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Abstract

During the last few years, we have witnessed tremendous advances in the field of 2D

Deformable Models for the problem of landmark localization. These advances, which are

mainly reported on the task of face alignment, have created two major and opposing

families of methodologies. On the one hand, there are the generative Deformable Models

that utilize a Newton-type optimization. This family of techniques has attracted extensive

research effort during the last two decades, but has lately been criticized of achieving

inaccurate performance. On the other hand, there is the currently predominant family

of discriminative Deformable Models that treat the problem of landmark localization as

a regression problem. These techniques commonly employ cascaded linear regression and

have proved to be very accurate.

In this thesis, we argue that even though generative Deformable Models are less accur-

ate than discriminative, they are still very valuable for several tasks. In the first part of

the thesis, we propose two novel generative Deformable Models. In the second part of the

thesis, we show that the combination of generative and discriminative Deformable Models

achieves state-of-the-art results on the tasks of (i) landmark localization and (ii) semi-

supervised annotation of large visual data.





Contents

Contents

1 Introduction 1

1.1 Problem Scope and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Impact and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 The Menpo Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.2 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 17

2.1 Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Generative Deformable Models . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Discriminative Deformable Models . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Holistic vs. Part-Based Deformable Models . . . . . . . . . . . . . . . 21

2.2 Automatic Training of Deformable Models . . . . . . . . . . . . . . . . . . . . 22

3 Basic Definitions and Notation 25

3.1 Shape Representation and Model . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Appearance Representation and Model . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Holistic Appearance Representation . . . . . . . . . . . . . . . . . . . 27

3.2.3 Part-Based Appearance Representation . . . . . . . . . . . . . . . . . 29

3.2.4 Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Facial Databases and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



Contents

I Generative Deformable Models 35

4 Feature-based Lucas-Kanade and Active Appearance Models 37

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Edge Structure (ES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Image Gradient Orientation (IGO) . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Histograms of Oriented Gradients (HOG) . . . . . . . . . . . . . . . . 41

4.2.4 Scale-Invariant Feature Transform (SIFT) . . . . . . . . . . . . . . . . 42

4.2.5 Local Binary Patterns (LBP) . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 Gabor Magnitude and Angle . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.7 Features Function Computational Complexity . . . . . . . . . . . . . . 45

4.3 Inverse-Compositional Alignment Algorithm . . . . . . . . . . . . . . . . . . . 45

4.3.1 Lucas-Kanade Optimization . . . . . . . . . . . . . . . . . . . . . . . . 45

Forward-Additive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Forward-Compositional . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Inverse-Compositional . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Active Appearance Models Optimization . . . . . . . . . . . . . . . . . 48

Project-Out Inverse-Compositional . . . . . . . . . . . . . . . . . . . . 48

Simultaneous Inverse-Compositional . . . . . . . . . . . . . . . . . . . 49

Alternating Inverse-Compositional . . . . . . . . . . . . . . . . . . . . 50

4.4 Feature-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Warp Function Computational Complexity . . . . . . . . . . . . . . . 53

4.4.2 Optimization with Features from Warped Image . . . . . . . . . . . . 53

4.4.3 Optimization with Warping on Features Image . . . . . . . . . . . . . 54

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Face Alignment (Lucas-Kanade) . . . . . . . . . . . . . . . . . . . . . 55

Warping of features image vs Features from warped image . . . . . . . 56

Features Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.2 Face Fitting (Active Appearance Models) . . . . . . . . . . . . . . . . 57

Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Number of Appearance Components . . . . . . . . . . . . . . . . . . . 64

Neighborhood Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



Contents

Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Comparison with state-of-the-art Face Fitting Methods . . . . . . . . 66

4.5.4 Results Interpretation and Discussion . . . . . . . . . . . . . . . . . . 69

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Active Pictorial Structures 73

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Graphical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Deformation Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Gauss-Newton Optimization . . . . . . . . . . . . . . . . . . . . . . . . 82

Inverse-Compositional . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Derivation of Existing Methods . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Internal Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Comparison with State-of-the-Art Methods . . . . . . . . . . . . . . . 88

5.3.3 Results on Other Deformable Objects . . . . . . . . . . . . . . . . . . 91

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Combining Generative and Discriminative Models 95

6 Automatic Construction of Deformable Models 97

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Automatic Construction of a Generative AAM . . . . . . . . . . . . . 101

6.2.2 Robust Discriminative AAM . . . . . . . . . . . . . . . . . . . . . . . 105

Fitting Discriminative AAM . . . . . . . . . . . . . . . . . . . . . . . 105

Training Discriminative AAM . . . . . . . . . . . . . . . . . . . . . . . 106

Shapes Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Convergence of AAM Automatic Construction . . . . . . . . . . . . . 107

6.3.2 Comparison with Models Trained on Manual Annotations . . . . . . . 110

xi



Contents

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Adaptive Cascaded Regression 115

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Cascaded Regression Discriminative Model . . . . . . . . . . . . . . . 119

7.2.2 Gauss-Newton Generative Model . . . . . . . . . . . . . . . . . . . . . 120

7.2.3 Adaptive Cascaded Regression . . . . . . . . . . . . . . . . . . . . . . 122

Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Self Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Comparison with State-of-the-Art . . . . . . . . . . . . . . . . . . . . 126

300-W Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

LFPW Testset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

HELEN Testset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusion 137

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Appendices 141

A.1 Precision matrix form of GMRF . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.2 Proof 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.3 Proof 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Forward-Additive Optimization of Active Pictorial Structures . . . . . . . . . 144

List of Figures 147

List of Tables 152

Bibliography 153

xii



xiii



xiv



Chapter 1

Introduction

Contents

1.1 Problem Scope and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Impact and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 The Menpo Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Problem Scope and Challenges

Digital cameras exist everywhere around us and are the artificial “eyes” of the current and

future technological era. We find them embedded in most everyday smart electronic devices

(e.g., phones, tablets, laptops, TVs, cars, gaming consoles, etc.), installed in almost all major

urban streets and inside commercial stores for surveillance and service purposes, while, of

course, they are an essential part of modern robotics. This wealth of electronic “eyes” has

increased the need and effort to make computers to “recognize and understand what they see”

by inculcating them with the ability to learn, detect and recognize.

An important step towards this direction is to enable computers to accurately detect deform-

able objects under unconstrained conditions (commonly referred to as “in-the-wild”), i.e. im-

ages obtained in uncontrolled recording settings typically containing large variations in terms

of illumination, identity, pose, and containing occlusions. Deformable objects are articulated

objects that exhibit rigid shape variations and, in most cases, large appearance variations,
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1. Introduction

e.g. the human face, body, cars, etc. Note that the term “detection” does not refer to the

task of finding the bounding box of an object1. It refers to the task of localizing a set of

sparse landmark (fiducial) points that correspond to semantically meaningful parts of the ob-

ject. This problem is typically addressed using Deformable Models, which have emerged as

an important research field during the last few decades, existing at the intersection of Com-

puter Vision, Statistical Pattern Recognition and Machine Learning. The application of a

Deformable Model typically has two phases:

• Training : This step involves the training of a model that can describe a deformable

object, thus captures its shape and appearance variations. It requires the annotation of

visual data that contain the object with a set of landmark points that need to correspond

to semantically meaningful parts of the object.

• Fitting (or Matching): This procedure aims to fit the learned Deformable Model to a

new image by localizing the landmark points of the object. This is usually achieved

through an energy minimization procedure [117, 18, 124, 153, 8, 156, 9, 11, 10, 5] or,

more recently, by applying a cascade of learned rules [171, 128, 82, 14, 183, 152, 151].

Note that the optimization finds a local minimum, thus fitting is commonly initialized

with a bounding box that provides a sparse shape that is close to the optimum.

Deformable Models can be separated in two major families based on the characteristics of

their training and fitting:

1. Discriminative Models: The methodologies of this category commonly employ some

kind of regression in a cascaded manner in order to localize the landmarks’ coordin-

ates [171, 128, 82, 14, 183, 152, 151]. Thus, they learn average rules (descent directions)

from the training set that are readily applied on a test image. This reveals their biggest

advantage of having real-time fitting performance. Additionally, they have been proved

to be very robust to bad initializations that are far from the desired optimum. However,

these techniques are data hungry. Given that they learn a set of generic rules from the

training set, they tend to become more accurate by increasing the number of training

examples. This, in combination to the fact that their training procedure is computa-

tionally expensive due to their discriminative nature, makes the Deformable Models of

this category difficult to fine-tune.

1The problem of bounding box object detection is modeled differently. The dominant and most popular
trend is to learn features invariant to the object parts’ deformations, such as those learned by Deep Convolutional
Neural Networks. Hence, the parts and their deformations are not modeled [66, 76, 103, 129].

2



1.1. Problem Scope and Challenges

2. Generative Models: The methodologies of this family model the shape and appear-

ance of a deformable object in a probabilistic manner which results in the ability to

generate unseen instances of the object [117, 39, 18]. Specifically, they model the joint

distribution between observed data and some latent (hidden, unobserved) structure

(e.g., the structure of the parts of an observed object and their temporal dynamics).

Thanks to their generative nature, their training process is very fast and requires much

less training examples compared to discriminative Deformable Models. Their fitting

process usually involves minimizing a non-linear least squares energy function that is

commonly solved with iterative algorithms such as Gauss-Newton and Gradient Des-

cent [117, 18, 124, 153, 8, 156, 9, 11, 10, 5]. Thus, their optimization estimates image-

specific descent directions which makes them very accurate when initialized close to

the optimum. However, their fitting tends to be slow and requires many iterations to

converge.

During the last decade, we have witnessed tremendous developments in the field of

Deformable Models, mainly due to:

• The abundance of visual data, spread mostly through the Internet via web services such

as Google Images, Bing and Youtube. This has led to the development of huge databases

(such as PASCAL [55], LFW [98] and the series of ImageNet corpora [49]) consisting of

visual data captured under unconstrained realistic settings (in-the-wild).

• The development of powerful visual features that can describe objects in a robust manner

(e.g., Scale Invariant Feature Transforms (SIFT) [109], Histogram of Oriented Gradients

(HOG) [46], Local Binary Patterns (LBP) [120, 121, 122] and recently Deep Convolu-

tional Neural Networks (DCNNs) [144, 56], etc.).

• The incorporation of powerful, mainly discriminative, methodologies for classification

and regression, which led to the development of efficient visual object detection and

recognition algorithms [58, 171, 14, 82, 128].

However, even though the above research developments are significant, there still exist some

important disadvantages and challenges that need to be addressed:

• Due to their discriminative nature, most existing methodologies require collection of

many training data in order to build a powerful Deformable Model with good gener-

alization performance. This means that their training demands plenty of computing

3



1. Introduction

resources and time, which makes them inappropriate for re-training and fine-tuning us-

ing a common everyday-use device with limited processing power and memory.

• Although it is easy to gather large amounts of visual data, their semantic annotation

in terms of parts of deformable objects, their behaviors, their interactions, and outliers

still remains an expensive, tedious, labor intensive and prone to human errors procedure.

For example, as explained in [132], in the case of facial images’ annotation, a trained

annotator needs about 5 minutes to manually annotate from scratch an image with

68 landmark points (depending on the difficulty of the image). This means that the

annotation of 1000 images requires about 3.5 days of continuous work, 10000 images

require a bit more than a month of continuous work, etc. It is worth mentioning,

that due to fatigue a person cannot annotate correctly for more than 4-5 hours per day.

Furthermore, except for face, there hardly exists another object that has been annotated

with regards to parts.

• Due to the lack of a standardized way (benchmark) to compare methodologies and to

the limited existence of open-source code, the evaluation of newly proposed techniques

is inconsistent and, most of the times, unfair. Researchers employ different databases

and experimental protocols, which lead to unfair comparisons between existing methods.

Moreover, in the vast majority of cases, the released implementations have the form of

pre-compiled binaries accompanied with pre-trained models, which makes it impossible

to tweak and experiment with.

As explained above, the work presented in this Ph.D. thesis aims to solve the problem of

landmark localization by exploring generative and discriminative 2D Deformable Models. Nev-

ertheless, there has been significant research effort on directions that approach the problem

in different ways. Specifically, these are the most important current trends and the reasons

why they are not within the scope of this thesis:

• 3D facial shape estimation from monocular images is the main alternative to 2D De-

formable Models. The predominant lines of research include 3D Morphable Model

(3DMM) [26, 27, 30, 31, 32, 125] and Shape-from-Shading (SfS) [21, 54, 83, 141, 150].

3DMM is a generative statistical model of the 3D shape and texture of a deformable

object. The biggest advantage of 3DMMs is the fact that dense 3D shape modeling

provides a more natural and accurate representation of the human face that overpasses

the limitations and ambiguities of 2D sparse landmarks (e.g., the semantic meaning of

4



1.2. Objectives

the 2D landmarks around the jaw is ambiguous and inconsistent over the head pose

variation [132]). However, capturing 3D facial data is a tedious task that also requires

specialised acquisition devices that cannot operate under unconstrained conditions. As a

result, there only exist small databases with limited variance that capture a few hundred

faces under laboratory conditions [125, 26] and are not suitable neither for “in-the-wild”

applications, nor for training discriminative methodologies. These are the main reasons

why 3D Deformable Models are not within the scope of this thesis. Nevertheless, during

the last year, 3D Deformable Models have re-attracted increased interest thanks to the

development of the first powerful 3D models trained on thousands of subjects [32, 31],

as well as the organization of the first challenges on the task [75].

• Deep Learning, and more importantly, Convolutional Neural Networks (CNNs) have be-

come the most popular trend in Computer Vision and have significantly contributed in

improving the performance of various tasks such as image classification [94, 145, 146, 73],

generic object detection [66, 129], semantic segmentation [66, 108, 37, 70] and instance

segmentation [127, 72]. The progress witnessed over the last decade is highly related

to the spatial accuracy that CNNs were able to achieve over time, starting from boxes,

moving to coarse instance regions until reaching accurate pixel-level labelling. As a

result, it was not until recently that CNNs were able to perform tasks with accurate

spatial localization, such as body pose estimation [148, 178] and facial landmark loc-

alization [130, 144, 181, 151, 93, 70]. However, despite the fact that facial databases

include reasonably large numbers of “in-the-wild” annotated images for the generative

or discriminative methodologies of this thesis, they are not large enough in order to

train CNNs. As a matter of fact, LFPW [22] and HELEN [97], which are the largest

facial databases annotated with 2D landmark points, consist of 1035 and 2330 images,

respectively. This is orders of magnitude less than the size of ImageNet [49] (∼ 15M),

MegaFace [84] (1M), WIDER [177] (∼ 400k) or Microsoft COCO [105] (330k) that

are commonly used for other tasks. Finally, it is worth mentioning that the research

community has been actively attempting to increase the size of annotated data during

the last few months [180], which will benefit Deep Learning approaches and potentially

further improve face alignment accuracy.

1.2 Objectives

The aim of this Ph.D. thesis is to investigate ways to address the aforementioned challenges

by combining the main concepts and advantages of generative and discriminative Deformable

5



1. Introduction

Models. Specifically, this work has the following objectives:

• Objective 1: Develop generative Deformable Models that achieve accurate

performance without requiring a large amount of training data. Generative

Deformable Models have attracted extended research interest during the last two decades.

However, they have often been criticized [68, 159] for their inability to generalize well

to conditions beyond the ones exhibited in the training set and have been characterized

as inappropriate for fitting in-the-wild images. As a matter of fact, they have always

been regarded as ideal options to be used with data captured under controlled recording

scenarios and for building instance-specific models. One of the objectives of this thesis

is to develop generative Deformable Models that take advantage of recent advances in

component analysis and visual feature extraction in order to achieve accurate and robust

performance without the need of large annotated training datasets. An additional aim is

to compare the advantages and disadvantages between holistic and part-based appearance

representations. A holistic appearance representation takes into account the texture that

lies inside the whole surface of a deformable object. On the other hand, a part-based

appearance representation extracts local texture patches that are centered around the

landmark points.

• Objective 2: Propose methodologies for training Deformable Models with

limited or even no human supervision and explore solutions towards the online in-

cremental update of these models with new training samples (lifelong learning). This

refers to the task of constantly updating Deformable Models with images coming from

the web − in other words, the task of semi-automatic annotation of large collections of

images. During the past twenty years, there has been huge dispute about whether gen-

erative or discriminative approaches are more appropriate for learning visual data [80].

Even though, there is no solid theoretical proof that discriminative models are always

better than generative ones [80], and in many cases the latter produce state-of-the-art

results [9, 8, 156], the majority of researchers use discriminative models for learning from

annotated data. However, discriminative methods are of limited use under an unsuper-

vised setting. For the purpose of applications with minimal, or even no supervision,

the family of generative techniques is more suitable. Nevertheless, although the cost of

manual annotation is well understood, unsupervised learning of Deformable Models has

not received the proper attention and has been mainly restricted to controlled conditions

and in small non-representative sets [19, 88, 166].
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• Objective 3: Achieve state-of-the-art landmark localization performance by

combining the advantages of generative and discriminative Deformable Mod-

els. Discriminative (cascaded regression) Deformable Models have been shown to be

more accurate and robust than generative models under challenging initializations. On

the other had, generative models are very accurate when the initialization of their it-

erative optimization is reasonably close to the desired optimum solution. One of the

objectives of this thesis is to analyze the main characteristics of these two families and

create a unified model that benefits from their advantages and achieves state-of-the-art

performance by outperforming both.

• Objective 4: Release an open-source implementation of all proposed ap-

proaches that contributes towards the need to standarize benchmarking. One

of the goals of this Ph.D. thesis is to accompany all the proposed methodologies of Ob-

jectives 1, 2 and 3 with a stable, tested and well-documented open-source implementation

of both training and fitting. This can have a huge impact on the research community,

since it allows to tweak with the proposed models and easily compare with them.

It should be highlighted that the ideas and methodologies presented in this Ph.D. thesis

are directly applicable to various deformable objects. However, this work focuses entirely on

the object of human face. The main reasons behind that is that there are many large and

carefully annotated databases with facial images − much more than for any other kind of

deformable object. In fact, academic research lacks annotated databases for the vast majority

of deformable objects. Furthermore, the human face is a very representative example of an

object that exhibits large variations in deformations and appearance due to the plethora of

facial expressions, race, identity, gender, etc. In addition to that, it is an object of great

interest for many research fields with multiple applications. As a result, almost all research on

Deformable Models is applied and tested on the human face. Recent large-scale challenges on

facial alignment [133, 134, 132] are characteristic examples of the rapid progress being made

in the field.

1.3 Contributions

In this section, the main contributions of this Ph.D. thesis are described in more detail and

related to the aforementioned objectives of Sec. 1.2.

• Chapter 4. Feature-based Active Appearance Models. Lucas-Kanade (LK) [16,

7
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18] is a Gauss-Newton algorithm that has become the standard choice for performing

parametric image alignment with respect to the parameters of an affine transform. Vari-

ous alterations have been proposed depending on the characteristics of the performed

optimization. Additionally, Active Appearance Models (AAMs) [39, 117] is the most

popular generative Deformable Model that employs the LK algorithm during fitting.

Even though lots of improvements had been proposed for LK and AAMs, their perform-

ance was still poor compared to discriminative methodologies. In this chapter, we show

that the combination of the non-linear least-squares optimization of a generative holistic

Deformable Model with highly-descriptive, dense appearance features (e.g. HOG [46],

SIFT [109]) can achieve excellent performance for the task of face alignment. We show

that even though the employment of dense features increases the data dimensionality,

there is a small raise in the time complexity and a significant improvement in the align-

ment accuracy. The presented experiments also provide a comparison between various

features and prove that HOG and SIFT are the most powerful. We present very accurate

and robust experimental results for both face alignment and fitting with feature-based

LK and holistic AAMs, that prove their invariance to illumination and expression changes

and their generalization ability to unseen faces. Especially in the case of HOG and SIFT

holistic AAMs, we demonstrate results on in-the-wild databases that significantly out-

perform various powerful and efficient discriminative Deformable Models. This chapter

provides solution to Objective 1 in Sec. 1.2.

• Chapter 5. Active Pictorial Structures. In this chapter, we exploit the effect-

iveness of part-based generative Deformable Models and shed light towards using a

structure-based modeling for the shape and appearance of a deformable object. Spe-

cifically, we present a novel generative Deformable Model motivated by Pictorial Struc-

tures (PS) [61, 60, 7] and AAMs [117, 8, 9] for face alignment in-the-wild. Inspired by

the tree structure used in PS, the proposed Active Pictorial Structures (APS) models

the appearance of the object using multiple graph-based pairwise normal distributions

(Gaussian Markov Random Field) between the patches extracted from the regions around

adjacent landmarks. We show that this formulation is more accurate than using a single

multivariate distribution (Principal Component Analysis) as commonly done in the liter-

ature. APS employs a weighted inverse compositional Gauss-Newton optimization with

fixed Jacobian and Hessian that achieves close to real-time performance and state-of-

the-art results. Finally, APS has a spring-like graph-based deformation prior term that

makes them robust to bad initializations. We present extensive experiments on the task

of face alignment, showing that APS outperforms many generative and discriminative
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Deformable Models. Note that APS is the first weighted inverse compositional technique

that proves to be so accurate and efficient at the same time. Additionally, thanks to its

formulation, APS is suitable for articulated deformable objects with multiple degrees of

freedom, such as the human body, hand, etc. This chapter provides solution to Objective

1 of Sec. 1.2.

• Chapter 6. Automatic Construction of Deformable Models. As explained in

Sec. 1.1, in order to train Deformable Models with good generalization ability, a large

amount of carefully annotated data is required, which is a highly time consuming and

costly task. In this chapter, we propose the first method for automatic construction

of deformable models using images captured in-the-wild. The only requirements of the

method are a crude bounding box object detector and a priori knowledge of the object’s

shape (e.g. a point distribution model). The object detector can be as simple as the

Viola-Jones algorithm [162, 163, 164] (e.g. even the cheapest digital camera features a

robust face detector). The 2D shape model can be created by using only a few shape

examples with deformations. In our experiments on facial Deformable Models, we show

that the proposed automatically built model not only performs well, but also outperforms

discriminative models trained on carefully annotated data. Note that this chapter deals

with Objective 2 in Sec. 1.2 and the proposed methodology is the first one that shows

that an automatically constructed model can perform as well as methods trained directly

on annotated data.

• Chapter 7. Adaptive Cascaded Regression. As explained in Sec. 1.1, the two

predominant families of Deformable Models are: (i) discriminative models that employ

cascaded regression [171, 128, 82, 14, 183, 152], and (ii) generative models optimized

with the iterative Gauss-Newton algorithm [117, 124, 153, 8, 156, 9, 5]. Although both

of these approaches have been found to work well in practice, they each suffer from con-

vergence issues. Cascaded regression has no theoretical guarantee of convergence to a

local minimum and thus may fail to recover the fine details of the object. Gauss-Newton

optimization is not robust to initializations that are far from the optimal solution. In

this chapter, we propose to combine the best of these two worlds under a unified model,

which directly answers Objective 3 in Sec. 1.2. We show that by combining the descent

directions of cascaded regressors with the gradient descent directions from Gauss-Newton

optimization, we can achieve both robustness to challenging initializations and accuracy

with respect to fine details. Finally, we report state-of-the-art performance on the task

of facial alignment against all current state-of-the-art generative and discriminative De-
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formable Models. Our experiments are shown on the latest and most challenging face

alignment challenge and ACR is compared against methodologies that are trained on

more data and are used by industrial companies.

• Section 1.5. The Menpo Project. An open-source implementation is provided for

all the proposed methodologies within the Menpo Project [1, 2]. The Menpo Project

is a set of open source, cross-platform Python frameworks and associated tooling that

provide end-to-end solutions for 2D and 3D deformable modeling.This fulfills Objective

4 of Sec. 1.2.

1.4 Impact and Applications

Generic Deformable Models that perform efficiently and accurately for a large range of deform-

able objects have a tremendous impact on Human-Computer Interaction applications such as

multi-modal interaction, entertainment, digital arts, etc., and other fields like Robotics, se-

curity, etc. Furthermore, in the specific case of the human face, the task of facial landmark

localization is the cornerstone for various higher level applications such as facial expressions re-

cognition, human behavior analysis, face recognition/verification, lip reading and sign language

recognition.

However, as mentioned before, one of the reasons that the task of landmark localization has

not advanced even more within the fields of Computer and Robot Vision and has not expanded

to more deformable objects is the cost of annotations. This highlights the impact of developing

unsupervised techniques for learning Deformable Models which is immense, spanning a wide,

diverse range of applications, namely:

• Consumer-level robots, which would be able to learn ad-hoc detailed Deformable Models

of various objects.

• The design of next generation Human-Computer Interaction and Ubiquitous Computing

systems, assisting the rapidly growing area of first person vision systems.

• Paving the road for next generation Data Mining and Information Retrieval systems (i.e.,

analysis, indexing and retrieval of TV/Movie content in terms of actors appearance).

Additionally, the proposed ideas of this Ph.D. thesis, along with the provided open-source

implementations, have the potential to accelerate research in other disciplines, such as Biology
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and Psychology and other life sciences, by making the construction of complex detailed models

of animals and humans an affordable and easy - even for non computer scientists - task.

Finally, it should be noted that academic research suffers from lack of annotated data for

a large variety of objects. This fact highlights the proposed ideas for learning Deformable

Models with minimal annotation effort can be a decisive step towards annotating large scale

databases that can greatly boost the research progress.

1.5 The Menpo Project

An implementation of all the methodologies proposed in this Ph.D. thesis is provided within

the Menpo Project2,3 [1, 2]. The Menpo Project is a set of open-source BSD licensed Python

frameworks and associated tooling that provide end-to-end solutions for 2D and 3D Deformable

Modeling. It aims to enable researchers, practitioners and students to easily annotate new

data sources and to investigate existing datasets. Of most interest to the Computer Vision is

the fact that the Menpo Project contains completely open source implementations of a number

of state-of-the-art algorithms for face detection and deformable model building. Characteristic

examples of widely used state-of-the-art deformable model algorithms are Active Appearance

Models (AAMs) [117, 9, 8, 156, 153, 154, 3], Constrained Local Models [137, 15] and Supervised

Descent Method [171, 14].

There is still a noteworthy lack of high quality open source software in the field of De-

formable Modeling. Most existing packages are encrypted, compiled, non-maintained, partly

documented, badly structured or difficult to modify. This makes them unsuitable for adoption

in cutting edge scientific research. Consequently, research becomes even more difficult since

performing a fair comparison between existing methods is, in most cases, infeasible. For this

reason, the Menpo Project represents an important contribution towards open science in the

area. Additionally, it is important for Deformable Modeling to move beyond the established

area of facial annotations and to extend to a wide variety of deformable object classes. Menpo

can accelerate this progress by providing all of our tools completely free and permissively

licensed.

