are grouped by their cost function.
Consequently, iterative solutions for all SSD and Project-Out
algorithms are stated in Tables 1 and 2.
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SSD algorithms
Iterative solutions

∆p ∆q ∆c

SSD For GN Sch [2, 49]
∆p = −Ĥ−1

i JTi Ār
∆c = A (r + Ji∆p)

Ĥi = JTi ĀJi

SSD For GN Alt
∆p = −H−1

i JTi (r−A∆c)
∆c = A (r + Ji∆p)

Hi = JTi Ji

SSD For N Sch
∆p = −

(
ĤN

i

)−1
JTi Ār

∆c = A (r + Ji∆p)
ĤN

i = ∂W
∆p

T∇2i∂W
∆p

r + Ĥi

SSD For N Alt
∆p = −

(
HN

i

)−1
JTi Ā (r−A∆c)

∆c = A (r + Ji∆p)
HN

i = ∂W
∆p

T∇2i∂W
∆p

r + Hi

SSD For W ∆p = −Ĥ−1
i JTi Ār ∆c = Ar

SSD Inv GN Sch [38, 49]
∆p = Ĥ−1

a JTa Ār
∆c = A (r− Ja∆p)

Ĥa = JTa ĀJa

SSD Inv GN Alt [51, 3]
∆p = H−1

a JTa (r−A∆c)
∆c = A (r− Ja∆p)

Ha = JTa Ja

SSD Inv N Sch
∆p =

(
ĤN

a

)−1
JTa Ār

∆c = A (r− Ja∆p)
ĤN

a = ∂W
∆p

T∇2a∂W
∆p

r + Ĥa

SSD Inv N Alt
∆p =

(
HN

a

)−1
JTa Ā (r−A∆c)

∆c = A (r− Ja∆p)
HN

a = ∂W
∆p

T∇2i∂W
∆p

r + Ha

SSD Inv W ∆p = Ĥ−1
a JTa Ār ∆c = Ar

SSD Asy GN Sch
∆p = −Ĥ−1

t JTt Ār
∆c = A (r + Jt∆p)

Ĥt = JTt ĀJt

SSD Asy GN Alt
∆p = −H−1

t JTt (r−A∆c)
∆c = A (r + Jt∆p)

Ht = JTt Jt

SSD Asy N Sch
∆p = −

(
ĤN

t

)−1
JTt Ār

∆c = A (r + Jt∆p)
ĤN

t = ∂W
∆p

T∇2t∂W
∆p

r + Ĥt

SSD Asy N Alt
∆p = −

(
HN

t

)−1
JTt Ā (r−A∆c)

∆c = A (r + Jt∆p)
HN

t = ∂W
∆p

T∇2t∂W
∆p

r + Ht

SSD Asy W ∆p = −Ĥ−1
t JTt Ār ∆c = Ar

SSD Bid GN Sch
∆p = −Ĥ−1

i JTi Ār1
∆q = Ȟ−1

a JTa Pr
∆c = Ar2

r1 = (r− Ja∆q)
Ȟa = JTa PJa r2 = (r + Ji∆p− Ja∆q)
P = Ā− ĀJiĤ

−1
i JTi Ā

SSD Bid GN Alt
∆p = −H−1

i JTi r3 ∆q = H−1
a JTa r4 ∆c = Ar2

r3 = (r−A∆c− Ja∆q) r4 = (r−A∆c + Ji∆p)

SSD Bid N Sch ∆p = −
(
ĤN

i

)−1
JTi Ār1

∆q =
(
ȞN

a

)−1
JTa PNr

∆c = Ar2ȞN
a = ∂W

∆p

T∇2t∂W
∆p

r + Ȟa

PN = Ā− ĀJi

(
ĤN

i

)−1
JTi Ā

SSD Bid N Alt ∆p = −
(
HN

i

)−1
JTi r3 ∆q =

(
HN

a

)−1
JTa r4 ∆c = Ar2

SSD Bid W ∆p = −Ĥ−1
i JTi Ār ∆q = Ȟ−1

a JTa Pr ∆c = Ar

Table 1: Iterative solutions of all SSD algorithms studied in this paper.
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Project-Out algorithms
Iterative solutions

∆p ∆q

PO For GN [2, 49]
∆p = −Ĥ−1

i JTi Ār

Ĥi = JTi ĀJi

PO For N
∆p = −

(
ĤN

i

)−1
JTi Ār

ĤN
i = ∂W

∂∆p

T∇2i ∂W
∂∆p

Ār + Ĥi

PO Inv GN [29]
∆p = Ĥ−1

a JTā Ār

Ĥā = JTā ĀJā

PO Inv N
∆p =

(
ĤN

ā

)−1
JTā Ār

ĤN
ā = ∂W

∆p

T∇2ā∂W
∆p

Ār + Ĥā

PO Asy GN
∆p = −Ĥ−1

t JTt Ār

Ĥt = JTt ĀJt

PO Asy N
∆p = −

(
ĤN

t

)−1
JTt Ār

ĤN
t = ∂W

∂∆p

T∇2t ∂W
∂∆p

Ār + Ĥt

PO Bid GN Sch ∆p = −Ĥ−1
i JTi Ā (r− Jā∆q)

∆q = Ȟ−1
ā JTi Pr

Ȟā = JTā PJā

P = Ā− ĀJiĤ
−1
i JTi Ā

PO Bid GN Alt ∆p = −Ĥ−1
i JTi Ā (r− Jā∆q) ∆q = Ĥ−1

ā JTā Ā (r + Ji∆p)

PO Bid N Sch ∆p = −
(
ĤN

i

)−1
JTi Ā (r− Jā∆q)

∆q =
(
ȞN

ā

)−1
JTā PNr

ȞN
ā = ∂W

∆p

T∇2ā∂W
∆p

Ār + Ȟā

PN = Ā− ĀJi

(
ĤN

i

)−1
JTi Ā

PO Bid N Alt ∆p = −
(
ĤN

i

)−1
JTi Ā (r− Jā∆q) ∆q =

(
ĤN

ā

)−1
JTā Ā (r + Ji∆p)

PO Bid W ∆p = −Ĥ−1
i JTi Ār ∆q = Ȟ−1

ā JTā Pr

Table 2: Iterative solutions of all Project-Out algorithms studied in this paper.
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