The core functionality provided by the Menpo Project revolves around a powerful and

flexible cross-platform framework written in Python. This framework has a number of sub-

2The Menpo Project is an open-source platform for all the stages of 2D and 3D Deformable Modeling.
Website: http://www.menpo.org/. Github: https://github.com/menpo/

3The Menpo Project is created and maintained by James Booth, Patrick Snape, Joan Alabort-i-Medina
and myself.
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Figure 1.1: The Menpo Project [1, 2] is an open-source platform that provides solutions for all the
stages of 2D and 3D Deformable Modeling (http://www.menpo.org/). It includes implementations for
all the methodologies proposed in this thesis.

packages, all of which rely on a core package called menpo. The specialized subpackages are all

based on top of menpo and provide state-of-the-art Computer Vision algorithms in a variety

of areas (menpofit, menpodetect, menpo3d, menpowidgets).

• menpo: This is a general purpose package that is designed from the ground up to make

importing, manipulating and visualizing image and mesh data as simple as possible. In

particular, we focus on data that has been annotated with a set of sparse landmarks.

This form of data is common within the fields of Machine Learning and Computer

Vision and is a prerequisite for constructing Deformable Models. All menpo core types

are landmarkable and visualizing these landmarks is a primary concern of the menpo

library. Since landmarks are first class citizens within menpo, it makes tasks like masking

images, cropping images within the bounds of a set of landmarks, spatially transforming

landmarks, extracting patches around landmarks and aligning images simple.

• menpofit: This package provides all the necessary tools for training and fitting a large

variety of state-of-the-art Deformable Models under a unified framework, including the

ones presented in this thesis. The provided methods are:

– Active Appearance Model (AAM) [117, 9, 8, 156, 153, 154, 3]

– Supervised Descent Method (SDM) [171, 14]

– Ensemble of Regression Trees (ERT) (powered by Dlib4 [85]) [82]

– Constrained Local Model (CLM) [137, 15]

– Active Shape Model (ASM) [42]

– Active Pictorial Structures (APS) [10]

4Dlib Machine Learning toolkit: http://dlib.net/
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– Lucas-Kanade (LK) and Active Template Model (ATM) [18, 16, 112, 9]

• menpodetect: This package contains methodologies for performing generic object de-

tection in terms of a bounding box. The provided techniques include Viola-Jones ob-

ject detector [162, 163, 164, 33], Support Vector Machines with HOG features [85, 86],

Pico [113] and Deformable Part Model (DPM) [58, 116].

• menpo3d: It provides an open source implementation of 3D Morphable Models in-the-

wild [26], as well as useful tools for importing, visualizing and transforming 3D data.

• menpowidgets: Package that includes widgets for “fancy” visualization of menpo objects.

It provides user friendly, aesthetically pleasing, interactive widgets for visualizing images,

shapes, landmarks, trained models and fitting results.

• menpocli: Command Line Interface (CLI) for the Menpo Project that allows to readily

use pre-trained state-of-the-art menpofit facial models.

1.6 Publications

In this section, we provide a list of publications that were authored during the course of this

Ph.D. thesis. We split these publications in two categories: (i) those that are related to the

contents of this thesis 1.6.1 and (ii) other publications that are not directly relevant 1.6.2.

1.6.1 Related Publications

The work presented in this thesis is directly related to the following publications:

• E. Antonakos, and S. Zafeiriou. “Automatic Construction of Deformable Models In-

The-Wild”, Proceedings of IEEE International Conference on Computer Vision and Pat-

tern Recognition (CVPR), Columbus, OH, USA, pp. 1813-1820, June 2014.

• E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “HOG Act-

ive Appearance Models”, Proceedings of IEEE International Conference on Image Pro-

cessing (ICIP), Paris, France, pp. 224-228, October 2014.

• J. Alabort-i-Medina5, E. Antonakos5, J. Booth5, P. Snape5, and S. Zafeiriou. “Menpo:

A Comprehensive Platform for Parametric Image Alignment and Visual Deformable

5Joint first authorship.
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Models”, Proceedings of ACM International Conference on Multimedia (ACMM), Or-

lando, FL, USA, pp. 679-682, November 2014.

• E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “Feature-

Based Lucas-Kanade and Active Appearance Models”, IEEE Transactions on Image

Processing (T-IP), 24(9): pp. 2617-2632, September 2015.

• E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. “Active Pictorial Structures”,

Proceedings of IEEE International Conference on Computer Vision and Pattern Recog-

nition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.

• E. Antonakos5, P. Snape5, G. Trigeorgis, and S. Zafeiriou. “Adaptive Cascaded Re-

gression”, Proceedings of IEEE International Conference on Image Processing (ICIP),

Phoenix, AZ, USA, Oral, September 2016.

1.6.2 Other Publications

This is a list of publications that are not directly relevant to the contents of this thesis, but,

in most cases, are based on the outcome of some parts of this thesis:

• L. Zafeiriou, E. Antonakos, S. Zafeiriou, and M. Pantic. “Joint Unsupervised Face

Alignment and Behaviour Analysis”, Proceedings of the 13th European Conference on

Computer Vision (ECCV), Zurich, Switzerland, pp. 167-183, September 2014.

• E. Antonakos5, A. Roussos5, and S. Zafeiriou5. “A Survey on Mouth Modeling and

Analysis for Sign Language Recognition”, Proceedings of IEEE International Conference

and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia,

pp. 1-7, Oral, May 2015.

• G. Chrysos, E. Antonakos, S. Zafeiriou, and P. Snape. “Offline Deformable Face

Tracking in Arbitrary Videos”, Proceedings of IEEE International Conference on Com-

puter Vision Workshops (ICCVW), 300 Videos in the Wild (300-VW): Facial Landmark

Tracking in-the-Wild Challenge & Workshop, Santiago, Chile, December 2015.

• L. Zafeiriou, E. Antonakos, and S. Zafeiriou. “Joint Unsupervised Deformable Spatio-

Temporal Alignment of Sequences”, Proceedings of IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016.

• G. Trigeorgis, P. Snape, M. Nicolaou, E. Antonakos, and S. Zafeiriou. “Mnemonic Des-

cent Method: A recurrent process applied for end-to-end face alignment”, Proceedings of
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IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, NV, USA, June 2016.

• Y. Zhou, E. Antonakos, J. Alabort-i-Medina, A. Roussos, and S. Zafeiriou. “Es-

timating Correspondences of Deformable Objects “In-the-wild””, Proceedings of IEEE

International Conference on Computer Vision and Pattern Recognition (CVPR), Las

Vegas, NV, USA, June 2016.

• C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “300

Faces In-The-Wild Challenge: Database and Results”, Image and Vision Computing

(IMAVIS), Special Issue on Facial Landmark Localisation “In-The-Wild”, vol. 47, pp.

3-18, 2016.

• G. Chrysos, E. Antonakos6, P. Snape6, A. Asthana, and S. Zafeiriou. “A Comprehens-

ive Performance Evaluation of Deformable Face Tracking “In-the-Wild””, International

Journal on Computer Vision (IJCV), 2017.

• R. Guler, G. Trigeorgis, E. Antonakos, P. Snape, and S. Zafeiriou. “DenseReg: Fully

Convolutional Dense Shape Regression In-the-Wild”, Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,

July 2017.

• J. Booth, E. Antonakos, S. Ploumpis, G. Trigeorgis, Y. Panagakis, and S. Zafeiriou.

“3D Face Morphable Models ”In-the-Wild””, Proceedings of IEEE International Con-

ference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July

2017.

1.7 Thesis Outline

Chapter 2 makes a review of the related literature on the main two topics of this Ph.D. thesis:

landmark localization with Deformable Models and their unsupervised training. Chapter 3

provides the basic definitions and notations that apply to all the topics of this thesis. Then,

the remainder of the thesis is split in two parts, each one consisting of two chapters. Part I

focuses on generative Deformable Models. Specifically, Chapter 4 presents feature-based hol-

istic Active Appearance Models and Chapter 5 proposes Active Pictorial Structures, a novel

part-based generative Deformable Model. Part II combines the main concepts of generat-

ive and discriminative Deformable Models with two applications: Chapter 6 shows how to

6Joint second authorship.
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automatically train deformable Models without the need of manually annotated data, whereas

Chapter 7 presents Adaptive Cascaded Regression which achieves state-of-the-art performance

on face alignment in-the-wild. Finally, Chapter 8 concludes the thesis.
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Chapter 2

Literature Review

Contents

2.1 Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Automatic Training of Deformable Models . . . . . . . . . . . . . . . . . . 22

2.1 Deformable Models

Deformable Models aim to solve the problem of generic object alignment in terms of localiz-

ation of landmark (fiducial) points that correspond to semantically meaningful parts of the

object. As explained in Sec. 1.2, although deformable models can be built for a variety of ob-

ject classes, the majority of ongoing research has focused on the task of facial alignment. This

is largely due to the plethora of existing databases with annotated facial images (e.g., Labeled

Face Parts in the Wild (LFPW) [22, 134], Annotated Faces in the Wild (AFW) [185, 134],

HELEN [97, 134], IBUG [133, 134], 300W [133, 134, 132], Annotated Facial Landmarks in the

Wild (AFLW) [89], MultiPIE [69, 134]), most of which have in-the-wild data. Recent large-

scale challenges on facial alignment [133, 134, 132] are characteristic examples of the rapid

progress being made in the field.

Currently, the most commonly-used and well-studied face alignment methods can be separ-

ated in two major families: (i) generative models that are iteratively optimized using Gauss-

Newton or Gradient Descent algorithms, and (ii) discriminative models that employ regression

in a cascaded manner. Deformable Models can also be split in two categories based on whether

they use (i) holistic or (ii) part-based appearance representation. In the next sections, we re-

view the related work of each category separately.
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2.1.1 Generative Deformable Models

The most dominant algorithm of this category is, by far, the Active Appearance Model (AAM),

which is descendant of Active Contour Model [81] and Active Shape Model [42]. An AAM

consists of parametric linear models of the shape and appearance of an object. The shape

model, usually referred to as Point Distribution Model (PDM), is built by applying Principal

Component Analysis (PCA) [168, 79] on a set of aligned shapes. Similarly, the appearance

model is built by applying PCA on a set of shape-free appearance instances, acquired by

warping the training images into a reference shape. The use of a parametric statistical model

gives rise to their labeling as generative models. The AAM objective function involves the

minimization of the appearance reconstruction error with respect to the shape parameters.

AAMs were initially proposed in [42, 38, 39], where the optimization was performed by a

single regression step between the current image reconstruction residual and an increment to

the shape parameters. However, the authors in [117, 18] showed how to linearize the AAM

objective function and optimize it using the Gauss-Newton algorithm, which was inspired by

their Lucas-Kanade (LK) algorithm [18, 16] for parametric image alignment with respect to

the parameters of an affine transform.

Following this, Gauss-Newton optimization has been the modern de facto method for op-

timizing AAMs. The most common choice for both LK and AAMs matching is the Inverse

Compositional (IC) image alignment algorithm [18, 117]. IC is a non-linear, Gauss-Newton

optimization technique that aims to minimize the `2 norm between the warped image texture

and a target texture. The target texture is the static template image in the case of affine

image alignment with LK and a model texture instance in the case of non-rigid face alignment

with AAMs. Since IC is a Gauss-Newton optimization technique, the registration result is

sensitive to initialization and to appearance variation (illumination, pose, identity, expression,

occlusion, etc.) exposed in the input and the target images [16]. Especially, in the case of

AAMs with intensity-based appearance representation and optimized with the Project-Out IC

algorithm [117], the model is incapable of adequately generalizing in order to be robust to out-

liers. This is the main reason why AAMs have been criticized of being able to perform well only

in person specific applications and not generic ones. Many approaches have been proposed to

deal with these issues and improve efficiency [18, 124, 6, 71, 17, 106, 119, 155, 3, 156, 154, 4, 5],

robustness [118, 157, 112, 51, 68, 25, 3, 4, 53, 5] and generalization [68, 158, 153]. Many of

the proposed methods introduce algorithmic improvements. The authors in [124] propose an

adaptation on the fitting matrix and the employment of prior information to constrain the

IC fitting process. In [16, 25] the `2 norm is replaced by a robust error function and the
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optimization aims to solve a re-weighted least squares problem with an iterative update of

the weights. Moreover, the method in [157] aligns two images by maximizing their gradient

correlation coefficient.

Most of the existing AAM works utilize an intensity-based appearance, which is not suitable

to create a generic appearance model and achieve accurate image alignment. However, the

work presented in this thesis proves that this limitation can be easily overpassed and highly

accurate results can be achieved. Specifically, in Chapter 4 we propose the employment of

highly-descriptive, dense appearance features for both LK and AAMs. Especially in the case

of HOG [46] and SIFT [109] AAMs, we demonstrate results on in-the-wild databases that sig-

nificantly outperform state-of-the-art methods in facial alignment, which are discriminatively

trained on much more data.

Feature-based image representation has gained extended attention for various Computer

Vision tasks such as image segmentation and object alignment/recognition. There is ongoing

research on the employment of features for both LK [106, 157, 112] and AAMs [153, 41, 63,

112, 64, 138, 87, 142, 143, 170, 47, 12, 53]. The authors in [106] use correspondences between

dense SIFT [109] descriptors for scene alignment and face recognition. Various appearance

representations are proposed in [138, 87] to improve the performance of AAMs. One of the

first attempts for feature-based AAMs is [41]. The authors use novel features based on the

orientations of gradients to represent edge structure within a regression framework. Similar

features are employed in [153] to create a robust similarity optimization criterion. In [142],

the intensities appearance model is replaced by a mixture of grayscale intensities, hue channel

and edge magnitude.

Recently, more sophisticated multi-dimensional features are adopted for AAM fitting. The

work in [112] proposes to apply the IC optimization algorithm in the Fourier domain using

the Gabor responses for LK and AAMs. This is different than the framework proposed in this

thesis, since in our approach the optimization is carried out in the spatial domain. In [143],

a new appearance representation is introduced for AAMs by combining Gabor wavelet and

Local Binary Pattern (LBP) descriptor. The work in [63] is the closest to the proposed

framework in this thesis (Chapter 4). The authors employ Gabor magnitude features summed

over either orientations or scales or both to build an appearance model. However, even though

the optimization is based on the IC technique and carried out in the spatial domain, features

are extracted at each iteration from the warped image. Finally, similarly to [63], the authors

in [64] model the characteristic functions of Gabor magnitude and phase by using log-normal

and Gaussian density functions respectively and utilize the mean of the characteristics over
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orientations and scales. Very recently, the authors of [53] proposed to replace the linear shape

and appearance models used in traditional AAM for deep shape and appearance models based

on restricted Boltzmann machines (RBM).

2.1.2 Discriminative Deformable Models

The methodologies of this category aim to learn a regression function that regresses from

the face’s appearance (e.g., commonly handcrafted features [109, 46]) to the target output

variables (either the landmark coordinates or the parameters of a statistical shape model

(PDM)). Although the history behind using linear regression in order to tackle the problem

of face alignment spans back many years [39], the research community had turned towards

alternative approaches due to the lack of sufficient data for training accurate regression func-

tions. Nevertheless, over the last few years regression-based techniques have prevailed in

the field thanks to the wealth of readily available annotated data and powerful handcraf-

ted features [109, 46]. It has been recently shown [171, 173] that a single regression step

is not sufficient for accurate generic alignment. On the contrary, a cascade of regression

functions is more beneficial and is in fact employed by all recent discriminative methodolo-

gies [50, 35, 175, 176, 172, 36, 82, 128, 14, 152, 183, 101, 151] which have proved to be highly

efficient and to generalize well.

The most important work in the area of discriminative Deformable Models, which can be

applied to a big variety of problems that involve non-linear least squares problems, is that of

Supervised Descent Method (SDM) [171, 173, 172]. SDM was the first work that presented

cascaded regression as a general learning framework for optimizing non-linear objective func-

tions by learning a set of rules from training data. In particular, the regressors at each cascade

of SDM are linear and learn average descent directions in the space of the objective function.

Note that in the original SDM formulation [171], even though the learnt descent directions are

chained in a cascade, they are only related between them by the variance remaining from the

previous cascade. Therefore, the initial cascade levels are prone to large descent steps which

may not generalize well. This was addressed in [173] by clustering the descent directions into

cohesive groups during training. At test time, a cluster is selected that represents the correct

descent direction. For example, for face alignment this requires an initial estimate of the shape

and the descent directions are clustered according to the head pose.

Many different discriminative Deformable Models have emerged, since the first proposal

of SDM. They can be approximately separated into two categories based on the type of the

employed regression function. The first category includes methodologies that employ a linear
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regression [171, 173, 172, 14, 152, 183]. These methods usually employ hand-crafted features,

such as HOG [46] and SIFT [109]. The second category, which has proved to be more efficient

than the first one, includes methods that achieve regression via boosting of weak learners

such as random ferns [36, 35] or random forests [82, 128]. These techniques tend to utilize

data-driven features that are optimized directly by the regressor [35, 50, 82]. Furthermore,

the authors in [14] have proposed an incremental algorithm which allows to parallelize the

training of the cascade levels. A method to combine multiple landmark hypotheses using

Structured Support Vector Machines was proposed in [174]. In [101], the authors substitute

linear regressors by ensembles of linear and Gaussian processes regression trees. Finally, the

authors in [130] and [144] learn a mapping from the initial bounding box acquired by the face

detector to the landmarks’ locations using Kernel Ridge Regression and Deep Convolutional

Neural Network (DCNN), respectively.

2.1.3 Holistic vs. Part-Based Deformable Models

Until recently, all research efforts had mainly focused on developing Deformable Models with

holistic appearance representation [38, 39, 117, 9, 3, 8, 68, 153, 154]. This means that the

whole texture information inside the object’s shape is taken into account and usually warped

into a canonical space using a non-linear warping function (e.g., Piecewise Affine Warp [18, 16],

Thin-Plate Splines [29]).

Nevertheless, mainly due to the high complexity when using a holistic appearance repres-

entation, most recent existing methods started employing a part-based one. This means that

a local patch is extracted from the neighborhood around each landmark. All the discrimin-

ative Deformable Models mentioned in Sec. 2.1.2 belong to this category, whereas the first

part-based AAM was proposed in [156]. Additionally, among the most important part-based

methodologies is the generative model of Pictorial Structures (PS) [61, 60, 7], its discriminat-

ive descendant Deformable Part Model (DPM) [58, 185] and their extensions like Deformable

Structures [187]. PS learns a patch expert for each part and models the shape of the object

using spring-like connections between parts based on a tree structure. Thus, a different dis-

tribution is assumed for each pair of parts connected with an edge, as opposed to the PCA

shape model of an AAM that assumes a single multivariate normal distribution for all parts.

The optimization aims to find a tree-based shape configuration for which the patch experts

have a minimum cost and is performed using a dynamic programming algorithm based on the

distance transform [59, 57].

Among the first part-based Deformable Models is Active Shape Model (ASM), initially
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proposed in [42] and later re-utilized in [137]. The methodology in [42] fits ASM with an

iterative search procedure that approximated local texture responses with isotropic Gaussian

estimators. The authors in [45] proposed Constrained Local Model (CLM), one of the most

important existing Deformable Models. CLM is natural extension of ASM, which employs a

combined statistical model to generate local response maps. A probabilistic interpretation of

CLM is derived in [137] which utilizes non-parametric response maps. This is further extended

with shape priors in [135] and [23]. Moreover, the authors of [97] use several independent PCA

priors to model the shape. The authors in [13] fit the CLM using a robust cascaded regression

approach. The authors in [114, 115] use the efficient Regularized Particle Filters (RPF) during

fitting. Finally, the work in [20] proposed to learn the local patch experts using Continuous

Conditional Neural Fields.

2.2 Automatic Training of Deformable Models

Herein, we present the prior work on the automatic construction of Deformable Models, which

is the focus of Chapter 6. Due to the fact that manual annotation is a rather costly, labor-

intensive and prune to human mistakes procedure, unsupervised and semi-supervised learning

of models for the tasks of alignment, landmark localization, tracking and recognition has

attracted considerable attention [88, 78, 77, 107, 161, 149, 44, 19, 40, 126, 165, 62, 96, 74,

99, 184, 166]. In Chapter 6, we propose a method to automatically construct Deformable

Models for object alignment and the most related works are [88, 161, 19, 40, 126]. The related

family of techniques, known as image congealing [107, 99, 74, 96], uses implicit models to

align a set of images as a whole, which means that both performing alignment to a new image

and constructing a model is not straightforward. Our methodology differs from these works

because we employ an explicit texture model which is learned through the process.

The two most closely related works to the proposed method are the automatic construc-

tion of AAMs in [19] and the so-called RASL (Robust Alignment by Sparse and Low-rank

Decomposition) methodology in [126] for person-specific face alignment. There are two main

differences between our framework and [19]. (1) We use a predefined statistical shape model

instead of trying to find both the shape and appearance models. We believe that with the

current available optimization techniques, it is extremely difficult to simultaneously optimize

for both the texture and shape parameters. (2) We employ the robust component analysis

of [158] for the appearance which deals with outliers. Thus, even though our method is similar

in concept to [19], these two differences make the problem feasible to solve. In particular, the

methodology in [19] fails to create a generic model even in controlled recording conditions,
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due to extremely high dimensionality of the parameters to be found and to the sensitivity

of the subspace method to outliers. This was probably one of the reasons why the authors

demonstrate very limited and only person-specific experiments. Furthermore, our methodo-

logy bypasses some of the limitations of [126], which requires the presence of only one low-rank

subspace, hence it has been shown to work only for the case of congealing images of a single

person. Finally, we argue that in order for an automatically constructed AAM methodology

to be robust to both within-class and out-of-class outliers1, which cannot be avoided in totally

unsupervised settings, statistical component analysis techniques should be employed [19].

1Within-class outliers refer to outliers present in the image of an object such as occlusion. Out-of-class
outliers refer to images of irrelevant objects or to background.
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Basic Definitions and Notation
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In this thesis, we denote vectors by small bold letters, matrices by capital bold letters,

functions by capital calligraphic letters and scalars by small or capital regular-font letters.

3.1 Shape Representation and Model

In the problem of generic deformable object alignment (or landmark localization), the shape

of an object consists of a set of n sparse landmark (fiducial) points that are located on se-

mantically meaningful parts of the object. Assume that we have an h × w image I with c

number of channels. Let us denote the coordinates of a landmark point within the Cartesian

space of the image I as

`i = [xi, yi]
T , ∀i = 1, . . . , n (3.1)

where xi ∈ [1, w] and yi ∈ [1, h]. The sparse shape instance of the object is given by the 2n×1

vector

s =
[
`T1 , `

T
2 , . . . , `

T
n

]T
= [x1, y1, x2, y2, . . . , xn, yn]T (3.2)

Note that the number of landmarks used to annotate the human face in most existing databases

is n = 68.

Given a set of N such training shape samples {s1, . . . , sN}, a parametric statistical model

of the object’s shape variance can be constructed with the following steps:
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(a) Original shapes (b) Aligned shapes and mean shape

Figure 3.1: Examples of Generalized Procrustes Alignment on the shapes of LFPW trainset. The
figure on the left shows the original shapes which expose large differences in terms of rotation, scale
and translation due to the differences on the images resolutions and sizes. The figure on the right
demonstrates the result of the alignment along with the mean shape.

1. Align the set of training shapes with respect to the global similarity transform (i.e., scale,

in-plane rotation and translation) using Generalized Procrustes Analysis [67]. Figure 3.1

shows an example of the result of such an alignment.

2. Apply PCA [79, 168] on the aligned shapes. This involves first centering the aligned

shapes by subtracting the mean shape s̄ and then computing the basis of eigenvectors

Us ∈ R2n×N−1.

3. The returned shape subspace is further augmented with four eigenvectors that control

the global similarity transform of the object’s shape, thus the PCA subspace now consists

of N + 3 components. Please refer to [18] for further details about orthonormalizing the

similarity eigenvectors with the PCA basis.

By keeping the first ns eigenvectors, the resulting linear shape model has the form

{s̄,Us} (3.3)

where Us ∈ R2n×ns is the orthonormal basis and s̄ ∈ R2n is the mean shape vector. This

linear shape model, which is also referred to as Point Distribution Model (PDM) [42, 39], can

be used to generate new shape instances using the function S : Rns −→ R2n as

sp = S(p) ≡ s̄ + Usp (3.4)
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where

p = [p1, p2, . . . , pns ]
T (3.5)

is the ns×1 vector of shape parameters that control the linear combination of the eigenvectors.

Figure 3.2 shows some exemplar shape instances generated using the first five principal com-

ponents. The figure varies the parameter that corresponds to each component using the values{
−3
√
λi,−3

2

√
λi,

3
2

√
λi, 3
√
λi
}
, ∀i = 1, . . . , 5 where λi denotes the corresponding eigenvalue.

3.2 Appearance Representation and Model

As explained in Sec. 2.1, Deformable Models can be split in two categories based on whether

they utilize (i) holistic or (ii) part-based appearance representation. Figure 3.3 shows such an

example. Additionally, all Deformable Models employ a feature-based image representation.

3.2.1 Feature Extraction

Features are computed by applying a feature extraction function that attempts to describe

distinctive and important image characteristics (e.g., SIFT [109], HOG [46]). Given an input

image I with size H ×W , the feature extraction function F(I) is defined as

F : RH×W −→ RH
′×W ′×D (3.6)

where H ′ ×W ′ is the size of the output feature-based image and D is the number of chan-

nels. Note that feature functions can be separated in two categories: (i) densely-sampled and

(ii) sparsely-sampled. Densely-sampled features extract a feature vector per image pixel, thus

H ′ = H and W ′ = W . On the other hand, sparsely-sampled features extract feature vectors

from downsampled image locations, thus H ′ < H and W ′ < W .

By denoting the input image in vectorial form t with size HW × 1, the feature extraction

function is redefined as

F : RHW −→ Rm (3.7)

which returns a feature-vector of length m = H ′W ′D.

3.2.2 Holistic Appearance Representation

A holistic appearance representation aims to warp all the texture information within a shape

instance to a reference shape (canonical space). In general, a warp function maps the points

within a source shape to their corresponding coordinates in a target shape. In the Deformable
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(a) p1 = −3
√
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Figure 3.2: Exemplar instances of a statistical shape model (PDM) trained on the shapes of LFPW
trainset. Each row shows the deformations covered by the first five principal components, where λi is
the eigenvalue that corresponds to the i-th eigenvector.
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(a) Original image annotated
with a set of n sparse landmarks.

(b) Holistic appearance repres-
entation using Piecewise Affine
Warp.

(c) Part-based appearance rep-
resentation by extracting patches
centered around the landmarks.

Figure 3.3: Example of holistic and part-based appearance representation based on a sparse shape.

Models literature, the warp function is commonly referred to as motion model and denoted

as W(p). Its role is to extrapolate the position of all the pixels inside the convex hull of the

reference shape to a particular shape instance s (generated using the shape parameters p as

shown in Eq. 3.4) based on their relative position with respect to the sparse landmarks (for

which direct correspondences are always known).

As also discussed and proved in Chapter 4, it is more beneficial to warp the extracted

features rather than extracting features on the warped image. Thus, given an input image I

with size H ×W and its vectorized form t, we can define a holistic feature-based appearance

vector as

f = tF (W(p)) with tF = F(t) (3.8)

where the feature extraction is based on Eq. 3.7.

In this thesis, we employ the Piecewise Affine Warp (PWA) [43, 117], which performs the

mapping based on the barycentric coordinates of the corresponding triangles between the two

shapes that are extracted using Delaunay Triangulation [100]. An example of such an appear-

ance representation is shown in Fig. 3.3b. Other warping methods could also be employed,

such as Thin Plate Splines (TPS) [43, 124].

3.2.3 Part-Based Appearance Representation

The scientific community has lately turned towards part-based appearance representation,

i.e., extracting appearance patches centered around the landmark coordinates. Although this

depends on the object class and application, in general, the part-based representation has
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proved to be more efficient than the holistic as the warp function is replaced by a simple

sampling function and it is also more natural for articulated rigid objects (e.g., body pose,

hand, etc.). Let us denote the vectorized form of an h × w image patch that corresponds to

the image location `i = [xi, yi]
T as the hw × 1 vector

t`i = [I(z1), I(z2), . . . , I(zhw)]T , {zj}hwj=1 ∈ Ω`i (3.9)

where Ω`i is a set of discrete neighboring pixel locations zj = [xj , yj ]
T within a rectangular

region centered at location `i and hw is the image patch vector’s length. By using the feature

extraction function of Eq. 3.7, the procedure of extracting a feature-based vector from a patch

centered at a given image location can be denoted as

F(t`i) ≡ F
(

[I(z1), I(z2), . . . , I(zhw)]T
)
, {zj}hwj=1 ∈ Ω`i (3.10)

Consequently, given a shape instance of the form of Eq. 3.2, the corresponding part-based

appearance vector f is an mn × 1 vector that consists of the concatenation of the vectorized

feature-based image patches that correspond to the n landmarks of the shape instance, i.e.

f(s) =
[
F(t`1)T,F(t`2)T, . . . ,F(t`n)T

]T
(3.11)

where s is given by Eq. 3.2.

3.2.4 Appearance Model

Given a set of N appearance vector samples {f1, . . . , fN} that are extracted using either Eq. 3.8

or Eq. 3.11, we can apply PCA to obtain a parametric statistical linear appearance model. By

keeping the first na principal components, we end up with

{ā,Ua} (3.12)

where Ua ∈ Rm×na is the orthonormal basis and ā ∈ Rm is the mean appearance vector. This

model can be used to generate new appearance instances using the function A : Rna −→ Rm

as

ac = A(c) ≡ ā + Uac (3.13)

where

c = [c1, c2, . . . , cna ]T (3.14)

is the na × 1 vector of appearance parameters that control the linear combination of the

eigenvectors.
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Figures 3.5 and 3.6 show some exemplar appearance instances generated using the first five

principal components of a holistic and a part-based appearance model, respectively. Note that

both models are trained on grayscale intensities, in order to make the variance visualization

more comprehensive. The figures vary the parameter that corresponds to each component

using the values
{
−3
√
λi,−3

2

√
λi,

3
2

√
λi, 3
√
λi
}
, ∀i = 1, . . . , 5 where λi denotes the corres-

ponding eigenvalue.

3.3 Facial Databases and Evaluation

As explained in Chapter 1, this thesis focuses on the deformable object of human face. Specific-

ally, we utilize all the commonly-used in-the-wild databases that are annotated by Sagonas et

al. [134, 133, 132] using the standard 68-point annotation mark-up proposed in the CMU

MultiPIE database [69]. The employed in-the-wild databases, which contain images down-

loaded from the web that are captured under totally unconstrained conditions and exhibit

large variations in pose, identity, illumination, expressions, occlusion and resolution, include:

• Labeled Face Parts in the Wild (LFPW) [22] (811 training images, 224 testing images)

• Annotated Faces in the Wild (AFW) [185] (337 images)

• HELEN [97] (2000 training images, 330 testing images)

• IBUG [133, 134] (135 images)

• 300W [133, 134, 132] (600 images)

Note that we do not consider the original annotations of LFPW (29 points) or HELEN (194

points), because recent works [183, 181, 128] have shown that these databases have become

saturated for the original annotations. Figure 3.4 shows some examples from the employed

in-the-wild databases.

The fitting process is commonly initialized by computing the face’s bounding box using a face

detector and then estimating the global similarity transform that fits the mean shape within the

bounding box boundaries. Note that this initial similarity transform only involves a translation

and scaling component and not any in-plane rotation. The accuracy of a landmark localization

result is measured by the point-to-point RMS error between the fitted shape and the ground-

truth annotations, as proposed in [185]. Denoting sf = [xf1 , y
f
1 , x

f
2 , y

f
2 , . . . , x

f
n, y

f
n]T and sg =
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[xg1, y
g
1 , x

g
2, y

g
2 , . . . , x

g
n, y

g
n]T as the fitted shape and the ground-truth shape, respectively, then

the error between them is expressed as

RMSE =

∑n
i=1

√
(xfi − x

g
i )

2 + (yfi − y
g
i )2

cn
(3.15)

where c is a normalization constant. The interocular distance and the face size, defined as

c =
(max {xgi }n1 −min {xgi }n1 + max {ygi }n1 −min {ygi }n1 )

2
(3.16)

are popular normalization choices. These errors are presented in the form of Cumulative Error

Distribution (CED) and/or statistical measures.

(a) LFPW trainset (b) LFPW testset (c) HELEN trainset (d) HELEN testset

(e) AFW (f) IBUG (g) 300W Indoor (h) 300W Outdoor

Figure 3.4: Exemplar images from the employed in-the-wild databases.
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Figure 3.5: Exemplar instances of a holistic statistical appearance model trained on the images of
LFPW trainset. Each row shows the variations covered by the first five principal components, where
λi is the eigenvalue that corresponds to the i-th eigenvector.
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Figure 3.6: Exemplar instances of a part-based statistical appearance model trained on the images of
LFPW trainset. Each row shows the variations covered by the first five principal components, where
λi is the eigenvalue that corresponds to the i-th eigenvector.
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Feature-based Lucas-Kanade and
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4.1 Motivation

As explained in Sec. 2.1, the Lucas-Kanade (LK) algorithm [111, 18] is the most important

method for the problem of aligning a given image with a template image. The method’s aim is

to find the parameter values of a parametric motion model (commonly an affine transform) that

minimize the discrepancies between the two images. Active Appearance Models (AAMs) [39]

are among the most popular models for the task of face fitting. They are generative Deformable

Models of shape and appearance variation. Among the most efficient techniques to optimize

AAMs is Gauss-Newton, which recovers the parametric description of a face instance. Gauss-

Newton optimization for AAMs is similar to the LK algorithm, with the difference that the

registration is obtained between the input image and a parametric appearance model instead

of a static template.
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The most common choice for both LK and AAMs fitting is the Inverse Compositional (IC)

image alignment algorithm [18, 117]. IC is a non-linear, Gauss-Newton optimization technique

that aims to minimize the `2 norm between the warped image texture and a target texture.

The target texture is the static template image in the case of LK and a model texture instance

in the case of AAMs.

Since IC is a Gauss-Newton method, the registration result is sensitive to initialization

and to large appearance variations in terms of illumination, expressions, occlusion, identity,

etc. exposed in the input and the target images [16]. Especially, in the case of intensities-

based AAMs with the Project-Out IC algorithm [117], the model is incapable of adequately

generalizing in order to be robust to outliers. This is the main reason why AAMs have been

criticized of not being adequate for generic alignment applications and only being capable of

performing well under person specific scenarios.

In this chapter, we propose the employment of highly-descriptive, dense appearance features

for both LK and holistic AAMs. We show that even though the employment of dense features

increases the data dimensionality, there is a small raise in the time complexity and a significant

improvement in the alignment accuracy. We show that within the IC optimization, there is no

need to compute the dense features at each iteration from the warped image. On the contrary,

we extract the dense features from the original image once and then warp the resulting multi-

channel image at each iteration. This strategy gives better results, as shown in our motivating

experiment of Sec. 4.5.1 and has smaller computational complexity, as explained in Sec. 4.4

and Tab. 4.2. Motivated by this observation, we present very accurate and robust experimental

results for both face alignment and fitting with feature-based LK and AAMs, that prove their

invariance to illumination and expression changes and their generalization ability to unseen

faces.

We apply the above concept for both LK and holistic AAMs by using a great variety of

widely-used features, such as Histograms of Oriented Gradients (HOG) [46], Scale-Invariant

Feature Transform (SIFT) [109], Image Gradient Orientation kernel (IGO) [158, 157], Edge

Structure (ES) [41], Local Binary Patterns (LBP) [120, 121, 122] with variations [169], and

Gabor filters [91, 92, 102]. We extensively evaluate the performance and behavior of the

proposed framework on the commonly used Yale B Database [65] for LK and on multiple

in-the-wild databases (LFPW [22], AFW [185], HELEN [97], iBUG [133]) for AAMs. Finally,

we compare with two state-of-the-art discriminative Deformable Models [171, 13] and report

more accurate results.
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4.1. Motivation

To summarize, the contributions of this work are:

• We propose the incorporation of densely-sampled, highly-descriptive features in the IC

gradient descent framework. We show that the combination of (i) non-linear least-

squares optimization with (ii) robust features (e.g., HOG, SIFT) and (iii) generative

models can achieve excellent performance for the task of face alignment.

• We elaborate on the reasons why it is preferable to warp the features image at each

iteration, rather than extracting features at each iteration from the warped image, as it

is done in the relevant bibliography.

• Our extended experimental results provide solid comparisons between some of the most

successful and widely-used features that exist in the current bibliography for the tasks

of interest, by thoroughly investigating the features’ accuracy, robustness, and speed of

convergence.

• Our proposed HOG and SIFT holistic AAMs outperform state-of-the-art face fitting

methods on a series of cross-database challenging in-the-wild experiments.

The content of this chapter is based on the following publications:

• E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “HOG Act-

ive Appearance Models”, Proceedings of IEEE International Conference on Image Pro-

cessing (ICIP), Paris, France, pp. 224-228, October 2014.

• E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “Feature-

Based Lucas-Kanade and Active Appearance Models”, IEEE Transactions on Image

Processing (T-IP), 24(9): pp. 2617-2632, September 2015.

The rest of the chapter is structured as follows: Section 4.2 briefly describes the used

features. Section 4.3 elaborates on the intensity-based IC algorithm for LK and AAMs. Sec-

tion 4.4 explains the strategy to combine the IC optimization with dense features. Finally,

Section 4.5 presents extended experiments for LK and AAMs and Section 4.6 draws the con-

clusions.
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4. Feature-based Lucas-Kanade and Active Appearance Models

4.2 Image Features

A feature-based image representation is achieved with the application of a feature extraction

function, as defined in Eq. 3.7. In this work, we require the descriptor function to extract

densely-sampled image features, thus compute a feature vector for each pixel location. Given

an input image of size H ×W in vectorial form t with length LT = HW , the descriptor-based

image vector is

f = F(t) (4.1)

with size LTD × 1, where D is the number of channels. In the rest of the chapter, we will

denote the images in vectorized form within the equations.

Many robust multi-dimensional image descriptors have been proposed and applied to various

tasks. They can be divided in two categories: those extracted based only on the pixel values

and those extracted based on larger spatial neighborhoods. They all aim to generate features

that are invariant to translation, rotation, scale and illumination changes and robust to local

geometric distortion. We select nine of the most powerful and successful descriptors, which

are briefly described in the following subsections (4.2.1–4.2.6). Figure 4.1 shows the feature-

based image representation for each of the employed feature types. The visualized grayscale

images are constructed by summing all the D channels of the feature images. Notice how

each descriptor handles the illumination changes and the face’s distinctive edges. Table 4.1

summarizes the parameter values, the number of channels and the neighborhood size that gets

involved in computing the descriptor at each image location for all features.

4.2.1 Edge Structure (ES)

ES, initially proposed in [41], is a measure which captures the orientation of image structure

at each pixel, together with an indication of how accurate the orientation estimate is. The

accuracy belief measure penalizes the orientations in flat, noisy regions and favors the ones near

strong edges. The first step of the ES features computation involves the estimation of the local

gradients with respect to x and y, denoted by gx and gy, and the calculation of the gradient

magnitude g =
√

g2
x + g2

y. Then f = f(g)[gx,gy] is evaluated, where f(g) = |g|/(|g|+ ḡ) is a

non-linear normalization function (ḡ is the mean of g). This feature-based representation has

D = 2 channels and is effective at favoring strong and distinctive edges (Fig. 4.1b).

40



4.2. Image Features

(a) Original (b) ES (c) IGO (d) HOG (e) SIFT

(f) OLBP (g) TPLBP (h) FPLBP (i) Gabor Angles (j) Gabor Magnitude

Figure 4.1: Examples of the nine employed dense feature types. The feature images have the same
height and width as the original image and D channels. In order to visualize them, we compute the
sum over all D channels.

4.2.2 Image Gradient Orientation (IGO)

IGO is introduced and successfully applied in [153, 157, 158, 154]. Given the gradi-

ents gx, gy of an input image and their orientation ϕ, we compute the IGO image as

f = 1√
LT

[cosϕT, sinϕT]T, where LT is the length of the input image and cosϕ =

[cosϕ(1), . . . , cosϕ(LT )]T (the same for sinϕ). The above feature image definition results

in D = 2 channels. IGO features allow us to estimate the similarity between two images as

s = fT1 f2. This measure becomes s ≈ 0 for the image areas that are corrupted by outliers

(e.g. occlusion) and thus behaves similarly to weighted least-squares kernel without the need

of information regarding the structure of outliers. This reveals the advantage of this feature.

IGO is robust to outliers while at the same time being low-dimensional compared to other

robust features (Fig. 4.1c).

4.2.3 Histograms of Oriented Gradients (HOG)

HOG descriptors [46] cluster the gradient orientations in different bins for localized sub-

windows of an input image resulting in counting occurrences of the orientations. Thus, the

shape and texture of the image are described by histograms of local edge directions, which

are also characterized by photometric invariance. The HOG features extraction begins by

computing the image gradient. If the image is color, then the gradient with the largest norm

between the three channels is kept. Two spatial neighborhoods are used at the region of each
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4. Feature-based Lucas-Kanade and Active Appearance Models

pixel: cells and blocks. A cell is a small sub-window from which we create a histogram of the

gradient’s orientations weighted by the gradient magnitude. The histogram has Nbins bins and

trilinear interpolation is applied between the votes of neighboring bin centers with respect to

orientation and position. A block is a larger spatial region that consists of Nblock×Nblock cells.

We apply contrast normalization between the cells that are grouped within a block, based

on the Euclidean norm. The final descriptor vector extracted from each block is composed

by concatenating the normalized histograms of the cells, thus it has length D = NbinsN
2
block.

In the default HOG formulation, the block can be regarded as a sliding window that scans

the locations of an image with a sampling step of either a block (no overlap) or half a block

(overlapping windows). On the contrary, the computed feature image in our case is dense,

which means that we use a sampling step of one pixel and we extract a descriptor vector from

the block centered at each such location. This ends up in a very powerful representation that

is descriptive on the important facial parts and flat on the rest of the face (Fig. 4.1d). By

using cells of size 8× 8 pixels with Nblock = 2 and Nbins = 9, we have D = 36 channels.

4.2.4 Scale-Invariant Feature Transform (SIFT)

SIFT features, originally proposed in [109], are computed locally based on the appearance of

particular interest points (keypoints). In the original SIFT formulation, these keypoints are

detected as the maxima and minima of the Difference of Gaussians applied in the scale space

of an image. The scale space is constructed by convolving the image with Gaussian filters

at different scales (and octaves). The keypoints with dominant orientations are kept and the

points that have low contrast or lie along an edge are ignored. Then SIFT descriptors are

obtained by taking into account neighboring pixels within a radius for a keypoint. Thus, the

traditional SIFT framework returns a sparse feature map of an image, which is not useful in

our case. Similar to the HOG case, in our framework, we skip the keypoint detection step and

extract a SIFT descriptor vector for each image location.

We begin by assigning a dominant orientation to each pixel. Assume that L(x, y, σ) =

G(x, y, σ) ∗T(x, y) is the Gaussian-smoothed image at the scale σ of the location (x, y). We

calculate the gradient magnitude and direction for every pixel in a neighborhood around the

point in L and form an orientation histogram, where each orientation is weighted by the cor-

responding gradient magnitude and by a Gaussian-weighted circular window with standard

deviation proportional to the pixel’s σ. Then, we take the orientations that are within a

percentage (80%) of the highest bin. If these orientations are more than one, then we create

multiple points and assign them each orientation value. Eventually, the final descriptor vector

42



4.2. Image Features

is created by sampling the neighboring pixels at the image L(x, y, σ) with scale closest to the

point’s scale, rotating the gradients and coordinates by the previously computed dominant

orientation, separating the neighborhood in Nblock×Nblock sub-regions and create a Gaussian-

weighted orientations histogram for each sub-region with Nbins bins. Finally, the histograms

are concatenated in a single vector with length D = NbinsN
2
block that is normalized to unit

length. The SIFT descriptor is similar to the HOG one, with the difference that the orienta-

tions histograms are computed with respect to each point’s dominant orientation. In general,

SIFT are invariant to scale, rotation, illumination and viewpoint (Fig. 4.1e). We use the same

parameters as in HOGs (Nblock = 2, Nbins = 9 and 8× 8 cells), thus D = 36 channels.

4.2.5 Local Binary Patterns (LBP)

The basic idea behind LBP [120, 121, 122] is to encode the local structure in an image by com-

paring each pixel’s intensity value with the pixel intensities within its neighborhood. For each

pixel, we define a neighborhood radius r centered at the pixel and compare the intensities of

S circular sample points to its intensity. The sampling is done clockwise or counter-clockwise,

starting from a specific angle, and we apply interpolation on sample points that are not dis-

crete. If the center pixel’s intensity is greater or equal than the sample’s, then we denote

it by 1, otherwise by 0. Thus, we end up with a binary number (LBP code) for each pixel,

with S digits and 2S possible combinations, which is converted to decimal. In the original

LBP formulation, the output is a descriptor vector describing the whole image with a normal-

ized histogram of the decimal codes. We instead use Nradius number of values for the radius

parameter, r. Then we sample Nsamples sets of points S from the circle of each radius value

and concatenate the LBP codes in a vector. This means that our dense feature image has

D = NradiusNsamples channels. We also employ the extension of rotation-invariant uniform

LBPs. Uniform LBPs are binary codes with at most two circular 0-1 and 1-0 transitions. In

the computation of the final LBP patterns, there is a separate label for each uniform code

and all the non-uniform codes are labeled with a single label. By setting r = {1, 2, . . . , 8}
(Nradius = 8) and sampling Nsamples = 8 points for each radius value, we end up with D = 8

channels.

Moreover, apart from the original LBP, which we denote by OLBP, we also use the variations

of Three-Patch LBP (TPLBP) and Four-Patch LBP (FPLBP), introduced in [169]. TPLBP

and FPLBP encode in the binary codes the similarities between neighboring patches (for

details, please refer to [169]). Thus, the number of channels in this case also depends on the

employed number of patches Npatch with different sizes, hence D = NradiusNsamplesNpatch.
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Feature Type Parameters Values
Neighbourhood Size

Channels (D)
(in pixels)

IGO, ES − − 2

HOG Nbins = 9, Ncell = 2
256 36

SIFT cell = 8× 8 pixels

OLBP a Nradius = 8, Nsamples = 8 64 8

TPLBP a Nradius = 8, Nsamples = 8
64 16

FPLBP b Npatch = 2

Gabor Nsc = 4, Nor = 9 − 36

a Radius takes values {1, 2, . . . , 8}, patch sizes are 2 and 4 and for each
radius we sample a single set of 8 points.

b Inner and outer radius are {[1, 5], [2, 6], . . . , [8, 12]}, patch sizes are 2 and
4 and for each radius we sample a single set of 8 points.

Table 4.1: Characteristics of the nine employed dense feature types. The characteristics include the
features’ parameters values, neighborhood size that contributes in each pixel’s computation and number
of channels.

With the parameters we use, we end up with D = 16 channels. The three LBP derivatives are

visualized in Figs. 4.1f-4.1h.

4.2.6 Gabor Magnitude and Angle

Herein, we employ the log-Gabor filter (wavelet) [91, 92, 102]. In the log-polar coordin-

ates of the Fourier domain (ρ, θ), this is defined as G(s,o)(ρ, θ) = exp

(
−1

2

(
ρ−ρs
σρ

)2
)

exp

(
−1

2

(
θ−θ(s,o)
σθ

)2
)

, where σρ and σθ are the bandwidths in ρ and θ respectively and (s, o)

are the indexes of each filter’s scale and orientation. Thus, by using Nsc scales and Nor ori-

entations, we have a filterbank of log-Gabor filters with s = 1, . . . , Nsc and o = 1, . . . , Nor.

The reason why log-Gabor filter is preferred over Gabor is that it has no DC component and

its transfer function is extended at a high frequency range. Given an image, we compute its

convolution with each log-Gabor filter for all scales and orientations. Then, we create two

feature images by concatenating the convolution’s magnitude and phase, respectively. Both

feature versions have D = NscNor channels. An example of the Gabor angles and magnitude

is shown in Figs. 4.1i and 4.1j, respectively. We use the log-Gabor filters implementation

available in [90] with Nsc = 4 and Nor = 9, thus D = 36.
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4.2.7 Features Function Computational Complexity

As mentioned before, the presented features can be separated in two categories:

1. Features that are computed in a pixel-based fashion (e.g., ES, IGO).

2. Features that are computed in a window-based mode, thus they depend on the values of

a larger spatial neighborhood for each location (e.g., HOG, SIFT, LBP).

Given an image t in vectorial form with length LT , the computational cost of extracting dense

D-channel features of the first category is O(LTD). Respectively, the complexity of extracting

the features of the second category, using a window of size h×w for each pixel, is O(LTLwD),

where Lw = hw is the window’s area. However, since the window’s dimensions h and w

take values of the same order as D, hence hw ≈ D2, the cost of the second case can also be

expressed as

O(LTD
3) (4.2)

This gives an intuition on the complexity difference between the two cases. In the following

sections, we will use the window-based features complexity of Eq.4.2 as the worst-case scenario,

since it is more expensive than the pixel-based one.

4.3 Inverse-Compositional Alignment Algorithm

The optimization technique that we employ for both LK and AAMs is the efficient Gauss-

Newton Inverse Compositional (IC) Image Alignment [18, 117]. In this section, we firstly refer

to the problem of LK (4.3.1) and then elaborate on holistic AAMs (4.3.2). In both cases,

Gauss-Newton aims to minimize an `2 norm with respect to a parametric motion model, as

defined in Chapter 3, Sec. 3.2.2. The motion model utilized in this work is Piecewise Affine

Warp (PWA) [43, 18], denoted as W(p), where p is the ns number of parameters (Eq. 3.5).

In order to explain the IC algorithm, we first present the forward-additive (FA) and forward-

compositional (FC) ones. Note that all the algorithms in this section are presented based on

pixel intensities, thus we assume that we have images with a single channel.

4.3.1 Lucas-Kanade Optimization

Herein, we first define the optimization techniques for the LK face alignment problem, in

order to describe the IC optimization for AAMs in the following Sec. 4.3.2. The aim of image

alignment is to find the location of a constant template ā ∈ Rm in an input vectorized image
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t, where m is the number of pixels inside the reference shape as also defined in Sec. 3.2.2. This

is mathematically expressed as minimizing the `2-norm cost function

argmin
p
‖ā− t(W(p))‖2 (4.3)

with respect to the ns motion model parameters p. The proposed Gauss-Newton optimization

techniques [16, 18] are categorized as:

• Forward

• Inverse

depending on the direction of the motion parameters estimation and

• Additive

• Compositional

depending on the way the motion parameters are updated.

Forward-Additive

Lucas and Kanade proposed the FA gradient descent in [111]. By using an additive iterative

update of the parameters, i.e.

p← p + ∆p (4.4)

and having an initial estimate of p, the cost function of Eq. 4.3 is expressed as minimizing

argmin
∆p

‖ā− t(W(p + ∆p))‖2 (4.5)

with respect to ∆p. The solution is given by first linearizing around p, thus using first order

Taylor series expansion at p + ∆p = p⇒ ∆p = 0. This gives

t(W(p + ∆p)) ≈ t(W(p)) + Jt|p=p∆p (4.6)

where Jt|p=p = ∇t∂W∂p is the image Jacobian, consisting of the image gradient evaluated at

W(p) and the warp jacobian evaluated at p. The final solution is given by

∆p = H−1JT
t |p=p [ā− t(W(p))] (4.7)

where

H = JT
t |p=pJt|p=p (4.8)
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is the Gauss-Newton approximation of the Hessian matrix. This method is forward because

the warp projects into the image coordinate frame and additive because the iterative update

of the motion parameters is computed by estimating a ∆p incremental offset from the current

parameters. The algorithm is very slow with computational complexityO(ns
3+ns

2m), because

the computationally costly Hessian matrix and its inverse depend on the warp parameters p

and need to be evaluated at each iteration.

Forward-Compositional

Compared to the FA version, in the FC gradient descent we have the same warp direction for

computing the parameters, but a compositional update of the form

W(p)←W(p) ◦W(∆p) (4.9)

The minimization cost function in this case takes the form

argmin
∆p

‖ā− t (W(p) ◦W(∆p))‖2 (4.10)

and the linearization is

‖ā− t(W(p))− Jt|∆p=0∆p‖2 (4.11)

where the composition with the identity warp is W(p) ◦ W(0) =W(p). The image Jacobian

in this case is expressed as Jt|p=0 = ∇t(W(p)) ∂W
∂p

∣∣∣
p=0

. Thus, with this formulation, the

warp Jacobian is constant and can be precomputed, because it is evaluated at p = 0. This

precomputation slightly improves the algorithm’s computational complexity compared to the

FA case, even though the compositional update is more expensive than the additive one.

Inverse-Compositional

In the IC optimization, the direction of the warp is reversed compared to the two previous

techniques and the incremental warp is computed with respect to the template ā [18, 17].

Compared to Eq. 4.3 the goal in this case is to minimize

argmin
∆p

‖t(W(p))− ā(W(∆p))‖2 (4.12)

with respect to ∆p. The incremental warp W(∆p) is computed with respect to the template

ā, but the current warp W(p) is still applied on the input image. By linearizing around

∆p = 0 and using the identity warp, we have

‖t(W(p))− ā− Jā|p=0∆p‖2 (4.13)
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where Jā|p=0 = ∇ā ∂W
∂p

∣∣∣
p=0

. Consequently, similar to the FC case, the increment is

∆p = H−1JT
ā |p=0 [t(W(p))− ā] (4.14)

where the Hessian matrix is

H = JT
ā |p=0Jā|p=0 (4.15)

The compositional motion parameters update at each iteration is

W(p)←W(p) ◦W(∆p)−1 (4.16)

Since the gradient is always taken at the template, the warp Jacobian ∂W
∂p

∣∣∣
p=0

and thus

the Hessian matrix’s inverse remain constant and can be precomputed. This makes the IC

algorithm both fast and efficient with a total computational complexity of O(n2
s + nsm).

4.3.2 Active Appearance Models Optimization

AAMs are statistical Deformable Models of shape and appearance that recover a parametric

description of a certain object through optimization. Their shape and appearance models are

linear statistical models built as explained in Secs. 3.1 and 3.2, respectively. These models

can be used to generate new shape and appearance instances as shown in Eqs. 3.4 and 3.13,

respectively. Note that the appearance model utilized in this chapter employs a holistic ap-

pearance representation.

The basic difference between the IC algorithm employed for LK and AAMs is that the

template image ā is not static, but it includes a linear appearance variation controlled by the

appearance parameters c as shown in Eq. 3.13. Consequently, the minimization cost function

of Eq. 4.3 now becomes

argmin
p,c

‖t(W(p))− ā−Uac‖2 (4.17)

We present three algorithms for solving the optimization problem: Simultaneous, Alternating

and Project-Out.

Project-Out Inverse-Compositional

The Project-Out IC (POIC) algorithm [117] decouples shape and appearance by solving

Eq. 4.17 in a subspace orthogonal to the appearance variation. This is achieved by “projecting-

out” the appearance variation, thus working on the orthogonal complement of the appearance

subspace Ûa = E−UaUa
T. The cost function of Eq. 4.17 takes the form

argmin
∆p

‖t(W(p))− ā(W(∆p))‖2E−UaUT
a

(4.18)
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and the first-order Taylor expansion over ∆p = 0 is

ā(W(∆p)) ≈ ā + Jā|p=0∆p (4.19)

The incremental update of the warp parameters is computed as

∆p = H−1JT
POIC [t(W(p))− ā] (4.20)

where

JPOIC = (E−UaU
T
a )Jā|p=0 (4.21)

and

H−1 = JT
POICJPOIC (4.22)

The appearance parameters can be retrieved at the end of the iterative operation as

c = UT
a [t(W(p))− ā] (4.23)

in order to reconstruct the appearance vector. The POIC algorithm is very fast with O(nsm+

n2
s) computational complexity, because the Jacobian, the Hessian matrix and its inverse are

constant and can be precomputed. However, the algorithm is not robust, especially in cases

with large appearance variation or outliers.

Simultaneous Inverse-Compositional

In the Simultaneous IC (SIC) [68] we aim to optimize simultaneously for p and c parameters.

Similar to the Eq. 4.12 of the LK-IC case, the cost function of Eq. 4.17 now becomes

argmin
∆p,∆c

‖t(W(p))− ā (W(∆p))−Ua (W(∆p)) (c + ∆c)‖2 (4.24)

We denote by

∆q =
[
∆pT,∆cT

]T
(4.25)

the vector of concatenated parameters increments with length ns + na. As in Eq. 4.13, the

linearization of the model term around ∆p = 0 consists of two parts: the mean appearance

vector approximation

ā(W(∆p)) ≈ ā + Jā|p=0 ∆p (4.26)

and the linearized basis

Ua(W(∆p)) ≈ Ua +
[
Ju1 |p=0∆p, . . . ,Juna |p=0∆p

]
(4.27)
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where Jui |p=0 = ∇ui
∂W
∂p

∣∣∣
p=0

denotes the Jacobian with respect to the ith eigentexture at

∆p = 0. Then the final solution at each iteration is

∆q = H−1JT
SIC [t(W(p))− ā−Uac] (4.28)

where the Jacobian is given by

JSIC =
[
Jac |p=0 ,Ua

]
(4.29)

with

Jac |p=0 = Jā|p=0 +

na∑
i=1

ciJui |p=0 (4.30)

and the Hessian matrix is

H = JT
SICJSIC (4.31)

At every iteration, we apply the compositional motion parameters update of Eq. 4.16 of the

LK-IC and an additive appearance parameters update

c← c + ∆c (4.32)

The individual Jacobians Jā|p=0 and Jui |p=0, ∀i = 1, . . . , na are constant and can be pre-

computed. However, the total Jacobian Jac |p=0 and hence the Hessian matrix depend on

the current estimate of the appearance parameters c, thus they need to be computed at every

iteration. This makes the algorithm very slow with a total cost of O((ns+na)
2m+(ns+na)

3).

Alternating Inverse-Compositional

The Alternating IC (AIC) algorithm, proposed in [124, 155], instead of minimizing the cost

function simultaneously for both shape and appearance as in the SIC algorithm, it solves two

separate minimization problems, one for the shape and one for the appearance parameters, in

an alternating fashion. That is
argmin

∆p
‖t(W(p))− ac(W(∆p))‖2E−UaUT

a

argmin
∆c

‖t(W(p))− ac+∆c(W(∆p))‖2
(4.33)

The minimization in every iteration is achieved by first using a fixed estimate of c to compute

the current estimate of the increment ∆p and then using the fixed estimate of p to compute the

increment ∆c. More specifically, similar to the previous cases and skipping the linearization
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steps, given the current estimate of c, the warp parameters increment is computed from the

first cost function as

∆p = H−1JT
AIC [t(W(p))− ā−Uac] (4.34)

where

JAIC = (E−UaU
T
a )

[
Jā|p=0 +

na∑
i=1

ciJui |p=0

]
(4.35)

and

H−1 = JT
AICJAIC (4.36)

Then, given the current estimate of the motion parameters p, AIC computes the appearance

parameters as the least-squares solution of the second cost function of Eq. 4.33, thus

∆c = UT
a [t(W(p))− ā(W(∆p))−Ua(W(∆p))c] (4.37)

This alternating optimization is repeated at each iteration. The motion parameters are com-

positionally updated as in Eq. 4.16 and the appearance parameters are updated in an additive

mode, i.e.

c← c + ∆c (4.38)

AIC algorithm is slower than POIC, but more accurate as it also optimizes with respect to

the appearance variance. Although the individual Jacobians Jui |p=0, ∀i = 1, . . . , na and

Jā|p=0 can be precomputed, the total Jacobian JAIC and the Hessian need to be evaluated at

each iteration. Following the Hessian matrix computation technique proposed in [124], which

improves the cost from O(n2
sm) to O(n2

sn
2
a) (usually m > n2

a) and taking into account the

Hessian inversion (O(n3
s)), the total cost at each iteration is O(n2

sn
2
a + (ns + na)m+ n3

s).

Recently it was shown that AIC and SIC are theoretically equivalent (i.e., Eqs. 4.34, 4.37 are

exactly the same as Eq. 4.28) and that the only difference is their computational costs [155].

That is the SIC algorithm requires to invert the Hessian of the concatenated shape and texture

parameters (O((ns + na)
3)). However, using the fact that

minx,yf(x, y) = minx (minyf(x, y)) (4.39)

and solving first for the texture parameter increments, it was shown that

1. the complexity of SIC can be reduced dramatically, and

2. SIC is equivalent to AIC algorithm [155] (similar results can be shown by using the

Schur’s complement of the Hessian of texture and shape parameters).
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4.4 Feature-Based Optimization

In this section we describe the combination of the IC algorithm with the feature-based ap-

pearance of Eq. 4.1. The keypoint of this combination is that there are two different ways

of conducting the composition of the features function F and the warp function W on an

image. Given an image t and the warp parameters p, the warped feature-based image f can

be obtained with the two following composition directions:

• Features from warped image:

f = F (t(W(p))) (4.40)

• Warping on features image:

f = tF (W(p)) where tF = F(t) (4.41)

The composition order of these two cases is shown in Fig. 4.2. In the following subsections we

present the incorporation of these two functions compositions in the IC algorithm and explain

why the second one is preferable. For simplicity, we use the LK-IC algorithm (Sec. 4.3.1) for

face alignment that does not include appearance variation.

(a) Features from warped image.

(b) Warping on features image.

Figure 4.2: The two possible composition directions of the feature extraction function F and the warp
function W(p).
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4.4.1 Warp Function Computational Complexity

As shown in Sec. 4.2.7, the computational cost of the feature extraction function F(t) is

O(LTD
3), where LT = HW is the resolution of the image t. Regarding the warp function, we

need to consider that the warping of a D-channel image, t(W(p)), includes the three following

steps:

1. Synthesis of the shape model instance s, generated as in Eq. 3.4 using the weights p,

which has a cost of O(2nsn).

2. Computation of the mapping of each pixel in the mean shape s̄ to the synthesized shape

instance. This firstly involves the triangulation of the shape instance in Ntr number of

triangles (same as the number of triangles of the mean shape) using Delaunay triangu-

lation [100]. Then, six affine transformation parameters are computed for each triangle

based on the coordinates of the corresponding triangles’ vertexes. Finally, the trans-

formed location of each point within each triangle is evaluated. Thus, the complexity of

this step is O(6Ntr
m
Ntr

) = O(6m).

3. Copying the values of all channels D for all pixels from the input image to the reference

frame s̄ (O(Dm)).

Consequently, taking into account that (6+D)m� 2nsn, the overall computational complex-

ity of warping a multi-channel image is O((6 +D)m).

4.4.2 Optimization with Features from Warped Image

From Eqs. 4.12 and 4.40 we get the cost function of minimizing

argmin
∆p

‖F(t(W(p)))−F(ā(W(∆p)))‖2 (4.42)

with respect to ∆p. Thus, the first-order Taylor expansion of this expression around ∆p = 0

is

F(ā(W(∆p))) ≈ F(ā) +
∂F
∂ā
∇ā

∂W
∂p

∣∣∣∣
p=0

∆p (4.43)

Since it is not possible to compute ∂F
∂ā , we make the approximation ∂F

∂ā∇ā ≈ ∇F(ā) and the

linearization becomes

F(ā(W(∆p))) ≈ F(ā) +∇F(ā)
∂W
∂p

∣∣∣∣
p=0

∆p (4.44)
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Consequently, in every IC repetition step, the warping is performed on the intensities image

(D = 1) with the current parameters estimate (O(7m)) and is followed by the feature ex-

traction (O(mD3)), ending up to a cost of O(m(7 + D3)) per iteration. Hence, by applying

k iterations of the algorithm and given that D3 � 7, the overall complexity of warping and

features extraction is

O(kmD3) (4.45)

Note that this is only a part of the final cost, as the IC algorithm complexity also needs to

be taken into account. Moreover, in the AAMs case, it is difficult to extract window-based

features (e.g., HOG, SIFT, LBP) from the mean shape template image, as required from the

above procedure. This is because, we have to pad the warped texture in order to compute

features on the boundary, which requires extra triangulation points.

4.4.3 Optimization with Warping on Features Image

The combination of Eqs. 4.12 and 4.41 gives the cost function

argmin
∆p

‖tF (W(p))− āF (W(∆p))‖2 (4.46)

where tF = F(t) and āF = F(ā) are the multi-channel feature-based representations of the

input and the template images respectively. The linearization around ∆p = 0 has the same

form as in Eq. 4.44 of the previous case. However, in contrast with the previous case, the

warping is performed on the feature-based image. This means that the feature extraction is

performed once on the input image and the resulting multi-channel image is warped during

each iteration. Hence, the computational complexity of feature extraction and warping is

O((6+D)m) per iteration and O(k(6+D)m+LTD
3) overall per image for k iterations, where

LT is the resolution of the input image.

The above cost greatly depends on the input image dimensions LT . In order to override

this dependency, we firstly resize the input image with respect to the scaling factor between

the face detection bounding box and the mean shape resolution. Then, we crop the resized

image in a region slightly bigger than the bounding box. Thus, the resulting input image

has resolution approximately equal to the mean shape resolution m, which leads to an overall

complexity of

O(km(6 +D) +mD3) (4.47)

for k iterations. Another reason for resizing the input image is to have correspondence on the

scales on which the features are extracted, so that they describe the same neighborhood.
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The computational complexities of Eqs. 4.45 and 4.47 are approximately equal for small

number of channels D (e.g. for ES and IGO). However, this technique of warping the features

image has much smaller complexity for large values of D (e.g., HOG, SIFT, LBP, Gabor). This

is because k(D + 6) < D3 for large values of D, so km(6 +D) can be eliminated in Eq. 4.47.

Consequently, since kmD3 � mD, it is more advantageous to compute the features image

once and then warp the multi-channel image at each iteration. In the experiments (Sec. 4.5),

we report the timings that prove the above conclusion. Finally, we carried out an extens-

ive experiment comparing the two methods for face alignment (LK) in Sec. 4.5.1 (Fig. 4.4).

The results indicate that warping the multi-channel features image performs better, which

is an additional reason to choose this composition direction apart from the computational

complexity.

4.5 Experimental Results

Herein, we present extended experiments for both face alignment (LK, Sec. 4.5.1) and face

fitting (holistic AAMs, Secs. 4.5.2 and 4.5.3) using the IC framework. We employ all the dense

features described in Sec. 4.2 with the parameters of Tab. 4.1.

Note that commonly LK and AAMs fitting is performed using an image pyramid with pro-

gressively increasing the number of shape and appearance parameters as the image resolution

increases [18, 117, 124, 157]. However, in the following experiments of this chapter, the image

pyramid is not employed in order to facilitate and simplify the comparisons. Using multiple

fitting scales would make it difficult to derive any conclusions about the various features and

approaches, such as the representation power, number of appearance and shape eigenvectors,

convergence rate, etc. Nevertheless, a multi-level pyramid fitting framework is employed in

the rest of this thesis, as also explained in individual Chapters 5, 6 and 7.

4.5.1 Face Alignment (Lucas-Kanade)

In this section, we conduct experiments for the task of face alignment using the LK-IC al-

gorithm. In Sec. 4.5.1 we show a motivating experiment in which we compare the performance

of IC with warping the features image at each iteration vs. extracting features from the warped

image. In Sec. 4.5.1, we compare the performance of IC with warping the features image for

all features types. For both experiments, we use the Yale Face Database B [65], which consists

of 10 subjects with 576 images per subject under different viewing conditions. We select 1

template image and 10 testing images for each subject (100 image pairs) that are corrupted

with extreme illumination conditions (Fig. 4.3).
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Figure 4.3: Yale B Database images examples. The template image (left) is corrupted with extreme
illumination in the testing images for each subject.

We use the evaluation framework proposed in [18]. Specifically, we define three canonical

points within a region of interest for each image. These points are randomly perturbed using

a Gaussian distribution with standard deviation σ = {1, 2, . . . , 9}. Then, we create the affine

distorted image based on the affine warp defined between the original and perturbed points.

After applying 30 iterations of the IC optimization algorithm, we compute the RMS error

between the estimated and the correct locations of the three canonical points. The optimiza-

tion is considered to have converged if the final RMS error is less than 3 pixels. Additionally,

for each value of σ, we perform 100 experiments with different randomly perturbed warps.

We evaluate the performance by plotting the average frequency of convergence and the aver-

age mean RMS error of the converged cases with respect to each value of σ. The results are

averaged over the 100 experiment repetitions with different random warps.

Warping of features image vs Features from warped image

In the experiment of Fig. 4.4 we compare the performance of the two possible combination

techniques between the features extraction function and the warp function, as presented in

Sec. 4.4. The figure shows only HOG, SIFT, IGO and LBP cases, though we get the same

results with the rest of features types. The comparison indicates that the method of extracting

the features from the original image outperforms the one of extracting the features from the

warped image, especially for large values of σ. The reason behind this behavior is that the

warping of an image provokes some distortion on the texture which partly destroys the local

structure. This has negative consequences on the computation of all the employed features,
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Figure 4.4: Comparison between the techniques of warping the features image and extracting features
from the warped image. The plot shows results for HOG, SIFT, IGO and LBP features, however the
rest of the features demonstrate the same behaviour.

because the descriptor of each pixel depends on the structure of its neighborhood.

Features Comparison

Figure 4.5 provides an evaluation of the robustness of each feature by showing the average

frequency of convergence with respect to each value of σ. This experiment clearly indicates

that Intensities or Gabor Magnitude features are totally inappropriate for such a task. HOG

is the most robust feature with remarkable convergence frequency, followed by SIFT, IGO and

ES. Finally, the LBPs family and Gabor Angles are not robust, but they can achieve decent

results when the initialization is good.

4.5.2 Face Fitting (Active Appearance Models)

In this section we compare the performance of the selected features using AAMs for the

task of face fitting with cross-database experiments. We investigate which features are more

suitable for the task by comparing them with respect to their accuracy (Sec. 4.5.2), speed

of convergence (Sec. 4.5.2) and computational cost (Sec. 4.5.2). We also shed light on why

some features perform better by comparing them with respect to the number of appearance

components (Sec. 4.5.2), the neighborhood size per pixel (Sec. 4.5.2) and the smoothness of

their cost function (Sec. 4.5.2).
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Figure 4.5: Face alignment (Lucas-Kanade) results on Yale B database using the inverse compositional
framework. The figure shows the frequency of convergence with respect to the standard deviation σ.

As explained in Sec.4.3.2, AIC and SIC algorithms are theoretically equivalent and the only

difference between them is that SIC is significantly slower. Specifically, the updates of SIC

(Eq. 4.28) and AIC (Eqs. 4.34 and 4.37) are theoretically guaranteed to be the same [155].

Thus, herein we employ the AIC and POIC algorithms.

We use the in-the-wild databases presented in Sec. 3.3. Specifically, we use the 811 image of

the LFPW trainset [22] for training. The testing is performed on AFW [185], LFPW testing

set [22], Helen training and testing set [97] and iBUG [134], thus 3026 in-the-wild images in

total. The fitting process is always initialized by computing the face’s bounding box using

Cascade Deformable Part Models (CDPM) face detector [123]. The fitting error is computed

with the RMSE of Eq. 3.15 normalized with the face size of Eq. 3.16.

Accuracy

Figures 4.6a and 4.6b compare the accuracy of AIC and POIC respectively on all the data-

bases (3026 testing images) for all the features types. The fitting procedure is performed using

the methodology of Sec. 4.4.3 and keeping ns = 15 eigenshapes and na = 100 eigentextures,

regardless of the feature type. The results are plotted in the form of Cumulative Error Distri-

butions (CED). Note that this experiment intends to make a fair comparison of the accuracy

between the various features by letting the fitting procedure converge for all feature types.

The results indicate that HOG and SIFT features are the most appropriate for the task. HOG
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(a) Alternating IC
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(b) Project-Out IC

Figure 4.6: Face fitting (AAMs) accuracy on in-the-wild databases (3026 test images) using the altern-
ating and project-out inverse compositional frameworks, evaluated on 68 landmark points.

features perform better in the case of AIC and the SIFT ones are more robust for POIC,

however the differences between them are very small. IGO and ES features have a sufficiently

good performance. Moreover, similar to the face alignment case, Gabor Angles are not robust,

but they achieve very accurate fitting result when they converge, especially in the POIC case.

On the contrary, even though Gabor Magnitude features demonstrate a decent performance

in the AIC, they completely diverge in the POIC case. This observation, combined with their
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4. Feature-based Lucas-Kanade and Active Appearance Models

performance with the LK algorithm, indicates that they are unsuitable for image alignment

without a linear appearance variation model. The same fact stands for intensities as well.

Finally, the LBPs family has relatively poor performance. Figure 4.17 shows some indicative

fitting examples from the very challenging iBUG database for all features with AIC.

Convergence

Herein, we examine the frequency of convergence achieved by each feature type. We assume

that a fitting procedure has converged when either the cost function error incremental or the

landmarks mean displacement are very small.

The cost incremental criterion is defined as

abs(errork−1 − errork)
errork−1

< ε (4.48)

where errork is the cost function error from Eq. 4.17 at current iteration k and ε = 10−5.

The mean displacement criterion is defined as the mean point-to-point normalized Euclidean

distance between the shapes of current and previous iterations, thus∑n
i=1

√
(xki − x

k−1
i )2 + (yki − y

k−1
i )2

cn
< ε (4.49)

with ε = 10−4.

Figure 4.7 shows the mean point-to-point normalized RMS fitting error overall 3026 images

with respect to the iteration number by allowing the optimization procedure to converge. The

results indicate that HOG and SIFT features converge faster to a more accurate optimum

compared to all the other feature types. Indicative examples of the convergence speed of each

feature are shown in Fig. 4.8. Specifically, these plots show how fast the parameter value that

corresponds to the 1st eigenvector of the shape subspace Us moves towards its ideal (ground-

truth) value. This eigenshape controls the face’s pose over the yaw angle. These examples

demonstrate the advantages of HOG and SIFT features, which reach the ideal value in very

few iterations. Note that in all these experiments we want the algorithms to converge, thus

we let them execute many iterations. However, this is not necessary in a practical application,

because as the iterations advance, the improvements in the fitted shape get much smaller.

Timings

Table 4.2 reports the timings for each feature type using the two compositional scenarios

explained in Sec. 4.4 within the AAMs optimization framework. It presents the computational
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(a) Alternating IC
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(b) Project-Out IC

Figure 4.7: Mean point-to-point normalized RMS fitting error with respect to iteration number on
in-the-wild databases (3026 test images). The plot aims to compare the speed of convergence of each
feature type. Please refer to Table 4.2 (columns 5-10) for the computational cost of each feature-based
method.

cost per iteration and the total cost of running the optimization for 50 and 100 iterations.

Note that the AAMs framework used for those experiments is developed without any code

optimization. The reference frame (mean shape s̄) has size 170× 170.

The table justifies the computational analysis presented in Sec. 4.4. As expected, it is faster

to compute the features once and warp the features image (Eq. 4.47) rather than extracting
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Figure 4.8: Indicative examples of the speed of convergence of each feature. The plots show how fast
the 1st parameter value of the shape model moves towards its ideal (groundtruth) value. The example
images are image 0022.png (left) and image 0028.png (right) from LFPW testing set.

features from each warped image at each iteration (Eq. 4.45). This is because, in most features

cases, it is more expensive to extract features than warp a multi-channel image (O(F) >

O(W)). This happens with all the multi-channel features. The only exception is the SIFT

features case, because the optimized implementation of [160] is faster than the unoptimized

warping of the 36 channels (O(F) < O(W)). Moreover, the combination of Tab. 4.2 with

Fig. 4.7 suggests that even though high-dimensional features like HOG and SIFT converge

really fast, their computational cost is quite similar to features with less channels that require

multiple iterations until convergence.

The AAM fitting used in these experiments is implemented in Matlab using the Moore-

Penrose pseudoinverse, which, despite the fact that it ensures robustness, it is computationally
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Warping on features image

Channels

Feature Warp Alternating IC Project-Out IC

Feature function function number of iterations number of iterations

Type Cost (F) Cost (W) 1 50 100 1 50 100

Intensities 1 − 0.01 0.02 1.0 2.0 0.02 1.0 2.0

IGO, ES 2 0.01 0.01 0.05 2.0 4.0 0.04 1.5 3.0

OLBP 8 0.07 0.03 0.2 6.6 13.1 0.17 5.1 10.1

TPLBP
16

1.25
0.05

1.48 12.8 24.3 1.43 10.3 19.3

FPLBP 1.82 2.05 13.3 24.8 2.0 10.8 19.8

HOG

36

1.32

0.11

1.84 27.3 53.3 1.72 21.3 41.3

SIFT 0.07 0.59 26.1 52.1 0.47 20.1 40.1

Gabor 0.12 0.64 26.1 52.1 0.52 20.1 40.1

Features from warped image

Channels

Feature Warp Alternating IC Project-Out IC

Feature function function number of iterations number of iterations

Type Cost (F) Cost (W) 1 50 100 1 50 100

Intensities 1 − 0.01 0.02 1.0 2.0 0.02 1.0 2.0

IGO, ES 2 0.01 0.01 0.04 2.0 4.0 0.03 1.5 3.0

OLBP 8 0.07 0.03 0.18 9.0 18.0 0.15 7.5 15.0

TPLBP
16

1.25
0.05

1.44 72.0 144.0 1.39 69.5 139.0

FPLBP 1.82 2.01 100.5 201.0 1.96 98.0 196.0

HOG

36

1.32

0.11

1.74 87.7 174.0 1.62 81.0 162.0

SIFT 0.07 0.49 24.5 49.0 0.37 18.5 37.0

Gabor 0.12 0.54 27.0 54.0 0.42 21.0 42.0

Table 4.2: Computational costs of the feature extraction functions, the warp function and the AAM
fitting using both composition ways of the two functions for all feature types. All the reported times
are measured in seconds.

expensive. Additionally, as mentioned before, the fitting is not performed using an image

pyramid. These two factors make the fitting procedure reported in Tab. 4.2 slower than

expected. However, note that the aim of these experiments is to make a fair comparison of the

computational complexity between the different feature types. It is not in the scope of this

work to provide an optimized implementation of AAMs or features. Faster AAM optimization

can be achieved with the framework proposed in [124, 155]. One could also use GPU or parallel

programming to achieve faster performance and eliminate the cost difference between various
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features and also between the two composition scenarios of F and W. Finally, by applying

a multi-scale fitting using an image pyramid greatly speeds up the fitting procedure, since

convergence is achieved in less iterations, as shown in Chapter 5 (Sec. 5.3) and Chapter 7.
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Figure 4.9: Mean point-to-point normalized RMS fitting error with respect to number of appearance
components on the LFPW testset in-the-wild database. Note that we use logarithmic scale on the
horizontal axis.

Number of Appearance Components

Figure 4.9 shows the mean point-to-point normalized RMS fitting error with respect to the

number of appearance components, i.e. na, for LFPW testset using logarithmic scale on the

horizontal axis. The results indicate that for most features, except IGO, ES and Intensities, the

fitting performance is improved by increasing the number of appearance components. SIFT

features can achieve very accurate results by using very few appearance components (even

less than 10), thus with small computational cost. Additionally, note that Gabor Magnitude

features can achieve significantly good accuracy (close to HOG and SIFT) if one keeps their

whole eigenspectrum.

Neighborhood Size

Figure 4.10 plots the mean point-to-point normalized RMS fitting error with respect to the

neighborhood size from which the feature value of each pixel is computed. For HOG and

SIFT this is done by changing the cell size. In the case of the LBPs family, we alter the radius

values (Nradius). For the rest of features (IGO, ES, Gabor, Intensities), we simply downscale

the image. This experiment proves that the spatial neighborhood covered by each feature
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Figure 4.10: Mean point-to-point normalized RMS fitting error with respect to neighbourhood size on
the LFPW testset in-the-wild database.

does not massively affect its performance. HOG, SIFT and LBP features are more accurate

when applied to largest regions, as more information is accumulated to their channels. On the

contrary, ES, IGO and Gabor features are not assisted by increasing the neighborhood size.

(a) Intensities (b) ES (c) IGO (d) HOG (e) SIFT

(f) OLBP (g) TPLBP (h) FPLBP (i) Gabor Angles (j) Gabor Magnitude

Figure 4.11: Contour plots of the cost function for each feature. The plots show the mean cost function
over 100 images after translating the ground-truth shape over the x and y axis by ±15% (pixels) of the
face size.
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Cost Function

Figure 4.11 illustrates the cost function for each feature type in 2D contour plots. The plots

are generated by translating the ground-truth shape of an image within a grid of ±15% (pixels)

of the face size along the x and y axis and evaluating the cost of Eq. 4.17, where c are the

projection parameters c = UT
a (t(W(p))− ā). The plotted costs are averaged over 100 images.

For each feature we use na = 100 appearance components, so that the experiment is fair and

can be combined with the accuracy results of Sec. 4.5.2. These plots are very informative. The

cost functions of IGO, ES and Gabor Angles have a very narrow region of small errors, which

means that they can be accurate only when their initialization is close to the global optimum.

On the contrary, Gabor Magnitude features have a very broad low error region, which means

that they can quickly reach a small error but they will get stuck to a local minimum that

is probably far from the global optimum. This can also be observed in Fig. 4.7a, where

Gabor Magnitude features converge very fast to a low error but then start to diverge, due

to the multiple local minima of their cost function. Finally, HOG and SIFT features have a

smooth cost and the region of minimum values is large enough to facilitate fast and accurate

convergence.

4.5.3 Comparison with state-of-the-art Face Fitting Methods

Herein we compare the performance of our proposed feature-based AAMs (both AIC and

POIC) against two state-of-the-art facial trackers: Supervised Descent Method (SDM) [171]

and Robust Discriminative Response Map Fitting (DRMF) for Constrained Local Models

(CLMs) [13]. For our feature-based AAMs, we employ the HOG and SIFT features because

they proved to be the most accurate and robust for both face alignment and fitting. We use the

same initialization and experimental setup as in the previous section (Sec. 4.5.2). Specifically,

the AAMs are trained on the 811 images of the LFPW trainset, keeping ns = 15 eigenshapes

and na = 100 eigentextures. For the other two methods, we used the implementations provided

online by their authors with their pre-trained models. Note that both these methods are

trained on thousands of images, much more than the 811 used to train our AAMs. All

methods are initialized using the CDPM face detector [123]. In this experiment we report

results evaluated on 49 landmark points shape mask instead of 68 points. This is because the

SDM framework computes and returns only these 49 points. The 49-point mask occurs by

removing the 17 points of the boundary (jaw) and the 2 points the mouth’s corners from the

68 points shape mask of [69]. Thus this evaluation scheme emphasizes on the internal facial

areas (eyebrows, eyes, nose, mouth).
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Figure 4.12: Performance (mean and standard deviation) of SIFT-AIC and SDM with respect to the
number of training images. The performance is evaluated on Helen testset and is measured with the
mean and standard deviation of the normalized RMS error. In this experiment we use our SDM
implementation [1].
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Figure 4.13: Comparison between our proposed HOG and SIFT AAMs and two state-of-the-art methods
(SDM [171] and DRMF [13]) on LFPW testset. The evaluation is based on 49 points mask, which means
it does not include the face boundary (jaw). For SDM and DRMF we use the code provided by their
authors.

Figures 4.13-4.16 show the results on LFPW testset, AFW, iBUG and Helen train and test

databases, respectively (3026 images in total). A main difference between these two methods

and AAMs is that due to their discriminative nature, they both require many data in order

to generalize well, whilst the generative shape and appearance models of AAMs perform well

with much fewer training images. This is shown in Fig. 4.12 which plots the performance of
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Figure 4.14: Comparison between our proposed HOG and SIFT AAMs and two state-of-the-art methods
(SDM [171] and DRMF [13]) on Helen trainset and testset. The evaluation is based on 49 points mask,
which means it does not include the face boundary (jaw). For SDM and DRMF we use the code
provided by their authors.
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Figure 4.15: Comparison between our proposed HOG and SIFT AAMs and two state-of-the-art methods
(SDM [171] and DRMF [13]) on AFW. The evaluation is based on 49 points mask, which means it does
not include the face boundary (jaw). For SDM and DRMF we use the code provided by their authors.

HOG-AIC and SDM with respect to the number of training images. Since SDMs’s authors

do not provide any training code [171], for this small experiment we employ our SDM version

developed in the Menpo Project [1]. The training images are randomly selected from the 2811

images of LFPW and Helen trainsets and the evaluation is applied on Helen testing set. The
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Figure 4.16: Comparison between our proposed HOG and SIFT AAMs and two state-of-the-art methods
(SDM [171] and DRMF [13]) on iBUG. The evaluation is based on 49 points mask, which means it does
not include the face boundary (jaw). For SDM and DRMF we use the code provided by their authors.

graph shows that SDM keeps improving as the number of training images increases whilst the

SIFT AAMs performance remains almost the same. Finally, Fig. 4.17 shows some indicative

fitting results using all the features employed in this work.

The results indicate that HOG-AIC and SIFT-AIC significantly outperform DRMF and

are also more accurate than SDM. They are more accurate especially when they converge as

can be seen from the percentage of images with error less or equal than 0.02. Even though

SDM and DRMF have smaller computational complexities compared to Tab. 4.2, we find

these results remarkable, considering that our feature-based AAMs are trained using much

fewer training images. Finally, the results show that the HOG and SIFT POIC models have

a similar performance as DRMF.

4.5.4 Results Interpretation and Discussion

In general, it is very difficult to find a strict theoretical difference between the various employed

non-linear features, such as HOG, SIFT, LBP etc., because the design of features still remains

mainly an empirical art rather than an exact science. Nevertheless, we can sketch the difference

between the magnitude of Gabor filters in various scales and orientations and SIFT features.

Gabor features have been used before in literature [112, 63], however our experiments prove

that they are not efficient for generic face alignment and are probably more suitable for person-

specific settings [167, 52].
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4. Feature-based Lucas-Kanade and Active Appearance Models

The difference between the complex response (i.e., having both the magnitude and the phase)

of Gabor filters and other employed features is that the former are produced by the convolution

of a bank of linear filters, hence they are not robust to the facial appearance changes [112].

This is the reason why we prefer to extract non-linear features from the responses, i.e. the

magnitude (modulus) and the phase. Moreover, the difference between the magnitude of

Gabor filters in various scales and orientations and SIFT features can be explained using the

theory on invariant scattering networks [34], according to which SIFT features can be very well

approximated by the modulus of the coefficients of the wavelet transform using a particular

family of wavelets (i.e. partial derivatives of a Gaussian) (for more details please refer to

Section 2.3 of [34]). Convolution with Gabor filters with different scales and orientations

does not constitute a proper wavelet image transform. In general Gabor filter expansion is

not applied in building a wavelet transform, since this requires computation of bi-orthogonal

wavelets, which may be very time-consuming. Therefore, usually a filter bank consisting of

Gabor filters with various scales and rotations [167, 52], as we do in this work, is created

and applied for feature extraction. In general, the results suggest that large-scale features are

very robust and have a high convergence frequency even with initializations that are too far

from ground-truth. However, when the initialization is close to the optimal solution, higher-

frequency features tend to be more accurate. For example the phase filter information may

have excellent localization properties when the deformation is small, but it is very sensitive to

noise and small perturbations.

Finally, we believe that the advantages of the employed features, especially the multi-channel

gradient based ones such as HOG and SIFT, are excellently coupled with the generalization

ability of generative models. In fact, we believe that the most important experimental result

shown in the previous section is that the combination of

1. non-linear least-squares optimization, with

2. robust features, and

3. generative models

can achieve very good performance without the need of large training datasets, which emphas-

izes the main advantage of the proposed framework over discriminative methods.
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4.6 Conclusions

In this chapter, we presented a novel formulation of LK and holistic AAMs alignment al-

gorithms which employs dense feature descriptors for the appearance representation. We

showed, both theoretically and experimentally, that by extracting the features from the input

image once and then warping the features image has better performance and lower compu-

tational complexity than computing features from the warped image at each iteration. This

allows us to take advantage of the descriptive qualities of various features in order to achieve

robust and accurate performance for the problems of face alignment and fitting. Our LK exper-

iments prove that feature-based face alignment is invariant to person ID and extreme lighting

variations. Our face fitting experiments on challenging in-the-wild databases show that the

feature-based AAMs have the ability to generalize well to unseen faces and demonstrate in-

variance to expression, pose and lighting variations. The presented experiments also provide

a comparison between various features and prove that HOG and SIFT are the most powerful.

Finally, we report face fitting results using AAMs with HOG and SIFT features that outper-

form discriminative state-of-the-art methods trained on thousands of images. We believe that

the experimental results are among the major contributions of this work, as they emphasize

that the combination of highly-descriptive features with efficient optimization techniques leads

to deformable models with remarkable performance.
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(a) Face Detection Initialization

(b) HOG

(c) SIFT

(d) IGO

(e) ES

(f) Gabor Angles

(g) Gabor Magnitude

(h) OLBP

(i) TPLBP (similar for FPLBP)

(j) Intensities

Figure 4.17: Fitting examples using feature-based AIC on very challenging images from iBUG database.
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Chapter 5

Active Pictorial Structures
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5.1 Motivation

As explained in Chapter 1, one of the most well-studied deformable models are AAMs [39, 117].

In the previous chapter (Chapter 4), we showed that the combination of the Simultaneous [68]

and Alternating [124, 153] inverse compositional algorithms with powerful features can achieve

very accurate and robust performance. On the other hand, the Project-Out inverse compos-

itional (POIC) [117] algorithm has a real-time complexity but is inaccurate, which makes it

unsuitable for generic settings. Therefore, AAMs have two disadvantages:

1. They are slow and inappropriate for real-time applications.

2. By employing PCA the appearance of the object is modeled with a single multivariate

normal distribution, which, as it will be shown in this chapter, restricts the fitting

accuracy (Fig. 5.1).

Mainly due to the high complexity when using a holistic appearance representation, many

existing methods employ a part-based one. This means that a local patch is extracted from

the neighborhood around each landmark, as shown in Sec. 3.2.3. Among the most important
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5. Active Pictorial Structures

part-based deformable models are Pictorial Structures (PS) [61, 60, 7], their discriminative

descendant Deformable Part Model (DPM) [58, 185] and their extensions like Deformable

Structures [187]. PS learn a patch expert for each part and model the shape of the object using

spring-like connections between parts based on a tree structure. Thus, a different distribution

is assumed for each pair of parts connected with an edge, as opposed to the PCA shape model

of AAMs that assumes a single multivariate normal distribution for all parts. The optimization

aims to find a tree-based shape configuration for which the patch experts have a minimum cost

and is performed using a dynamic programming algorithm based on the distance transform [59].

PS are successfully used for various tasks, such as human pose estimation [179] and face

detection [185, 116]. Their biggest advantage is that they find the global optimum, thus

they are not dependent neither require initialization. The dynamic programming technique

computes all the responses for all the possible configurations of the parts and selects the one

with the minimum cost. However, in practice, PS have two important disadvantages:

1. Inference is very slow.

2. Because the tree structure restricts too much the range of possible realizable shape

configurations, the global optimum, even though it is the best solution in the span of

the model, it does not always correspond to the shape that best describes the object in

reality.

The method proposed in this chapter takes advantage of the strengths, and overcomes the

disadvantages, of both AAMs and PS. We are motivated by the tree-based structure of PS

and we further expand on this concept. Our model can formulate the relations between parts

using any graph structure; not only trees. From AAMs we borrow the use of the Gauss-Newton

algorithm in combination with a statistical shape model. Our weighted inverse compositional

algorithm with fixed Jacobian and Hessian provides close to real-time cost with state-of-the-

art performance. Thus, the proposed model shares characteristics from both AAMs and PS,

hence the name Active Pictorial Structures (APS).

The idea of substituting the PCA shape model with a piece-wise linear model has also been

proposed for 3D facial models in [147]. The most closely related method to the proposed

APS is the Gauss-Newton Deformable Part Model (GN-DPM) [156]. It is a part-based AAM

that takes advantage of the efficient inverse alternating Gauss-Newton technique proposed

in [155] and reports very accurate performance. The two most important differences between

the proposed APS and GN-DPM are that: (i) APS do not model the appearance of an object
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5.1. Motivation

Figure 5.1: A simple visualization motivating the main idea behind APS. We propose to model the
appearance of an object using multiple pairwise distributions based on the edges of a graph (GMRF)
and show that this outperforms the commonly used PCA model under an inverse Gauss-Newton op-
timization framework.

using PCA but assume a different distribution for each pair of connected parts that proves

to perform better, (ii) APS employ a weighted inverse compositional algorithm with fixed

Jacobian and Hessian, which is by definition at least an order of magnitude faster than the

alternating one.

In summary, the contributions of this work are:

• The proposed model combines the advantages of PS (graph-based relations between

parts) and AAMs (weighted inverse Gauss-Newton optimization with statistical shape

model).

• We show that it is more accurate to model the appearance of an object with multiple

graph-based normal distributions, thus using a Gaussian Markov Random Field [131]

structure, rather than a single multidimensional normal distribution (PCA), as is com-

monly done in literature. We also prove that this is not beneficial for modeling an object’s

shape, because the resulting covariance matrix has high rank and the shape subspace

has too many dimensions to be optimized. We also show that employing a tree structure

for the shape model, as done in PS [60, 58, 185], limits the model’s descriptiveness and

hampers the performance.

• We use the spring-like shape model of PS and DPM as a shape prior in the Gauss-Newton

optimization. This deformation term makes the model more robust as it manages to

restrict non-realistic instances of the object’s shape.
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• We propose, to the best of our knowledge, the best performing weighted inverse compos-

itional Gauss-Newton algorithm with fixed Jacobian and Hessian. As it will be shown,

its computational cost reduces to a single matrix multiplication per iteration and is in-

dependent of the employed graph structure. We test the proposed method on the task

of face alignment, because of the plethora of annotated facial data. However, it can also

be applied to other objects, such as eyes, cars etc. Our experiments show that APS

outperform the current state-of-the-art methods.

The content of this chapter is based on the following publication:

• E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. “Active Pictorial Structures”,

Proceedings of IEEE International Conference on Computer Vision and Pattern Recog-

nition (CVPR), Boston, MA, USA, pp. 5435-5444, June 2015.

The rest of the chapter is structured as follows: Section 5.2 explains the training and fitting

of the proposed method. Section 5.3 presents extended experimental results on the human

face and other deformable objects (eyes, cars). Finally, Section 5.4 summarizes the outcomes

of this chapter and draws conclusions.

5.2 Method

In the problem of object alignment in-the-wild, the sparse shape of the object is described

using n landmark points that are usually located on semantic parts of the object, as explained

by Eq. 3.2. The relative location of a landmark point i with respect to a landmark point j is

defined as

`i = [xi, yi]
T

`j = [xj , yj ]
T

}
⇒

dxij = xi − xj
dyij = yi − yj
d`ij = `i − `j = [dxij , dyij ]

T

(5.1)

Furthermore, we employ the part-based appearance representation of Eq. 3.11. To facilitate

notation, let us define a function A : R2n −→ Rmn that extracts a feature-based image vector

given a shape instance, as

A(s) =
[
F(`1)T,F(`2)T, . . . ,F(`n)T

]T
(5.2)

The function concatenates all the vectorized feature-based image patches that correspond to

the n landmarks of the shape instance in a vector of length mn.

76



5.2. Method

5.2.1 Graphical Model

Let us define an undirected graph between the n landmark points of an object as

G = (V,E) (5.3)

where V = {v1, v2, . . . , vn} is the set of n vertexes and there is an edge (vi, vj) ∈ E for each

pair of connected landmark points. Moreover, let us assume that we have a set of random

variables

X = {Xi} , ∀i : vi ∈ V (5.4)

which represent an abstract feature vector of length k extracted from each vertex vi, i.e.,

xi, i : vi ∈ V (e.g. the location coordinates, appearance vector etc.). We model the likelihood

probability of two random variables that correspond to connected vertexes with a normal

distribution
p(Xi = xi, Xj = xj |G) ∼ N (µij ,Σij),

∀i, j : (vi, vj) ∈ E
(5.5)

where µij is the 2k × 1 mean vector and Σij is the 2k × 2k covariance matrix. Consequently,

the cost of observing a set of feature vectors {xi},∀i : vi ∈ V can be computed using a

Mahalanobis distance per edge, i.e.

∑
∀i,j:(vi,vj)∈E

([
xi

xj

]
− µij

)T

Σ−1
ij

([
xi

xj

]
− µij

)
(5.6)

In practice, the computational cost of computing Eq. 5.6 is too expensive because it requires

looping over all the graph’s edges. Especially in the case of a complete graph, it makes it

impossible to perform inference in real time.

Inference can be much faster if we convert this cost to an equivalent matrical form as

(x− µ)T Σ−1 (x− µ) (5.7)

This is equivalent to modeling the set of random variables X with a Gaussian Markov Random

Field (GMRF) [131]. A GMRF is described by an undirected graph, where the vertexes stand

for random variables and the edges impose statistical constraints on these random variables.

Thus, the GMRF models the set of random variables with a multivariate normal distribution

p(X = x|G) ∼ N (µ,Σ) (5.8)

where

µ =
[
µT

1 , . . . ,µ
T
n

]T
=
[
E(X1)T, . . . , E(Xn)T

]T
(5.9)
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is the nk × 1 mean vector and Σ is the nk × nk overall covariance matrix. We denote by Q

the block-sparse precision matrix that is the inverse of the covariance matrix, i.e.,

Q = Σ−1 (5.10)

By applying the GMRF we make the assumption that the random variables satisfy the three

Markov properties (pairwise, local and global) and that the blocks of the precision matrix that

correspond to disjoint vertexes are zero, i.e.,

Qij = 0k×k, ∀i, j : (vi, vj) /∈ E (5.11)

By defining Gi = {(i− 1)k+ 1, (i− 1)k+ 2, . . . , ik} to be a set of indices for sampling a matrix

and by equalizing Eqs. 5.6 and 5.7 we can prove that the structure of the precision matrix is

Q =



∑
∀j:(vi,vj)∈E

Σ−1
ij (G1,G1)+

∑
∀j:(vj ,vi)∈E

Σ−1
ji (G2,G2), ∀vi ∈ V, at (Gi,Gi)

Σ−1
ij (G1,G2), ∀i, j : (vi, vj) ∈ E, at (Gi,Gj)

and (Gj ,Gi)

0, elsewhere

(5.12)

Using the same assumptions and given a directed graph (cyclic or acyclic) G = (V,E), where

(vi, vj) ∈ E denotes the relation of vi being the parent of vj , we can show that

(x− µ)T Q (x− µ) =

=
∑

∀i,j:(vi,vj)∈E

(
xi − xj − µij

)T
Σ−1
ij

(
xi − xj − µij

) (5.13)

is true if

Q =



∑
∀j:(vi,vj)∈E

Σ−1
ij +

∑
∀j:(vj ,vi)∈E

Σ−1
ji , ∀vi ∈ V, at (Gi,Gi)

−Σ−1
ij , ∀i, j : (vi, vj) ∈ E, at (Gi,Gj)

and (Gj ,Gi)

0, elsewhere

(5.14)

where µij = E(Xi −Xj) and

µ =
[
µT

1 , . . . ,µ
T
n

]T
=
[
E(X1)T, . . . , E(Xn)T

]T
(5.15)
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In this case, if G is a tree, then we have a Bayesian network. Please refer to Appendix A.1 for

detailed proofs of Eqs. 5.12 and 5.14.

5.2.2 Model Training

APS differ from most existing generative object alignment methods because they assume a

GMRF structure in order to model the appearance and the deformation of an object. As we

show in the experiments, this assumption is the key that makes the proposed method efficient

and accurate.

In order to train APS, assume that we have a set of N training images
{
I1, . . . , IN

}
with

the corresponding ground truth (manually annotated) shapes
{
s1, . . . , sN

}
.

Shape Model

APS use a statistical shape model built using PCA, similar to the PDM employed in most

existing parametric methods such as AAMs, CLMs and GN-DPMs. As explained in Sec. 3.1,

the procedure involves the alignment of the training shapes with respect to their rotation,

translation and scaling (similarity transform) using Procrustes analysis, the subtraction of the

mean shape and the application of PCA. We further augment the acquired subspace with four

eigenvectors that control the global similarity transform of the object, re-orthonormalize [117]

and keep the first ns eigenvectors. Thus, we end up with a linear shape model {s̄,U ∈
R2n×ns}, where s̄ =

[
E(`1)T, . . . , E(`n)T

]T
is the 2n × 1 mean shape vector and U denotes

the orthonormal basis.

Let us define a function S ∈ R2n with slightly different signature than Eq. 3.4. Specifically,

it generates a shape instance given the linear model’s basis, an input shape and a parameters’

vector (weights) as

S(U, s,p) = s + Up (5.16)

where p = [p1, p2, . . . , pns ]
T are the parameters’ values. Similarly, we define the set of functions

Si ∈ R2, ∀i = 1, . . . , n that return the coordinates of the ith landmark of the shape instance

as

Si(U, s,p) = s2i−1,2i + U2i−1,2ip, ∀i = 1, . . . , n (5.17)

where s2i−1,2i denotes the coordinates’ vector of the ith landmark point, i.e., `i = [xi, yi]
T, and

U2i−1,2i denotes the 2i− 1 and 2i row vectors of the shape subspace U. Note that from now

onwards, for simplicity, we will write S(s,p) and Si(s,p) instead of S(U, s,p) and Si(U, s,p)

respectively.
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Another way to build the shape model is by using the GMRF structure (Fig. 5.1). Spe-

cifically, given an undirected graph Gs = (V s, Es) and assuming that the pairwise locations’

vector of two connected landmarks follows a normal distribution as in Eq. 5.5, i.e.,

[`Ti , `
T
j ]T ∼ N (µsij ,Σ

s
ij), ∀i, j : (vsi , v

s
j ) ∈ Es (5.18)

we formulate a GMRF. Following Eq. 5.8 and using the shape vector of Eq. 3.2, this can be

expressed as

p(s|Gs) ∼ N (s̄,Σs) (5.19)

where the precision matrix Qs is structured as shown in Eq. 5.12 with xi = `i and k =

2. Then, after constructing the precision matrix, we can invert it and apply PCA on the

resulting covariance matrix Σs = (Qs)−1 in order to obtain a linear shape model. Even

though, as we show below, the GMRF-based modeling creates a more powerful appearance

model representation, it does not do the same for the shape model. Our experiments suggest

that the single Gaussian PCA shape model is more beneficial than any other model that

assumes a GMRF structure. This can be explained by the fact that Σs ends up having a

high rank, especially if Gs has many edges. As a result, most of its eigenvectors correspond

to non-zero eigenvalues and they express a small percentage of the whole data variance. This

means that during fitting we need to employ a large number of eigenvectors (ns ≈ 2n), much

more than in the case of a single multivariate distribution, which makes the Gauss-Newton

optimization very unstable and ineffective.

Appearance Model

In most AAM-like formulations, the appearance model is built by warping all textures to a

reference frame, vectorizing and building the PCA model. In this work, we propose to model

the appearance of an object using a GMRF graphical model, as presented in Sec. 5.2.1. In

contrast to the shape model case, the GMRF-based appearance model is more powerful than

its PCA counterpart. Specifically, given an undirected graph Ga = (V a, Ea) and assuming

that the concatenation of the appearance vectors of two connected landmarks can be described

by a normal distribution (Eq. 5.5), i.e.,[
F(`i)

T,F(`j)
T
]T
∼ N (µaij ,Σ

a
ij), ∀i, j : (vai , v

a
j ) ∈ Ea (5.20)

we form a GMRF that, using Eq. 5.2, can be expressed as

p(A(s)|Ga) ∼ N (ā,Σa) (5.21)
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5.2. Method

where ā =
[
E(F(`1))T, . . . , E(F(`n))T

]T
is the mn × 1 mean appearance vector and Qa =

(Σa)−1 is the mn ×mn precision matrix that is structured as shown in Eq. 5.12 with xi =

F(`i) and k = m. During the training of the appearance model, we utilize the low rank

representation of each edgewise covariance matrix Σa
ij by using the first na singular values

of its SVD factorization. Given ā and Qa, the cost of an observed appearance vector A(s)

corresponding to a shape instance s = S(s̄,p) in an image is

‖A(S(s̄,p))− ā‖2Qa =

= [A(S(s̄,p))− ā]T Qa [A(S(s̄,p))− ā]
(5.22)

Our experiments show that all the tested GMRF-based appearance models greatly outperform

the PCA-based one.

Deformation Prior

Apart from the shape and appearance models, we also employ a deformation prior that is

similar to the deformation models used in [60, 185]. Specifically, we define a directed (cyclic or

acyclic) graph between the landmark points as Gd = (V d, Ed) and model the relative locations

between the parent and child of each edge with the GMRF of Eq. 5.13. We assume that the

relative location between the vertexes of each edge, as defined in Eq. 5.1, follows a normal

distribution

`i − `j ∼ N (µdij ,Σ
d
ij), ∀(i, j) : (vdi , v

d
j ) ∈ Ed (5.23)

and model the overall structure with a GMRF that has a 2n× 2n precision matrix Qd given

by Eq. 5.14 with k = 2. The mean relative locations vector used in this case is the same as the

mean shape s̄, because µdij = E(`i − `j) = E(`i) − E(`j). As mentioned in [60], the normal

distribution of each edge’s relative locations vector in some sense controls “the stiffness of a

spring connecting the two parts”. In practice, this spring-like model manages to constrain

extreme shape configurations that could be evoked during fitting with very bad initialization,

leading the optimization process towards a better result. Given s̄ and Qd, the cost of observing

a shape instance s = S(s̄,p) is

‖S(s̄,p)− s̄‖2Qd = ‖S(s̄,p)− S(s̄,0)‖2Qd =

=S(0,p)TQdS(0,p)
(5.24)

where we used the properties S(s̄,0) = s̄ + U0 = s̄ and S(s̄,p)− s̄ = s̄ + Up− s̄ = S(0,p).
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5.2.3 Gauss-Newton Optimization

The trained shape, appearance and deformation models can be combined to localize the land-

mark points of an object in a new testing image I. Specifically, given the appearance and

deformation costs of Eqs. 5.22 and 5.24, the cost function to be optimized is

argmin
p
‖A(S(s̄,p))− ā‖2Qa + ‖S(s̄,p)− s̄‖2Qd (5.25)

We minimize the cost function with respect to the shape parameters p using a variant of

the Gauss-Newton algorithm [71, 117, 18]. The optimization procedure can be applied in

two different ways, depending on the coordinate system in which the shape parameters are

updated: (i) forward and (ii) inverse. Additionally, the parameters update can be carried

out in two manners: (i) additive and (ii) compositional, which we show that in the case of

our model they are identical. However, the forward additive algorithm is very slow compared

to the inverse one. This is the reason why herein we only present and experiment with the

inverse case. Please refer to Appendix A.2 for a derivation of the forward case.

Inverse-Compositional

The compositional update has the form

S(s̄,p)← S(s,p) ◦ S(s̄,∆p)−1 (5.26)

As also shown in [156], by expanding this expression we get

S(s,p) ◦ S(s̄,∆p)−1 = S(S(s̄,−∆p),p) = S(s̄,p−∆p) (5.27)

Consequently, due to the translational nature of our motion model, the compositional para-

meters update is reduced to the parameters subtraction, as

p← p−∆p (5.28)

which is equivalent to the additive update. By using this compositional update of the paramet-

ers and having an initial estimate of p, the cost function of Eq. 5.25 is expressed as minimizing

argmin
∆p

‖A(S(s̄,p))− ā(S(s̄,∆p))‖2Qa +

+ ‖S(s̄,p)− S(s̄,∆p)‖2Qd

(5.29)

with respect to ∆p. With some abuse of notation due to ā being a vector, ā(S(s̄,∆p)) can

be described as

ā(S(s̄,∆p)) =


µa1(S1(s̄,∆p))

...

µan(Sn(s̄,∆p))

 (5.30)
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where µai = E(F(`i)),∀i = 1, . . . , n. This formulation gives the freedom to each landmark

point of the mean shape to slightly move within its reference frame. The reference frame of

each landmark is simply the h× w patch neighborhood around it, in which µai is defined. In

order to find the solution we need to linearize around ∆p = 0 as{
ā(S(s̄,∆p)) ≈ ā + Jā|p=0 ∆p

S(s̄,∆p) ≈ s̄ + JS |p=0 ∆p
(5.31)

where

JS |p=0 = JS =
∂S
∂p

= U (5.32)

is the 2n× ns shape Jacobian and Jā|p=0 = Jā is the mn× ns appearance Jacobian

Jā = ∇ā
∂S
∂p

= ∇āU =


∇µa1U1,2

...

∇µanU2n−1,2n

 (5.33)

where U2i−1,2i denotes the 2i − 1 and 2i row vectors of the basis U. Note that we make an

abuse of notation by writing ∇µai because µai is a vector. However, it represents the gradient

of the mean patch-based appearance that corresponds to landmark i and it has size m × 2.

By substituting, taking the partial derivative with respect to ∆p, equating it to 0 and solving

for ∆p we get

∆p = H−1[Jā
TQa (A(S(s̄,p))− ā) + HSp] (5.34)

where
Hā = Jā

TQaJā

HS = JS
TQdJS = UTQdU

}
⇒ H = Hā + HS (5.35)

is the combined ns × ns Hessian matrix and we use the property JS
TQd (S(s̄,p)− s̄) =

UTQdUp = HSp. Note that Jā, Hā, HS and H−1 of Eq. 5.34 can be precomputed. The

computational cost per iteration is only O(mnns). The cost is practically reduced to a mul-

tiplication between a ns ×mn matrix and a ns × 1 vector that leads to a close to real-time

performance, similar to the one of the very fast SDM method [171].

Derivation of Existing Methods

The APS model shown in the cost function of Eq. 5.25 is an abstract formulation of a generative

model from which many existing models from the literature can be derived.

PS [60], DPM [185] As explained in Sec. 5.1, the proposed model is partially motivated

by PS [60, 185]. In the original formulation of PS, the cost function to be optimized has the
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form

argmin
s

n∑
i=1

mi(`i) +
∑

i,j:(vi,vj)∈E

dij(`i, `j) =

= argmin
s

n∑
i=1

[A(`i)− µai ]T(Σa
i )
−1[A(`i)− µai ] +

∑
i,j:(vi,vj)∈E

[`i − `j − µdij ]T(Σd
ij)
−1[`i − `j − µdij ]

(5.36)

where s = [`T1 , . . . , `
T
n ]T is the vector of landmark coordinates (`i = [xi, yi]

T, ∀i = 1, . . . , n),

A(`i) is a feature vector extracted from the image location `i and we have assumed a tree

G = (V,E). {µai ,Σa
i } and {µdij ,Σd

ij} denote the mean and covariances of the appearance and

deformation, respectively. In Eq. 5.36, mi(`i) is a function measuring the degree of mismatch

when part vi is placed at location `i in the image. Moreover, dij(`i, `j) denotes a function

measuring the degree of deformation of the model when part vi is placed at location `i and

part vj is placed at location `j . The authors show an inference algorithm based on distance

transform [59] that can find a global minimum of Eq. 5.36 without any initialization. However,

this algorithm imposes two important restrictions:

1. The appearance of each part is independent of the rest of them.

2. G must always be acyclic (a tree).

Additionally, the computation of mi(`i) for all parts (i = 1, . . . , n) and all possible image

locations (response maps) has a high computational cost, which makes the algorithm very

slow. Finally, in [185], the authors only use a diagonal covariance for the relative locations

(deformation) of each edge of the graph, which restricts the flexibility of the model.

In the proposed APS, we aim to minimize the cost function of Eq. 5.25 which can be

expanded as

argmin
p
‖A(S(s̄,p))− ā‖2Qa + ‖S(s̄,p)− s̄‖2Qd =

= argmin
p

[A(S(s̄,p))− ā]TQa[A(S(s̄,p))− ā] + [S(s̄,p)− s̄]TQd[S(s̄,p)− s̄]
(5.37)

There are two main differences between APS and PS:

1. We employ a statistical shape model and optimize with respect to its parameters.

2. We use the efficient Gauss-Newton optimization technique.
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However, these differences introduce some important advantages. The proposed formulation

allows to define a graph (not only tree) between the object’s parts. This means that we can

assume dependencies between any pair of landmarks for both the appearance and the deform-

ation, as opposed to PS that assumes independence for the appearance and a tree structure

for the deformation. As shown in the experimental results of Sec. 5.3.1, this lack of restric-

tion is very beneficial. Finally, even though the efficient Gauss-Newton APS optimization

does not find a global optimum, it handles the cost function in its matricial form (not in

sums as in Eq. 5.36) and with an inverse-compositional manner, which ends up in much faster

computational time that does not get affected by the graph structure.

AAM-POIC [117]. By removing the deformation prior from Eq. 5.25 and using a single

multidimensional normal distribution in the shape and appearance models, the proposed APS

are equivalent to AAMs. After performing an eigenanalysis on the appearance covariance

matrix (Σa = WDWT), the POIC optimization of an AAM can be derived from the presented

inverse algorithm by using as precision matrix the complement of the texture subspace, i.e.,

Qa = E −WWT. The part-based AAM of [156] uses an alternating optimization similar

to [153]. Its project-out equivalent can be derived by using the above precision matrix.

BAAM-POIC [3]. Similar to the AAM-POIC, the Bayesian AAM can be formulated

by replacing the precision matrix with Qa = WD−1WT + 1
σ2 (E −WWT). This precision

matrix is derived by applying the Woodbury formula on the covariance matrix WDWT+σ2E,

where σ2 is the variance of the noise in the appearance subspace W. The above highlight the

flexibility and strengths of the proposed model. As shown in Sec 5.3.2, the proposed GMRF-

based appearance model makes our inverse technique, to the best of our knowledge, the best

performing one among all inverse algorithms with fixed Jacobian and Hessian (e.g., POIC).

5.3 Experimental Results

In this section we present a comprehensive evaluation of the different ways in which APS

can be used to model the shape and appearance of an object and compare their performance

against state-of-the-art Deformable Models. In all presented cases, the proposed APS are built

using a two-level pyramid. We keep about 92% of the shape variance and set na = 150 for

both levels that corresponds to about 80% of the appearance variance. The appearance is

represented either by pixel intensities or dense SIFT [109] with 8 channels and the extracted

patch size is 17 × 17. The accuracy of the fitting results is measured by the point-to-point

RMS error between the fitted shape and the ground truth annotations, normalized by the face
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(a) Complete graph (b) Chain per area (c) Chain and complete per area

(d) Chain and complete per area
with connections between them

(e) Minimum spanning tree (f) Empty graph

Figure 5.2: Employed GMRF graph structures.

size, as proposed in [185]. Note that our Python implementation of APS runs at 50ms per

frame, which is very close to real-time. We believe that with further code optimization, APS

are likely to be capable of running in real-time on high end desktop/laptop machine. Their

time complexity is independent of the graph structure that is employed.

5.3.1 Internal Experimental Analysis

Herein, we present three experiments as a proof of concept regarding the formulation of APS.

Specifically, we aim to examine the contribution of each one of the shape, appearance and

deformation models and evaluate various graph structures. The model is trained using the

811 images of LFPW [22] train set and tested on the corresponding test set. We use the

annotations provided by the 300W competition [133, 134, 132] and evaluate using 66 landmark

points which are derived by removing landmarks 61 and 65 from the 68-points mark-up. In

this set of experiments, we don’t extract any appearance features and only use pixel intensities.

Figure 5.2 shows the graph structures that we employ for the purpose of these experiments.

86



5.3. Experimental Results

Note that the minimum spanning tree (MST) is computed as shown in [60]. The fitting

process of the presented experiments is initialized by adding Gaussian noise to the global

similarity transform retrieved from the ground truth annotations (without in-plane rotation)

and applying it to the mean shape s̄. We set the standard deviation of the random noise to

0.04, which generates very challenging initializations.

Graph type Ga mean ± std median ≤ 0.04

Fig. 5.2a 0.0399 ± 0.0227 0.0324 68.3%

Fig. 5.2b 0.0391 ± 0.0243 0.0298 69.6%

Fig. 5.2c 0.0506 ± 0.0371 0.0370 58.9%

Fig. 5.2d 0.0492 ± 0.0373 0.0354 58.9%

Fig. 5.2e 0.0413 ± 0.0257 0.0316 65.2%

Fig. 5.2f 0.0398 ± 0.0246 0.0319 66.5%

PCA 0.0716 ± 0.0454 0.0595 25.5%

Initialization 0.0800 ± 0.0280 0.0768 4.0%

Table 5.1: Comparison of the GMRF-based and the PCA-based appearance model of APS.

Beginning with the appearance model, Tab. 5.1 reports the performance when using a

GMRF with the graph structures of Fig. 5.2 and when using a single multivariate normal

distribution through PCA. The performance is reported in the form of statistical measures

(mean, median and standard deviation) and as the percentage of the testing images that

achieved a final error ≤ 0.04 (value at which the result is considered adequately good by

visual inspection). For this experiment, we use a PCA shape model and a deformation prior

with the MST. The improvement is significantly high. Even the empty graph, which generates

a block diagonal precision matrix Qa, thus it assumes independence between all parts, greatly

outperforms the PCA case. The most appropriate graph structure is the one of Fig. 5.2b,

which suggests that, for the case of faces, it is better to connect the landmarks of each facial

area (eyes, mouth, nose etc.) between them and avoid relating the areas between each other.

Table 5.2 presents the same experiment for the shape model and the results are opposite

to those of the appearance model. However, this is a well expected result. As mentioned

in Sec. 5.2.2, the appearance model utilizes directly the constructed block sparse precision

matrix. On the contrary, we need to decompose the covariance matrix (Σs = (Qs)−1) of the

shape model in order to learn a parametric subspace that will be used during optimization.

However, due to the block sparse formulation, the resulting covariance matrix has high (in

some cases full) rank. Most eigenvalues are non-zero and they represent a small percentage
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Graph type Gs mean ± std median ≤ 0.04

Fig. 5.2a 0.0495 ± 0.0273 0.0420 45.5%

Fig. 5.2b 0.0496 ± 0.0276 0.0438 45.5%

Fig. 5.2c 0.0503 ± 0.0262 0.0433 44.2%

Fig. 5.2d 0.0495 ± 0.0257 0.0434 44.6%

Fig. 5.2e 0.0519 ± 0.0306 0.0437 43.8%

Fig. 5.2f 0.0492 ± 0.0249 0.0437 42.9%

PCA 0.0412 ± 0.0295 0.0301 65.6%

Initialization 0.0800 ± 0.0280 0.0768 4.0%

Table 5.2: Comparison of the GMRF-based and the PCA-based shape model of APS.

of the data variance. Thus by keeping more than 90% of the total variance, the model ends

up with too many modes of variation (about 100 in the case of 68 vertexes and depending on

the graph structure). Consequently, it is very hard to apply a robust optimization in such a

parametric space, as the search space is too large.

Deformation Shape model Gs

prior Gd Fig. 5.2a PCA

No prior 0.1327 ± 0.0857 0.0429 ± 0.0267

Fig. 5.2b 0.0524 ± 0.0256 0.0430 ± 0.0240

Fig. 5.2e 0.0495 ± 0.0273 0.0391 ± 0.0243

Table 5.3: Comparison of the GMRF-based and the PCA-based deformation prior of APS in combin-
ation with the GMRF-based and the PCA-based shape model.

Finally, Tab. 5.3 examines the contribution of the deformation prior of Eq. 5.25. We use

the graph of Fig. 5.2b for the appearance model and we test for two cases of the shape model:

PCA and GMRF with a complete graph (Fig. 5.2a). The results prove that the prior plays an

important role in both cases, as it improves the result. Especially in the case of the GMRF,

the improvement is significant. Given the previous analysis about the non robust behavior of

a GMRF shape model, this result is expected because the prior term will prevent the shape

model from generating non-realistic instances of the face.

5.3.2 Comparison with State-of-the-Art Methods

Figures 5.3a and 5.3b aim to compare the accuracy and convergence speed of APS against

the other existing inverse compositional techniques with fixed Jacobian and Hessian (POIC)
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Figure 5.3: Comparison of APS accuracy and convergence with other inverse compositional methods
with fixed Jacobian and Hessian on AFW database. The dashed vertical black line in (b) denotes the
transition from lower to higher pyramidal level.

mentioned in 5.2.3. AAM-POIC [117] and BAAM-POIC [3] denote the POIC optimization

of an AAM and a Bayesian AAM. AAM-DPM-POIC refers to the inverse algorithm that can

be combined with the AAM part-based model of [156]. All methods are trained on LFPW

database in the same manner, using the same pyramid and extracting dense SIFT features

with 8 channels. For all of them we keep ns = 5 and ns = 15 shape components for the low

and high levels respectively, that correspond to about 92% of the total shape variance, and
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Figure 5.4: Comparison of APS with current state-of-the-art methods on AFW database.

APS SDM SIFT-AAM GN-DPM DPM/PS

0.0415 0.0453 0.0423 0.0686 0.0585

Table 5.4: Mean values of the cumulative error curves reported in Fig. 5.4.

na = 150 appearance components for both levels. The results, which are computed using 66

landmark points, are reported on the challenging AFW [185] database and indicate that the

proposed method outperforms all existing inverse-compositional techniques by a significant

margin. Most importantly, APS need very few number of iterations in order to converge (less

than 10 at the first pyramidal level and no more than 4 at the second), which highlights their

close to real-time computational complexity.

Figure 5.4 compares APS against the current state-of-the-art techniques: SDM [171], the

recently proposed GN-DPM [156] and SIFT-AAM [8, 9]. The initialization for all methods is

done using the bounding box of the landmark points returned by DPM [185] (the black dashed

line). For all the methods we used the pre-trained implementations provided by their authors,

except SIFT-AAM which we trained using the Menpo Project [1]. Note that all competing

methods are trained on much more data than the 811 LFPW images that we use. The result is

reported on the AFW database and computed based on 49 points, which is the mark-up that

both SDM and GN-DPM return. Table 5.4 reports the mean values of the cumulative error

curves of Fig. 5.4. These results show that APS outperform all methods and are more robust.
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Note that GN-DPM is very accurate when the initialization is close to the ground-truth but

is not robust against bad initializations, as indicated by its large mean error value. Finally,

Fig. 5.5 shows some indicative fitting examples.

(a) Initialization

(b) Final fitting

Figure 5.5: Fitting results on the AFW facial database. These are indicative results that correspond
to the curve of Fig. 5.4.

5.3.3 Results on Other Deformable Objects

Note that APS is a flexible patch-based Deformable Model that can also be applied to the

landmark localization of other objects. Herein, we show indicative results for the case of eyes

and cars. In the case of cars, we employ the sideview (view 2) images from CMU database [28,

104], which we split in 450 and 151 training and testing images, respectively. For eyes, we

use our in-house annotated database that consists of 38 manually annotated landmarks and

it has 600 and 400 training and testing images respectively. Figure 5.6 shows the cumulative

fitting error curves for both objects. For the initialization, we add Gaussian noise to the global

similarity transform retrieved from the ground-truth annotations (without in-plane rotation)

and apply it to the mean shape of the object. The standard deviation of the noise is set to

0.06.

Finally, Figs. 5.7 and 5.8 show some indicative fitting examples for both objects. Note that

in the case of human eyes, most of the error is accumulated by the should be the upper and

lower sclera, because it is a region without any distinctive features.
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Figure 5.6: Fitting results of APS for human eyes and cars.

(a) Initialization

(b) Final fitting

Figure 5.7: Fitting results on open eyes. These are indicative results that correspond to the curve of
Fig. 5.6a.

(a) Initialization

(b) Final fitting

Figure 5.8: Fitting results on cars sideview. These are indicative results that correspond to the curve
of Fig. 5.6b.
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5.4 Conclusions

In this chapter, we proposed a powerful part-based generative model that combines the main

ideas behind PS and AAMs. APS employ a graph-based modeling of the appearance and

use a variant of the Gauss-Newton technique to optimize with respect to the parameters of a

statistical shape model. Our experiments show that modeling the patch-based appearance of

an object with a GMRF structure is more beneficial than applying a PCA model. APS also

introduce a spring-like deformation prior term that makes them robust to bad initializations.

The method has a close to real-time fitting performance, which is the same independent of the

graph structure that is employed, and as shown in our experiments needs only a few iterations

to converge. Even though we show experiments only for the task of face alignment, we believe

that the method is also suitable for other object classes, especially articulated objects (e.g.,

hands, body pose) for which the combination of patch-based appearance with the deformation

prior can make a significant difference.
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Chapter 6

Automatic Construction of Deformable

Models
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6.1 Motivation

In order to train Deformable Models with good generalization ability, a large amount of care-

fully annotated data is needed. Developing useful datasets and benchmarks that can contribute

in the progress of an application domain is a highly time consuming and costly procedure. It

requires both careful selection of the images, so that they can model the vast amount of an

object’s variability, and careful annotation of the various parts of the object (or landmarks).

The amount of annotation that is required depends on both the object and the application.

In faces, for example, where many landmark points are needed in tasks such as facial ex-

pression analysis, motion capture and expression transfer, usually more than 60 points are

annotated [22, 97, 185, 133, 134, 132]. To illustrate how much time consuming careful face an-

notation is, according to our experience, a trained annotator may need an average of 5 minutes

per image for the manual annotation of 68 landmarks. This highly depends on many factors

such as the image’s illumination and resolution, the presence of occlusions and the face’s pose

and expression. Thus, the annotation of 1000 images requires a total of about 83 hours. Note

that it is very difficult to consecutively annotate for more than 4 hours. Furthermore, in many
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cases, fatigue can cause errors on the accuracy and consistency of annotations and they may

require correction.

In this chapter, we deal with the problem of automatically constructing a robust Deformable

Model using

1. A simple bounding box object detector, and

2. A shape by means of a Point Distribution Model (PDM) (Sec. 3.1)

The detector can be as simple as the Viola-Jones object detector [162, 163, 164] which returns

only a bounding box of a detected object. Such detectors are widely employed in commercial

products (e.g., even the cheapest digital camera has a robust face detector). Other detectors

that can be used are efficient sub-window search [95] and DPM [185]. The annotations that

are needed to train the object detector can be acquired very quickly, since only a bounding

box containing the object is required. Specifically, after selecting the images that are going to

be used, the annotation procedure takes a couple of seconds per image. The statistical shape

model can be created by using only 40-50 shape examples, which can be produced by either

drawing possible shape variations of the 2D shape of the object or projecting 3D CAD model

instances of the object on the 2D camera plane (such an example is shown in [186] for cars).

Even the annotation of the shape examples is not a time consuming task, due to their small

number. Furthermore, there are unsupervised techniques to learn the shape prior (model)

directly from images [77, 88].

The two most closely related works to the proposed method are the automatic construction

of AAMs [19] and the so-called RASL methodology [126] for person-specific face alignment.

There are two main differences between our framework and [19]:

1. We use a predefined statistical shape model instead of trying to find both the shape

and appearance models. We believe that with the current available optimization tech-

niques, it is extremely difficult to simultaneously optimize for both the texture and shape

parameters.

2. We employ the robust component analysis of [158] for the appearance which deals with

outliers.

Thus, even though our method is similar in concept to [19], these two differences make the

problem feasible to solve. In particular, the methodology in [19] fails to create a generic
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model even in controlled recording conditions, due to extremely high dimensionality of the

parameters to be found and to the sensitivity of the subspace method to outliers. This was

probably one of the reasons why the authors demonstrate very limited and only person-specific

experiments. Furthermore, our methodology bypasses some of the limitations of [126], which

requires the presence of only one low-rank subspace, hence it has been shown to work only

for the case of congealing images of a single person. Finally, we argue that in order for an

automatically constructed AAM methodology to be robust to both within-class and out-of-

class outliers1, which cannot be avoided in totally unsupervised settings, statistical component

analysis techniques should be employed [19].

To summarize, the contributions of this work are as follows:

• We propose the first, to the best of our knowledge, methodology for automatic construc-

tion of both a generative and a discriminative AAM given only a dataset of images with

the respective bounding boxes and a statistical shape model (PDM). Even though our

method uses a similar texture model to [153], it is considerably different, since in that

work an AAM is built using only annotated data, while our technique constructs the

texture model in a fully automatic manner.

• We propose a discriminatively trained AAM methodology using the robust component

analysis in [158]. Inspired by the recent success in applying a cascade of regressors [50,

171, 36, 136] to discriminatively learn a model for face alignment, we follow a similar line

of research. The proposed discriminative AAM uses the robust component analysis [158]

due to the fact it is trained on automatically annotated data, hence it needs to be robust

to all kinds of outliers.

• Overall, the proposed methodology constructs a very powerful model, by iteratively

training a generative fully automatically built AAM and then a discriminative AAM

learned from the fitted shapes of the generative AAM. The method can be applied to

the detection of any deformable object and thus to automatic classification/recognition

applications. This is the first, to the best of our knowledge, fully automatic methodology

for creating deformable model that outperforms state-of-the-art methodologies that were

trained directly on the manually annotated data.

The content of this chapter is based on the following publication:

1Within-class outliers refer to outliers present in the image of an object such as occlusion. Out-of-class
outliers refer to images of irrelevant objects or to background.
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• E. Antonakos, and S. Zafeiriou. “Automatic Construction of Deformable Models In-

The-Wild”, Proceedings of IEEE International Conference on Computer Vision and Pat-

tern Recognition (CVPR), Columbus, OH, USA, pp. 1813-1820, June 2014.

The rest of the chapter is structured as follows: Section 6.2 gives an overview of the proposed

method where Sections 6.2.1 and 6.2.2 elaborate on the generative and discriminative models,

respectively. Section 6.3 shows extended experimental results. Finally, Section 6.4 draws

conclusions.

6.2 Method

Assuming the existence of a statistical shape model of an object (PDM), our method auto-

matically trains a generative AAM and in extension a discriminative AAM, by only using

a dataset of totally unconstrained in-the-wild images containing the object and the corres-

ponding bounding boxes. This is achieved by alternatingly constructing a generative and a

discriminative Deformable Model. At each iteration, the training of each of the two mod-

els utilizes the fitted shapes computed with the other already trained model. This iterative

procedure is demonstrated in Fig. 6.1.

Specifically, we separate our set of images and the corresponding bounding boxes in two

disjoint equally-sized datasets, referred to as the generative and the discriminative that are

used for the training of the respective models. The first generative model is trained on the

initial shapes extracted by initializing the PDM mean shape in the bounding boxes. At

each iteration, the currently trained generative model is used to find the fitted shapes on the

discriminative database’s images. Then, a discriminative model is trained on these shapes.

At the next iteration, the currently trained discriminative model is applied on the images of

the generative database to extract the shapes estimations. A new version of the generative

model is then trained based on these extracted shapes of the generative dataset. At the end

of this iterative procedure, we train a final generative and discriminative AAM on the unified

database of both datasets.

This alternating training of each model followed by the supply of updated shapes to the other

and vice versa manages to continuously improve the fitted shapes, leading to more accurate

models. The role of the discriminative model is especially crucial, as it moves the generative

model from the local optimum that it stuck. Next, in Sec. 6.2.1 and 6.2.2 we present the

generative and discriminative models, respectively.
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Figure 6.1: Automatic construction of deformable models. Given two sets of disjoint in-the-wild images
and the object detector bounding boxes, our method automatically trains an AAM by training a
generative and a discriminative model in an alternating manner.

6.2.1 Automatic Construction of a Generative AAM

The generative model employed in this work is no different than the holistic AAM presented

in Chapter 4. However, in this work, the appearance model is trained by employing the robust

subspace analysis proposed in [158], which uses the image gradient orientations (IGO features).

Given an image t in vectorial form with size LT ×1, the so-called normalized gradients feature

extraction function F(t) involves the computation of the image gradients gx, gy and the

corresponding gradient orientation ϕ = arctan (gy/gx) as

F(t) =
1√
LT

[cosϕ, sinϕ]T (6.1)

where cosϕ = [cosϕ(1), . . . , cosϕ(LT )] and sinφ = [sinϕ(1), . . . , sinϕ(LT )]. Similar to

Eq. 3.8, we denote the feature-based warped appearance vector as

a(p) = tF (W(p)) with tF = F(t) (6.2)

that has size 2m× 1, where m is the number of pixels inside the reference (i.e., mean) shape.

Remember from Sec. 3.2 that an appearance model is then trained by performing PCA on a

set of training appearance vectors that results in a subspace of na eigenvectors Ua ∈ R2m×na

and the mean appearance ā. This model can be used to synthesize shape-free texture instances

using Eq. 3.13.

The employment of the robust kernel of Eq. 6.1 has a key role in the successful performance

of the proposed method, because it cancels-out both within-class and out-of-class outliers [158].

This is shown in the “toy” example of Fig. 6.2. In this experiment we have a dataset of 50

aligned face images. We replace 20% of these with the same baboon image and apply PCA on
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Figure 6.2: Robust kernel. Having a face dataset with 20% of the images replaced by the baboon, the
top and bottom rows show 4 principal components of the PCA on intensities and normalized gradients
respectively. Note that contrary to the normalized gradients subspace where the baboon is isolated,
most intensities eigentextures are corrupted with the baboon. The figure is taken from [158].

intensities and normalized gradients. Figure 6.2 shows that the PCA eigenvectors on intensities

(top row) are corrupted with the baboon information. On the contrary, the employment of

normalized gradients manages to separate the baboon information from the facial subspace

and isolate it (second row). In our case, during the automatic training of the generative model,

we expect to have both within-class and out-of-class outliers. Since the training images are

captured in totally unconstrained conditions (i.e., random images from the web), we expect

many of them to have occluded objects, thus within-class outliers. Furthermore, in the cases

where the fitted shape is either very inaccurate or even scrambled, the warped appearance

consists an out-of-class outlier. However, the employment of the robust component analysis

manages to remove such outliers from the appearance subspace.

For the automatic construction of the generative AAM, we formulate an iterative optim-

ization problem that aims to automatically construct a generative appearance model that

minimizes the mean AAM fitting `22 norm error over all given images. Specifically, given a set

of N training images
{
ti
}
, i = 1, . . . , N and a statistical shape model {s̄,Us}, we automat-

ically train an AAM appearance model by iteratively solving

argmin
ā,Ua,pi,ci

1

N

N∑
i=1

∥∥ai(pi)− ā−Uac
i
∥∥2

subject to UT
aUa = E

(6.3)
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Figure 6.3: Automatic training of appearance model of Generative AAM. This diagram demonstrates
the operation of Generative AAM Training step of Fig. 6.1. Given a set of images and the corresponding
bounding boxes from the object detector, the method iteratively re-trains the appearance PCA model
and re-performs AAM fitting on the images set to update the shapes.

in order to find the appearance subspace Ua and mean vector ā that minimize the mean `22

norm of the application of AAM fitting (pi, ci) over all images. ai(pi) is the warped feature

representation of the training image ti and E denotes the identity matrix. The explanation of

this optimization procedure is visualized in Fig. 6.3. In brief, the algorithm iteratively trains a

new PCA appearance model {ā,Ua} based on the current estimate of the N shapes and then

re-estimates the parameters {pi, ci}, i = 1, . . . , N by minimizing the `22 norm between each

warped image and the appearance model instance. Consequently, the optimization is solved

in two steps:

(a) Fix {pi, ci} and minimize with respect to {ā,Ua} In this step we have a current

estimate of {pi, ci} for each image i = 1, . . . , N . From the shape parameters estimate we

extract the warped feature-based image vectors {ai(pi)} on which we train a new PCA ap-

pearance model {ā,Ua}. The updated subspace is orthogonal, thus UT
aUa = E. In this work,

we keep 150 eigenvectors per iteration.

(b) Fix {ā,Ua} and minimize with respect to {pi, ci} In this step we have a currently

trained statistical appearance model {ā,Ua} and aim to estimate the shape and appearance

parameters {pi, ci} for each image i = 1, . . . , N so that the `22 norm between each warped

image and its reconstruction is minimized. Thus, we optimize

argmin
pi,ci

∥∥ai(pi)− ā−Uac
i
∥∥2
, ∀i = 1, . . . , N (6.4)

This minimization can be solved with the efficient Gauss-Newton algorithm of Inverse Com-

positional Image Alignment (IC) [117, 124, 8, 9, 5], as presented in Chapter 4 (Sec. 4.4).

Within the IC framework, Eq. 6.4 is written as

argmin
pi,ci

∥∥ai(pi)− aci(∆pi)
∥∥2

(6.5)
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where aci = ā + Uac
i is the model instance and ∆pi is the increment used to inverse-

compositionally update the shape parameters as

W(pi)←W(pi) ◦W(∆pi)−1 (6.6)

As mentioned in Chapter 4, the two most commonly used IC optimization techniques are

Project-Out IC (POIC) [117], where the shape and appearance parameters are decoupled, and

the Simultaneous IC (SIC) [68] where the optimization is done simultaneously for the shape

and appearance parameters.

We instead perform IC, by optimizing separately for shape and appearance parameters in

an alternating mode, as proposed in Sec. 4.4. At each iteration, we have a fixed estimate of

pi and compute the appearance parameters as the least-squares solution

ci = UT
a

[
ai(pi)− ā

]
(6.7)

Then, given the current estimate of ci and taking the Taylor expansion around pi = 0, we

solve for the shape increment

∆pi = −
(
JTJ

)−1
JT
[
ai(pi)− aci

]
(6.8)

where

J = ∇aci
∂W
∂pi

(6.9)

is the Jacobian matrix with the steepest descent images as its columns. The algorithm requires

the computation of the inverse Hessian matrix H =
(
JTJ

)−1
and the current estimate of

appearance parameters at each iteration which results in a total cost of O((na + ns + 4)m +

(4 + ns)
2m).

Even though the initial PCA model is expected to have many outliers and to be inaccurate,

this optimization technique combined with the robust kernel of Eq. 6.1 iteratively results

in an appearance model that eliminates the initial outliers. By keeping a small number of

eigenvectors at each iteration, we ensure that the textures corresponding to inaccurate or

scrambled shapes will not be included in our subspace. The convergence rate of this procedure

is shown in Sec. 6.3.1.

A drawback of the optimization procedure is that it will stuck in a local minimum. In the

following, in order to move the generative model from the local minimum, we will train a

discriminative model using the already trained generative. We work under the assumption

that the trained generative model is reliable enough to provide us with a sufficient number
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of good fittings in a new disjoint set. It is obvious that we need a disjoint set to train the

discriminative model, since training it in the same dataset as the generative would result in

overfitting.

6.2.2 Robust Discriminative AAM

Motivated by the recent application of a cascade of regressors [50, 171, 36, 136] to discriminat-

ively learn a model for face alignment, we propose a parametric discriminatively trained AAM.

Even though discriminatively trained AAMs have appeared before, the difference between our

method and, for example [136], is that we use simple cascaded linear regression, as in [171],

and the robust component analysis [158]. Note that other feature descriptors can also be used,

such as HOG [46] and SIFT [109]. Intuitively, the goal of the discriminative model is to move

the generative model from the local minimum that it converged in the previous iteration and

boost it towards a better minimum. We automatically select the appearance vectors on which

it is trained so that as few outliers as possible are included. This selection is achieved by

keeping the textures with the best `22 norm fitting error.

Fitting Discriminative AAM

During the training procedure, the method aims to learn a number of K regression steps so

that the initial shape parameters of all the training images converge to their ground-truth

values. Each of these cascade solutions consists of a generic descent direction term Rk and a

bias term bk. Given an unseen image, the fitting process involves K additive steps to find an

updated vector of shape and similarity parameters

pk = pk−1 + Rk−1ck−1 + bk−1, k = 1, . . . ,K (6.10)

where the appearance parameters are retrieved from the inverse projection of the image’s

warped feature-based texture to a given appearance subspace as in Eq. 6.7. In the first step,

the update

∆p1 = R0c0 + b0 (6.11)

is added to the initial parameters vectors as

p1 = p0 + ∆p1 (6.12)

The initial shape parameters vector p0 is computed from the image’s bounding box, which

practically initializes the rotation, translation and scaling values and leaves the rest equal to

zero, thus

p0 =
[
p1

0, . . . , p
4
0,0

1:ns
]T

(6.13)
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The fitting algorithm has a real-time computational complexity of O((4 + ns)(na + 2m)) per

iteration.

Training Discriminative AAM

Assume we have a set of N training images {ti}, i = 1, . . . , N and their ground-truth shapes

{sitr} which correspond to a set of parameters {pitr}. For each image in the database, we

generate M different parameters initializations {pi,j0 }, j = 1, . . . ,M . This is done by sampling

M different bounding boxes from a Normal distribution trained to describe the variance of

various face detectors and retrieving the corresponding initialization shape parameters. To

learn the sequence of generic descent directions and bias terms, we employ the Monte Carlo

approximation of the `22-loss which results in solving the least-squares problem

argmin
Rk,bk

N∑
i=1

M∑
j=1

∥∥∥pitr − pi,jk −Rkc
i,j
k − bk

∥∥∥2
(6.14)

for k = 1, . . . ,K. At each iteration and for each image, we update the parameters vector pi,jk

using the rule of Eq. 6.10 and compute the current appearance parameters from Eq. 6.7.

Shapes Selection

Due to the discriminative nature of this AAM, the ground-truth shapes
{
sitr
}

need to include

as few outliers as possible. This is achieved by applying least-squares based Subspace Clus-

tering [110] on the final appearance model instances. Assume that we have estimated the

appearance parameters
{
ci
}

by fitting the generative AAM to the discriminative database’s

training images
{
ti
}
, i = 1, . . . , N . This set of parameters corresponds to a set of appearance

model instances {aci}. By concatenating these appearance vectors to a single matrix

A =
[
ac1

T,ac2
T, . . . ,acN

T
]T

(6.15)

we compute the block-diagonal affinity matrix (graph) by solving the least-squares regression

problem

min
Z
‖A−AZ‖2F + µ ‖Z‖2F (6.16)

where ‖ · ‖F denotes the Frobenius norm. This problem has a closed form solution

Z =
(
ATA + µE

)−1
ATA (6.17)

where E denotes the identity matrix. This affinity matrix provides a measure of the similarity

between each pair of appearance vectors. Then we apply Normalized Spectral Clustering
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(Normalized Cuts) [140] on W = 1
2(Z + ZT) to cluster our appearance vectors in two classes:

those that include outliers and those that do not. Finally, we keep the shapes that correspond

to the vectors without outliers, which ensures a discriminative model with better performance.

6.3 Experimental Results

6.3.1 Convergence of AAM Automatic Construction

Firstly, in order to create a facial shape PDM, we use 50 annotated images of the LFPW data-

base, appropriately selected to demonstrate various deformations and expressions, and apply

PCA. Note that one could also project shape instances of a statistical 3D shape model [125, 32]

to the 2D plane. Then, we automatically build a facial AAM with the proposed method

(Fig. 6.1) using the images of LFPW and HELEN training sets (2810 images in total). In

order to perform the iteration between generative and discriminative model, we split these

images in two equal disjoint subsets, each consisting of half of the images of each database,

thus 405 and 1000 from LFPW and HELEN, respectively. We retrieve the bounding boxes by

using Google Picasa’s face detection.

We execute the overall proposed methodology for 2 iterations in total, which involves an

iterative generative model automatic construction followed by a discriminative model and

then the final automatic generative model. Our experiments show that the method converges

quickly and only a single application of the discriminative model is sufficient to move the

generative model to a satisfactory minimum. Figure 6.4a plots the cost function vs. the

number of iterations of the first generative model training on the generative database, the

initialization with the first discriminative model (marked with an x) and the application of

the final generative model. As can be seen the application of the discriminative step acts as a

perturbation over the local optimum which in the end results to a better solution (similar to

random perturbations in Simulated Annealing).

Figure 6.4b plots the normalized RMSE over the number of iterations for the generative

database. The RMSE is the one defined in Eq. 3.15 with the face size as normalization

constant (Eq. 3.16). As can be seen, it monotonically decreases. Furthermore, in Fig. 6.5 we

demonstrate the evolution of the fitting curves of the generative database’s shapes during this

training procedure compared with the manually annotated shapes.

Figure 6.6 demonstrates the respective evolution of the mean appearance and the three most

important eigenvectors. The last row demonstrates the subspace obtained from the PCA on
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(a) Plot of the cost function per iteration. The marked point × denotes the
beginning of the second iteration of the generative model.

(b) Plot of the respective point-to-point normalized RMSE.

Figure 6.4: Convergence of the automatic construction of AAM with a single application of the dis-
criminative model. The convergence is shown with respect to the cost function minimization and the
fitting accuracy.

the manual annotations of the generative database. The figure shows that the resulting facial

appearance subspace gradually improves and isolates the outliers as expected, due to the

employment of the robust component analysis. This is highlighted by the fact that the facial

parts (eyes, nose, mouth etc.) can be distinguished more clearly in the final eigentextures,

as opposed to the initial ones. The resulting appearance subspace is very similar to the

annotations-based one, even though we performed only two iterations.

Furthermore, Fig. 6.8 shows the evolution of the fitted shapes for eight images during the

automatic building procedure. Starting from the bounding boxes (first row), the final result of

the last generative model (last row) is very accurate. This figure also highlights the importance
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Figure 6.5: Automatic construction of AAM with a single application of the discriminative model. The
plot shows the accuracy evolution of the generative database’s shapes compared with their manual
annotations.

Figure 6.6: Automatic construction of AAM with a single application of the discriminative
model.Visualization of the mean appearance and the three most important eigenvectors for the it-
erative automatically constructed AAM (top) and the AAM trained on manual annotations (bottom).
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of the discriminative model. Even though the fitted shapes that it provides are not accurate,

because its discriminative nature requires carefully annotated data, however, it manages to

move the generative model’s shapes from the point where they stuck. We believe that the

final fitted shapes shown at the last row of Fig. 6.8 are very impressive, given the automatic

nature of the proposed method. Moreover, Fig. 6.7 shows the eight fitted shapes with the

worst RMSE error, that were estimated automatically with the proposed procedure. As can

be seen, even in the worst cases, the method provides decent shapes.

Figure 6.7: The 8 worst fitted shapes during the automatic construction of AAM with a single applic-
ation of the discriminative model.

6.3.2 Comparison with Models Trained on Manual Annotations

After completing the iterations demonstrated in Figs. 6.4 and 6.6, we train a final generative

and discriminative model on the 2810 images of the union of both datasets. We compare the

performance of our model with the state-of-the-art method of Robust Discriminative Response

Map Fitting (DRMF) for Constrained Local Models [13] and the Deformable Part-Based

Models [185]. For both methods, we use the implementation provided by their authors, along

with the pre-built models which are discriminatively trained on the manual annotations of

much larger datasets than LFPW and HELEN datasets. Moreover, we compare with the

generative and discriminative AAMs trained on the manual annotations of LFPW and HELEN

trainsets. Figure 6.9 shows the normalized RMSE curves on AFW and the union of LFPW and

HELEN testsets. Note that in both cases, we use Google Picasa’s face detection to extract the

bounding boxes that initialize the translation and scaling of the mean shape. The results show

that our automatically trained models have a very good performance and greatly outperform

the discriminative ones trained on manual annotations.

Finally, Figs. 6.10 and 6.11 show some indicative fitting results for the AFW dataset and

the union of LFPW and HELEN databases, respectively. Again, we strongly believe that
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Figure 6.8: Automatic construction of AAM with a single application of the discriminative model. The
figures show the evolution of the fitted shapes for 8 images, starting from the bounding boxes. Each
automatically trained generative model is performed for 50 iterations.

these results are very promising, especially considering the fact that our method’s models

were constructed by starting with just a bounding box per face.
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(a) AFW database

(b) LFPW and HELEN testing databases

Figure 6.9: Comparison of automatically constructed deformable models (generative and discriminat-
ive) with other models trained on manual annotations.

6.4 Conclusions

In this chapter, we proposed a method for automatic construction of Deformable Models. The

method iteratively trains a generative and a discriminative AAM ending up with a powerful

model. The only requirements of the method are a statistical shape model and a set of

in-the-wild images with their bounding boxes, which means that it can be applied to any

object. Our experiments on faces show that the method outperforms discriminative state-of-

the-art methods trained on manual annotations. This is the first, to the best of our knowledge,
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(a) Automatically trained generative model.

(b) Generative model trained on manual annotations.

(c) Automatically trained discriminative model.

(d) Discriminative model trained on manual annotations.

Figure 6.10: Fitting results on AFW database.

(a) Automatically trained generative model.

(b) Generative model trained on manual annotations.

(c) Automatically trained discriminative model.

(d) Discriminative model trained on manual annotations.

Figure 6.11: Fitting results on LFPW and HELEN testing databases.
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methodology to automatically building a Deformable Model that demonstrates such promising

results.
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Adaptive Cascaded Regression
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7.1 Motivation

As explained in Chapter 1 (Sec. 1.1), the most commonly-used and well-studied face alignment

methods can be separated in two major families:

• Discriminative models that employ regression in a cascaded manner.

• Generative models that are iteratively optimized using the Gauss-Newton algorithm.

Although both these families of techniques have been shown to achieve state-of-the-art

performance, they both suffer from major weaknesses. Cascaded regression-based tech-

niques [35, 171, 173, 50, 171, 36, 175, 176, 82, 128, 14, 152, 183] have the ability to return

accurate results even with very challenging initializations, as they are coupled with a spe-

cific distribution of initializations during training. Hence, they seek to learn averaged descent

directions with good generalization properties [172]. Furthermore, they are also ideal for real-

time applications since a cascade of 4-5 steps has been shown to be adequate [171] and the

calculation of the shape increment is usually efficient to compute. However, since the descent
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Figure 7.1: Example of descent directions obtained through optimization. The cost function, which
is based on a parametric shape and appearance model, is plotted with respect to the two first shape
parameters. Cascaded-regression (green) moves towards the correct direction but does not reach the
optimum. Gauss-Newton (blue) diverges due to hard initialization. However, applying Gauss-Newton
right after the final regression step (red) converges to the ground-truth optimum. Motivated by this
behavior, we propose a unified model that combines the regression-based discriminative and Gauss-
Newton generative formulations.

directions are not adaptive to the test image, they are not always able to recover the fine de-

tails of the object. They also have no theoretical guarantee of local convergence in test images.

Theoretical guarantee for convergence exists only for the train set [172]. On the other hand,

generative models [42, 38, 39, 117, 18, 124, 155, 3, 4, 156, 153, 8, 154, 9, 5] optimized with the

Gauss-Newton algorithm have been shown to be much more accurate when initialized close

to an optimum [156, 8, 9, 3] and it can be proved that their iterative procedure convergences

to a local minimum with an expected quadratic rate. However, the linearization of the cost

function required for Gauss-Newton optimization causes generative models to be highly sens-

itive to their initializations. In general, if a Gauss-Newton algorithm is not initialized within

close proximity of an acceptable local minima, the resulting alignment will be poor.

In this chapter, we present a unified model that combines the generative and discriminative
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formulation. Our motivation comes from the example of Figure 7.1. In this example, we plot

the cost function that we aim to optimize based on a parametric shape model and a projected-

out appearance subspace [117]. Note that the cost function is common for the discriminative

and the generative models (more details will be given in Secs. 7.2.1, 7.2.2, Eq. 7.22). The

cost function is plotted with respect to the first two shape parameters. We also draw the

descent directions provided by cascaded regression, followed by a Gauss-Newton optimization.

Note that even though the initialization is far from the ground-truth optimum, the cascaded

regression manages to quickly converge towards the correct direction, but is not able to actually

reach the optimum. By initializing the Gauss-Newton algorithm from the final result of the

cascaded regression, we manage to reach the local optimum that corresponds to the ground-

truth, which translates to a lower point-to-point error. On the other hand, the application

of Gauss-Newton directly from the initial point completely diverges due to the large distance

from the optimum.

Motivated by the experiment of Figure 7.1, we believe that the best result can be achieved

by combining the discriminative cascaded regression with the iterative Gauss-Newton optim-

ization within a unified model. Our proposed model employs a fully parametric cascade of

regression-based descent directions, which are further adapted by the Gauss-Newton descent

directions provided by the Hessian of the Gauss-Newton method. This adaptation allows the

model to be robust to very challenging initializations and to converge to the local minimum

which can recover accurate landmark localization for the fine details of an object. Inspired by

our method’s nature, we name it Adaptive Cascaded Regression (ACR).

In summary, the contributions of this chapter are:

• We propose a Deformable Model that takes advantage of the best of both worlds: cas-

caded discriminative and generative models. Our model combines these two approaches

under a natural unified formulation. To the best of our knowledge, this is the first

attempt of combining these two optimization worlds under a single cost function.

• We show that our method overcomes the disadvantages of both cascaded regression

and Gauss-Newton optimization and exploits their strengths in terms of accuracy and

convergence.

• We report state-of-the-art performance on the task of face alignment, using the most

recent benchmark challenge 300-W [134, 133, 132].

The content of this chapter is based on the following publication:

117



7. Adaptive Cascaded Regression

• E. Antonakos5, P. Snape5, G. Trigeorgis, and S. Zafeiriou. “Adaptive Cascaded Re-

gression”, Proceedings of IEEE International Conference on Image Processing (ICIP),

Phoenix, AZ, USA, Oral, September 2016.

The rest of the chapter is structured as follows: Section 7.2 first presents the discriminative

approach (Sec. 7.2.1) and then the generative one, in order to formulate the proposed model

(Sec. 7.2.3). Section 7.3 shows extended experimental results and proves the state-of-the-art

performance of the proposed Deformable Model. Finally, Section 7.4 concludes the chapter.

7.2 Method

In the following sections, we follow the notation of Secs. 3.1 and 3.2 for the shape and appear-

ance models, respectively. Specifically, we employ the same shape representation

s =
[
`T1 , `

T
2 , . . . , `

T
n

]T
= [x1, y1, x2, y2, . . . , xn, yn]T (7.1)

as well as a shape model of the form of Eq. 3.3. With some abuse of notation, let us redefine

the shape generation formulation of Eq. 3.4 as a function, i.e.,

s(p) = s̄ + Usp (7.2)

where p = [p1, p2, . . . , pns ]
T is the ns × 1 vector of shape parameters that control the linear

combination of the eigenvectors.

Moreover, we employ a part-based appearance representation as explained in Sec. 3.2.3.

With some abuse of notation, we redefine Eq. 3.11 as a function, i.e.,

f(s) =
[
F(t`1)T,F(t`2)T, . . . ,F(t`n)T

]T
(7.3)

We also create an appearance model following the description of Sec. 3.2.4, which can be used

to generate new appearance vectors with the function

a(c) = ā + Uac (7.4)

where c = [c1, c2, . . . , cna ]T is the na×1 vector of appearance parameters. Finally, let us define

P = E−UaU
T
a (7.5)

which is the orthogonal complement of the appearance subspace Ua, where E denotes the mn×
mn identity matrix. This projection operator is used in order to project-out the appearance

variance in the following methods.
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In the following sections, we present details of the discriminative (Sec. 7.2.1) and generative

(Sec. 7.2.2) models in order to formulate our unified model (Sec. 7.2.3).

7.2.1 Cascaded Regression Discriminative Model

Herein, we present a fully parametric cascaded regression model. We employ an appearance

model and learn a regression function that regresses from the object’s projected-out appear-

ance to the parameters of a linear shape model. Let us assume that we have a set of N

training images {I1, . . . , IN} and their corresponding annotated shapes {s1, . . . , sN}. By pro-

jecting each ground-truth shape to the shape basis Us, we get the set of ground-truth shape

parameters {p∗1, . . . ,p∗N}. Moreover, we aim to learn a cascade of K levels, i.e., k = 1, . . . ,K.

During the training process of each level, we generate a set of P perturbed shape paramet-

ers pki,j , j = 1, . . . , P, i = 1, . . . , N , which are sampled from a distribution that models the

statistics of the detector employed for initialization. By defining

∆pki,j = p∗i − pki,j , j = 1, . . . , P, i = 1, . . . , N (7.6)

to be a set of shape parameters increments, the least-squares problem that we aim to solve

during training at each cascade level k is

argmin
Wk

N∑
i=1

P∑
j=1

∥∥∥∆pki,j −WkP
(
fi(s(pki,j))− ā

)∥∥∥2

2
(7.7)

where P is the projection operator defined in Eq. 7.5 and fi(·) denotes the vector of concaten-

ated feature-based patches extracted from the training image Ii, as defined in Eq. 7.3. Note

that the bias term of the above objective function is substituted by the mean appearance

vector ā. By denoting

f̂i,j,k = P
(
fi(s(pki,j))− ā

)
(7.8)

to be the projected-out residual, then the closed-form solution to the above least-squares

problem is given by

Wk =

 N∑
i=1

P∑
j=1

∆pki,j f̂
T
i,j,k

 N∑
i=1

P∑
j=1

f̂i,j,k f̂
T
i,j,k

−1

(7.9)

for each level of the cascade k = 1, . . . ,K.

During testing, given the current estimate of the shape parameters pk that was computed

at cascade level k, we create the feature-based image vector f(s(pk)), subtract the mean
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appearance vector ā, project-out the appearance variation and estimate the shape parameters

increment as

∆pk = WkP (f(s(pk))− ā) (7.10)

Then, the shape parameters vector is updated as

pk = pk−1 + ∆pk−1 (7.11)

where we set p0 = 0 at the first iteration. The computational complexity of Eq. 7.10 per

cascade level is O(nsmn), thus the complexity per test image is O(Knsmn).

7.2.2 Gauss-Newton Generative Model

The optimization of an AAM aims to minimize the reconstruction error of the input image

with respect to the shape and appearance parameters, i.e.,

argmin
p,c

‖f(s(p))− ā−Uac‖22 (7.12)

where we employ the appearance model of Eq. 7.4 and f(·) denotes the vectorized form of the

input image as defined in Eq. 3.7. This cost function is commonly optimized in an iterative

manner using the Gauss-Newton algorithm. This algorithm introduces an incremental update

for the shape and appearance parameters, i.e.,, ∆p and ∆c respectively, and solves the problem

with respect to ∆p by first linearizing using first-order Taylor expansion around ∆p = 0. The

Gauss-Newton optimization can be performed either in a forward or in an inverse manner,

depending on whether the incremental update of the shape parameters is applied on the

image or the model, respectively. In this work, we focus on the inverse algorithm, however

the forward case can be derived in a similar way.

We follow the derivation of Chapter 4 that was first presented in [124] and later was readily

employed in [155, 156]. By applying the incremental shape parameters on the part of the

model, the cost function of Eq. 7.12 becomes

argmin
∆p,∆c

‖f(s(p))− ā(∆p)−Ua(∆p)(c + ∆c)‖22 (7.13)

where ā(∆p) = ā(s(∆p)) and Ua(∆p) = Ua(s(∆p)). Given the part-based nature of our

model, the compositional update of the parameters at each iteration is reduced to a simple

subtraction [156], as

p← p−∆p (7.14)
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By taking the first order Taylor expansion around ∆p = 0, we arrive at

argmin
∆p,∆c

‖f(s(p))− ā−Ua(c + ∆c)− Ja∆p‖22 (7.15)

where

Ja = Jā +
m∑
i=1

ciJi (7.16)

is the model Jacobian. This Jacobian consists of the mean appearance Jacobian Jā = ∂ā
∂p and

the Jacobian of each appearance eigenvector denoted as Ji, i = 1, . . . ,m.

By employing the projection operator of Eq. 7.5 in order to work on the orthogonal com-

plement of the appearance subspace Ua and using the fact that PUa = PTUa = 0, the above

cost function can be expressed as

argmin
∆p

‖f(s(p))− ā− Ja∆p‖2P (7.17)

The solution to this least-squares problem is

∆p = Ĥ−1
a ĴT

a (f(s(p))− ā) (7.18)

where

Ĵa = PJa and Ĥa = ĴT
a Ĵa (7.19)

are the projected-out Jacobian and Hessian matrices respectively. Note that even though Jā

and Ji can be precomputed, the complete model Jacobian Ja depends on the appearance

parameters c and has to be recomputed at each iteration. Given the current estimate of ∆p,

the solution of c with respect to the current estimate cc can be retrieved as

c = cc + UT
a (f(s(p))− ā−Uacc − Ja∆p) (7.20)

Thus, the computational complexity of computing Eq. 7.18 per iteration isO(nsnamn+n2
smn).

The authors in [156] suggest that by approximating the projected-out Hessian matrix as Ĥa ≈
JT
aJa, reduces the complexity to O(namn+n2

smn) without any significant loss in performance.

The inverse approach that we followed, which was first proposed in [124], is different from

the well-known project-out inverse compositional method of [117]. Specifically, in our case,

the linearization of the cost function is performed before projecting-out. On the contrary, the

authors in [117] followed the approximation of projecting-out first and then linearising, which

eliminates the need to recompute the appearance subspace Jacobian. However, the project-

out method proposed by [117] does not generalize well and is not suitable for generic facial

alignment.
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Given the fact that PT = P and PTP = P, then the solution of Eq. 7.18 can be expanded

as

∆p = (JT
aPJa)

−1JT
aP(f(s(p))− ā) (7.21)

Thus, it is worth mentioning that the solution of the regression-based model in Eq. 7.10 is

equivalent to the Gauss-Newton solution of Eq. 7.18 if the regression matrix has the form

Wk = (JT
aPJa)

−1JT
a (7.22)

which further reveals the equivalency of the two cost functions of Eqs. 7.7 and 7.17.

7.2.3 Adaptive Cascaded Regression

As previously explained, both the AAMs of Section 7.2.2 and traditional SDMs as in 7.2.1

suffer from a number of disadvantages. To address these disadvantages, we propose ACR which

combines the two previously described discriminative and generative optimization problems

into a single unified cost function. Specifically, by employing the regression-based objective

function of Eq. 7.7 along with the Gauss-Newton analytical solution of Eq. 7.18, the training

procedure of ACR aims to minimize

N∑
i=1

P∑
j=1

∥∥∥∆pki,j −
(
λkWk − (1− λk)H−1

i,j JT
i,j

)
f̂i,j,k

∥∥∥2

2
(7.23)

with respect to Wk, where

f̂i(s(pki,j)) = P
(
fi(s(pki,j))− ā

)
(7.24)

is the projected-out residual and Hi,j and Ji,j denote the Hessian and Jacobian matrices,

respectively, of the Gauss-Newton optimization algorithm per image i = 1, . . . , N and per

perturbation j = 1, . . . , P . λk is a hyperparameter that controls the weighting between the

regression-based descent directions and the Gauss-Newton descent directions at each level of

the cascade k = 1, . . . ,K. The negative sign in front of the Gauss-Newton descent direc-

tions is due to the fact that the shape parameters update within the inverse Gauss-Newton

optimization is performed with subtraction, as shown in Eq. 7.14.

Training

During training, ACR aims to learn a cascade of K linear regressors given the Gauss-Newton

descent directions of each training image at each level. Let us assume that we have a set of N

training images {I1, . . . , IN} along with the corresponding ground truth shapes {s1, . . . , sN}.
We also assume that we have recovered the ground truth shape parameters for each training

image {p∗1, . . . ,p∗N} by projecting the ground truth shapes against the shape model.
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Perturbations Before performing the training procedure, we generate a set of initializations

per training image, so that the regression function of each cascade level learns how to estim-

ate the descent directions that optimize from these initializations to the ground truth shape

parameters. Consequently, for each training image, we first align the mean shape s̄ with the

ground truth shape si, project it against the shape basis Us and then generate a set of P ran-

dom perturbations for the first four shape parameters that correspond to the global similarity

transform. Thus, we have a set of shape parameter vectors pki,j , ∀i = 1, . . . , N, ∀j = 1, . . . , P .

Since the random perturbations are applied on the first four parameters, the rest of them

remain zero, i.e., pki,j = [p1
k
i,j , p2

k
i,j , p3

k
i,j , p4

k
i,j ,0

T
ns−4×1]T. Moreover, the perturbations are

sampled from a distribution that models the statistics of the detector that will be used for

automatic initialization at testing time. This procedure is necessary only because we have a

limited number of training images and can be perceived as training data augmentation. It

could be avoided if we had more annotated images and a single initialization per image using

the detector would be adequate. The perturbations are performed once at the beginning of

the training procedure of ACR. The steps that are applied at each cascade level k = 1, . . . ,K,

in order to estimate Wk, are the following:

Step 1: Shape Parameters Increments Given the set of vectors pki,j , we formulate the

set of shape parameters increments vectors ∆pki,j = p∗i − pki,j , ∀i = 1, . . . , N, ∀j = 1, . . . , P

and concatenate them in a ns ×NP matrix

∆Pk =
[
∆pk1,1 · · · ∆pkN,P

]
(7.25)

Step 2: Projected-Out Residuals The next step is to compute the part-based appearance

vectors from the perturbed shape locations fi(s(pki,j)) and then the projected-out residuals of

Eq. 7.24 ∀i = 1, . . . , N, ∀j = 1, . . . , P . These vectors are then concatenated in a single

mn×NP matrix as

F̂k =
[
f̂1(s(pk1,1)) · · · f̂N (s(pkN,P ))

]
(7.26)

Step 3: Gauss-Newton Descent Directions Compute the Gauss-Newton solutions for

all the images and their perturbed shapes and concatenate them in a ns ×NP matrix as

Gk = (1− λk)



[H−1
1,1J

T
1,1f̂1(s(pk1,1))]T

...

[H−1
i,j JT

i,j f̂i(s(pki,j))]
T

...

[H−1
N,PJT

N,P f̂N (s(pkN,P ))]T



T

(7.27)
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Based on the expanded solution of Eq. 7.21, the calculation of the Jacobian and Hessian per

image involves the estimation of the appearance parameters using Eq. 7.20 and then

Ji,j = Ja

Hi,j = JT
i,jPJi,j

(7.28)

where Ja is computed based on Eq. 7.16 for each image.

Step 4: Regression Descent Directions By using the matrices definitions of

Eqs. 7.25, 7.26 and 7.27, the cost function of ACR in Eq. 7.23 takes the form

argmin
Wk

∥∥∥∆Pk − λkWkF̂k + Gk

∥∥∥2

2
(7.29)

The closed-form solution of the above least-squares problem is

Wk =
1

λk
(∆Pk + Gk)

(
F̂T
k F̂k

)−1
F̂T
k (7.30)

Note that the regression matrix of this step is estimated only in case λk ≥ 0. If λk = 0, then

we directly set Wk = 0ns×mn

Step 5: Shape Parameters Update The final step is to generate the new estimates of

the shape parameters per training image. By employing Eqs. 7.30 and 7.28, this is achieved

as

pk+1
i,j = pki,j +

(
λkW

k − (1− λk)H−1
i,j JT

i,j

)
fi(s(pki,j)) (7.31)

∀i = 1, . . . , N and ∀j = 1, . . . , P . After obtaining pk+1
i,j , steps 1-5 are repeated for the next

cascade level.

Weighting Hyperparameters λ = [λ1, λ2, . . . , λK ] is a set of weights that control the

linear combination between the regression-based descent directions and the Gauss-Newton

descent directions. They are treated as a set of hyperparameters that are fine-tuned prior to

fitting. Intuitively, given the properties of regression and Gauss-Newton descent directions

explained above and shown in Fig. 7.1, we expect the regression-based descent directions to

dominate the optimization on the first few iterations, as they are able to move towards the

correct direction with steps of large magnitude. Then, the Gauss-Newton descent steps are

necessary in order to converge to an accurate local minimum. The hyperparameters λk are

fine-tuned by running extensive cross-validation experiments that perform grid search using

the mean point-to-point error normalized with the interocular distance as evaluation criterion.

124



7.3. Experimental Results
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Figure 7.2: Representative examples of increasing normalised errors. (top) 68-points. (bottom) 49-
points.

Fitting

In the fitting phase, given an unseen testing image I and its initial shape parameters p0 =

[p0
1, p

0
2, p

0
3, p

0
4,0]T, we compute the parameters update at each cascade level k = 1, . . . ,K as

pk = pk−1 +
(
λkW

k − (1− λk)H−1JT
)

f(s(pk−1)) (7.32)

where the Jacobian and Hessian are computed as described in Step 3 of the training procedure

(Eq. 7.28). The computational complexity per iteration is O(nsmn(na + ns + 1)).

7.3 Experimental Results

Evaluation Protocol To maintain consistency with the results of the original 300-W com-

petition, we report Cumulative Error Distribution (CED) graphs using the point-to-point error

normalized by the interocular distance defined by the outer eye corners. The mean error often

reported in recent works [128, 183] is highly biased by alignments that completely fail. There-

fore, we believe that the failure rate as shown in [35] is a much more informative error metric.

To complement the failure rate, we propose the area under the curve (AUC), which enables

simpler comparison of CED curves that are otherwise difficult to compare. We fix a maximum

error that we believe represents a failed fitting, and thus the higher the AUC, the more fittings

are concentrated within this acceptable fitting area. In all experiments, CED curves and AUC
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errors are reported up to 0.06. Examples of different errors are given in Figure 7.2, which

shows that 0.06 represents an alignment failure.

Implementation Details The following settings were used for training ACR. 20 compon-

ents were kept for the shape model and 300 for the appearance model. After running extended

cross-validation experiments, we found that the best performance is obtained by using a cas-

cade of 14 levels and setting λ = [1, 0.75, 0.5, 0.25] for the first four and λ = 0 for the rest.

The first two were performed on the image at half scale, the rest at full scale. The patch sizes

were [(32× 32), (24× 24), (24× 24), (16× 16)] for the first four cascades and (24× 24) for the

rest. Dense SIFT [160, 109] features were used for all methods. When performing a regres-

sion, a ridge parameter of 100 was used. In order to increase the size of the training data,

we augment it by perturbing the provided bounding boxes of the 300-W competition with

uniform noise of 0.005 for scaling and 0.07 for translation (scaled by the bounding box size).

The same options were used for training the generative model (AAM) and the discriminative

cascaded-regression (SDM).

7.3.1 Self Evaluation

In the following experiments we performed self evaluations, comparing ACR to both the gen-

erative AAM and the discriminative SDM. In each case, we trained the SDM or AAM in the

same manner as the corresponding part of ACR. We trained all 3 of the methods on LFPW

(training, 811 images), HELEN (training, 2000 images) and IBUG (135 images). The testing

database was chosen as AFW (337 images) as recent works (e.g., [152]) have shown that AFW

is still a challenging dataset. Figure 7.3 shows the CED curves for the SDM, AAM and ACR

for both the 68-point and 49-point errors. Figure 7.3 clearly shows the improved performance

of ACR over both SDM and AAM. To demonstrate the sensitivity of generative methods to

initializations, we repeated the experiment on AFW by generating 10 initializations per image

and then sorted the initialization errors (low-to-high). We then binned the initialization errors

and plotted the final error of the SDM, AAM and ACR with respect to increasing initial errors.

Figure 7.4 shows the results of this initialization experiment. Here we can clearly see that, as

the initialization error increases, the AAM is incapable of converging towards an acceptable

local-minima. It also shows that, although the SDM performs well, ACR outperforms it across

all initialization errors.

7.3.2 Comparison with State-of-the-Art

In this section, we compare the performance of ACR against the state-of-the-art methods:
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Figure 7.3: ACR, AAM (Gauss-Newton) and SDM (Discriminative), trained identically, tested on the
images of AFW. Initialization given by the bounding boxes of [133, 132].

• Zhou et al. (300W 1) [182]

• Yan et al. (300W 2) [174]

• Coarse-to-fine Shape Searching (CFSS) [183]

• Project-Out Cascaded Regression (PO-CR) [152]
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Figure 7.4: Sorted initial errors of 10 random initializations of each image in the AFW dataset. As the
initial error increases, the AAM is unable to converge, whereas ACR is both robust to initializations
and consistently accurate.

• Ensemble of Regression Trees (ERT) [82]

• Intraface [171, 48]

• Chehra [14]

ACR was trained using LFPW (training), HELEN (training), AFW and IBUG and both test-

ing and training were initialized using the bounding boxes provided by 300-W [133, 133, 132].

The public implementations of some of these methods only return 49-points, and thus they

are not included in the 68-point error results. We perform this experiment on the 300-

W [133, 133, 132] (Sec. 7.3.2), LFPW testset [22] (Sec. 7.3.2) and HELEN testset [97]

(Sec. 7.3.2) databases.

300-W Database

The 300-W face alignment challenge [133, 133, 132] utilizes a dataset of testing images to

perform evaluations. The dataset includes 600 “in-the-wild” testing images and that are

drawn from the same distribution as the IBUG dataset. In Figure 7.5, we see that the recently

proposed CFSS method is currently the best performing method for 68-points. However, for

the 49-points, ACR is the most accurate technique and slightly outperforms (300W 1), which

is a much more complex deep learning method provided by industry. Table 7.1 reinforces the
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0.00 0.01 0.02 0.03 0.04 0.05 0.06
Normalized Point-to-Point Error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Im
a
g
e
s 
P
ro
p
o
rt
io
n

(b) 49-point error

Figure 7.5: Normalized error for the testing dataset of 300-W challenge [133, 132]. This database
represents a fair benchmark for state-of-the-art face alignment methods.

results of Figure 7.5 by showing that ACR is highly accurate for the 49-points and slightly

less robust than the method of [182] over all images.
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Method AUC Failure rate (%)

ACR 0.43 11.0

300W 1 [182] 0.42 9.3

CFSS [183] 0.40 13.5

300W 2 [174] 0.38 14.2

PO-CR [152] 0.37 17.7

ERT [82] 0.28 23.7

Intraface [171, 48] 0.27 23.8

Chehra [14] 0.24 46.8

Initialisation 0.01 96.8

Table 7.1: The area under the curve (AUC) and percentage failure rate for the 49-point CED curve
given in Figure 7.5. Failure rate is the % of images with error > 0.06.

Method mean ± std median mad max AUC Failure rate (%)

ACR 0.0267± 0.0092 0.0248 0.0045 0.0841 0.60 1.3

CFSS [183] 0.0283± 0.0079 0.0270 0.0046 0.0688 0.58 0.4

PO-CR [152] 0.0386± 0.0790 0.0279 0.0046 0.8041 0.56 2.2

ERT [82] 0.0353± 0.0147 0.0318 0.0060 0.1238 0.48 4.0

Intraface [171, 48] 0.0666± 0.1071 0.0314 0.0050 0.6062 0.46 13.4

Chehra [14] 0.0761± 0.1185 0.0284 0.0080 0.7344 0.44 23.7

Initialisation 0.1749± 0.1098 0.1449 0.0593 0.7273 0.01 94.2

Table 7.2: Various statistical measures, area under the curve (AUC) and percentage failure rate for
the 49-point CED curve given in Figure 7.6 for LFPW testset. Failure rate is the % of images with
error > 0.06.

LFPW Testset

Figure 7.6 shows the accuracy of each method on LFPW testset [23] in the form of a Cumulative

Error Distribution (CED) curve. Table 7.2 reports some statistical measures (mean, standard

deviation, median, median absolute deviation, max), the area under the curve (AUC) and the

failure rate of all methods based on Fig. 7.6. Note that ACR is more accurate than all the other

methods by a large margin. Especially in the band of low errors, it achieves an improvement of

even about 10%. ACR is also slightly less robust than CFSS. Another interesting observation

is the very high maximum errors for all the cascaded regression methods (PO-CR, Chehra,

Intraface) that indicate that in case of a fitting failure, the final shape is completely scrambled.
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Figure 7.6: Normalized error for the testing LFPW dataset based on 49 points.
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Figure 7.7: The numbering and grouping of the landmarks in the 49-points configuration. The coloring
and numbering of this figure is to be linked with Figures 7.8 and 7.11.

Figure 7.8 reports the mean and standard deviation of the error per landmark point for all

the methods. The numbering and coloring of each landmark point is linked with the mean

shape of Figure 7.7. Once again, note that we only take into consideration the fittings with

final error smaller than 0.06. ACR is very accurate on all facial parts. On the contrary, all the

cascaded-regression based techniques (PO-CR, Intraface, Chehra) heavily fail on the internal

mouth points and are not equally accurate on the eyebrows and eyes. Finally, Fig. 7.9 shows
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Figure 7.8: Mean and standard deviation of the normalized error per landmark point for all the
methods on LFPW testset. The coloring and numbering of the landmarks is linked with the mean
shape of Figure 7.7.

the 10 best and 10 worst fitting results achieved by ACR. As it can be observed, even the

worst results have not heavily failed.

HELEN Testset

Figure 7.10 shows the accuracy of each method on the HELEN testset [97] in the form of

a Cumulative Error Distribution (CED) curve. Table 7.3 reports some statistical measures

(mean, standard deviation, median, median absolute deviation, max), the area under the

curve (AUC) and the failure rate of all methods based on Fig. 7.6. In this case, ACR is more

accurate and more robust than all the other methods, since it achieves the best AUC as well
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Figure 7.9: 10 best (top), and 10 worst (bottom) fitting results of ACR on LFPW testset.
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Figure 7.10: Normalized error for the testing HELEN dataset based on 49 points.

as the lowest failure rate.

Figure 7.11 reports the mean and standard deviation of the error per landmark point for all

the methods. Similar to the LFPW case, the numbering and coloring of each landmark point

is linked with the mean shape of Figure 7.7. The results are again similar and indicate that

ACR is more accurate on all facial parts, especially on the mouth region. Finally, Fig. 7.12

shows the 10 best and 10 worst fitting results achieved by ACR.
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Method mean ± std median mad max AUC Failure rate (%)

ACR 0.0262± 0.0104 0.0240 0.0050 0.0968 0.61 1.2

CFSS [183] 0.0288± 0.0318 0.0244 0.0048 0.5644 0.60 1.5

PO-CR [152] 0.0299± 0.0287 0.0260 0.0051 0.5199 0.58 0.6

ERT [82] 0.0323± 0.0236 0.0280 0.0055 0.3732 0.54 1.8

Intraface [171, 48] 0.0666± 0.1094 0.0336 0.0060 0.7718 0.45 11.5

Chehra [14] 0.0391± 0.0507 0.0251 0.0054 0.4853 0.55 9.4

Initialisation 0.1757± 0.1050 0.1475 0.0603 0.5656 0.02 90.9

Table 7.3: Various statistical measures, area under the curve (AUC) and percentage failure rate for
the 49-point CED curve given in Figure 7.10 for HELEN testset. Failure rate is the % of images with
error > 0.06.

7.4 Conclusions

In this chapter, we have shown that by combining the descent directions of cascaded regression

and Gauss-Newton optimization, we can achieve both robustness to challenging initializations

and accuracy with respect to fine details. We report state-of-the-art performance on the task of

facial alignment, using the most recent benchmark challenge and have experimentally verified

that ACR outperforms both AAM and SDM for a range of initializations.

134



7.4. Conclusions

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

ACR

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

CFSS

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

PO-CR

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

ERT

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

Intraface

0 1 2 3 4 5 6 7 8 9 10 11121314 151617181920 21222324 252627282930 31323334 353637383940 41424344 45464748
Landmarks

0.00

0.02

0.04

0.06

0.08

0.10

M
e
a
n
 E
rr
o
r

Chehra

Figure 7.11: Mean and standard deviation of the normalized error per landmark point for all the
methods on HELEN testset. The coloring and numbering of the landmarks is linked with the mean
shape of Figure 7.7.
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Figure 7.12: 10 best (top), and 10 worst (bottom) fitting results of ACR on HELEN testset.
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Chapter 8

Conclusion

Contents
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In this thesis, we proposed novel and robust Deformable Models that achieve state-of-the-

art performance on the task of landmark localization and semi-automatic annotation of large

databases. The presented work is focused on the deformable object of human face, due to the

fact that there are numerous manually annotated facial databases with thousands of images.

The thesis was split in two parts.

In Part I, we focused on developing powerful generative Deformable Models that employ

both holistic and part-based appearance representations. Specifically, in Chapter 4 we showed

that the combination of LK (Gauss-Newton) optimization with highly-descriptive dense fea-

tures greatly improves the performance of holistic AAMs. We proved, both theoretically and

experimentally, that by extracting the features from the input image once and then warping

the features image has better performance and lower computational complexity than comput-

ing features from the warped image at each iteration. Additionally, we provided a deep and

comprehensive comparison between 10 popular feature descriptions and shed some light on

the reasons why some of them outperform the rest. Our formulation using alternating optim-

ization was tested on the tasks of image alignment and landmark localization. Our results

showed that holistic AAMs with dense HOG and SIFT features achieve robust and accurate

performance and manage to outperform discriminative Deformable Models that are trained on

much more visual data. Moreover, in Chapter 5, we proposed a powerful part-based generative

Deformable Model, referred to as APS, that combines the main ideas behind PS and AAMs.

We experimentally proved that modeling the part-based appearance of a deformable object

with a GMRF structure is more beneficial than readily applying a PCA model. This is justified
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by the fact that PCA assumes correlations between all variables, whereas the GMRF allows

the selection of meaningful correlations between specific parts of an object. Moreover, APS

utilize a spring-like deformation prior term that makes them robust to bad initializations. We

also presented a variant of the Gauss-Newton optimization with fixed Jacobian and Hessian

to fit the model, which is the fastest existing algorithm of its kind and its low computational

complexity is independent of the employed graph structure for the GMRF. Our experimental

results showed that the method is very robust to bad initializations. Finally, its part-based

nature makes it suitable for various deformable object classes with complex articulations.

In Part II, we took advantage of the properties of the generative Deformable Models presen-

ted in Part I and combined them with powerful discriminative Deformable Models to achieve

state-of-the-art results in two different tasks. In Chapter 6 we proposed a novel formulation

for the task of semi-automatic annotation of large visual databases. Taking advantage of the

qualities of feature-based holistic AAMs shown in Chapter 4, the proposed framework iterat-

ively trains a generative and a discriminative holistic AAM ending up very accurate landmark

annotations. The only requirements of the method are a statistical shape model of the de-

formable object and the true positive bounding boxes of the object within the images. Our

extensive experimental results proved that the semi-automatically acquired annotations have

comparable accuracy to manual annotations. The proposed technique is the first one that

demonstrates such promising results on the task of automatic training of Deformable Models

and can easily be applied on various deformable object classes. Additionally, in Chapter 7 we

proposed ACR, a novel methodology that achieves state-of-the-art performance on the task

of landmark localization. The method combines the descent directions of cascaded regression

and Gauss-Newton optimization. This combination allows ACR to demonstrate robustness to

challenging initializations and accuracy with respect to fine details. We report state-of-the-art

performance using the most recent benchmark challenge, comparing against powerful meth-

odologies some of which are provided by industrial companies and are trained on much larger

training datasets.

8.1 Future Work

The work proposed in this thesis can be further extended in various manners. Specifically,

one of the biggest limitations of Deformable Models is that they are mostly applied and test

on the object of human face, due to the numerous annotated publicly available databases.

However, the next step is to develop generative Deformable Models for both articulated and

non-articulated objects that achieve state-of-the-art performance without requiring a huge
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amount of training data. There exist very limited generative models that are suitable and

have been extensively tested on articulated objects [156, 10] (please refer to Chapter 5). This

is because:

• Articulated objects often have more complex texture space than non-articulated objects

(e.g., the variations of the human body texture space are larger than the variations of

the human face, due to clothes, severe self occlusions etc.). Hence, linear component

analysis techniques may fail to properly describe these textures statistically.

• The majority of the employed generative component analysis techniques are based on

holistic low-rank assumptions (such as PCA and its linear and non-linear variations).

These methods are not able to capture the relationship between parts of articulated

objects both in the appearance space, as well as in the deformable shape space.

These two challenges can be addressed in the following ways:

• Apply recently developed deep methodologies for feature extraction, which can be trained

in an unsupervised manner [24] or off-the-shelf trained DCNNs [139].

• Investigate the development of statistical component analysis techniques that combine

low-rank and hierarchical/structured principles (e.g., introduce a part constraint PCA in

order to encapsulate the dependencies between the object parts in terms of both texture

and shape).

Additionally, there is plenty of room to propose novel methodologies for training Deformable

Models with limited or even no human supervision and explore solutions towards the online

incremental update of these models with new training samples (lifelong learning). This refers to

the task of constantly updating generic Deformable Models with images coming from the web

and gradually turning them into instant specific models. Chapter 6 provides a very solid proof

of concept that supports the research towards this direction. Everyday thousands of images are

uploaded on the Internet. Hence, the methodologies should be able to constantly incorporate

new knowledge in an incremental fashion. To this end, it should be investigated how various

component analysis techniques (especially the ones focused on articulated objects) could be

reformulated so as to allow incremental learning. Moreover, in order to learn Deformable

Models of a specific object instance, for example a person-specific body Deformable Model,

one can safely rely on the fact that these image samples are highly correlated. Hence, it
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is reasonable to assume that the object’s appearance will reside in a low-rank subspace and

incorporate extra low-rank constraints to powerful generative frameworks.

Finally, it is really important for the research community to continue developing challenging

benchmarks and high-quality open-source implementations of the various approaches. Given

the strong and increasing impact of industrial research due to the unlimited resources, open

source knowledge is the only way in which academic research can keep leading the constantly

growing advances.
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Appendix A

Appendices

A.1 Precision matrix form of GMRF

Herein we provide a proof for the precision matrix formulations of Eqs. 5.12 and 5.14. For this

purpose, let us define an undirected graph G = (V,E) of n vertexes, where V = {v1, v2, . . . , vn}
is the set of vertexes and there is an edge (vi, vj) ∈ E for each pair of connected vertexes.

A.1.1 Properties

The following properties can be easily proved.

Property 1: If

{
f(i, j) 6= 0, ∀i, j : (vi, vj) ∈ E
f(i, j) = 0, ∀i, j : (vi, vj) /∈ E

then
∑

∀i,j:(vi,vj)∈E

f(i, j) =

n−1∑
i=1

n∑
j=i+1

f(i, j).

Property 2:
∑

∀i,j:(vi,vj)∈E

f(i) + f(j) =

n∑
i=1

cif(i), where ci =
∑

∀j:(vi,vj)∈E

1 +
∑

∀j:(vj ,vi)∈E

1 denotes

the number of neighbours of vertex vi.

A.1.2 Proof 1

Herein we provide a proof for the precision matrix formulation of Eq. 5.12. Assume that we

have a set of vectors of length k that correspond to each vertex, i.e., xi = [xi1, x
i
2, . . . , x

i
k],∀i :

vi ∈ V . Moreover, let us assume a set of symmetrix pairwise precision matrices for each edge

of the graph of size 2k × 2k, that have the form

Qij =

[
Qi Qij

QT
ij Qj

]
,∀i, j : (vi, vj) ∈ E (A.1)
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We aim to find the structure of Q, so that

∑
∀i,j:(vi,vj)∈E

[
xi

xj

]T
Qij

[
xi

xj

]
= xTQx (A.2)

where x =
[
xT

1 ,x
T
2 , . . . ,x

T
n

]T
. By separating the kn× kn matrix Q in blocks of size k × k as

Q =


K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · Knn

 (A.3)

the second part of Eq. A.2 can be written as

xTQx =


x1

x2

...

xn


T 

K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · Knn




x1

x2

...

xn

 =

=
n∑
i=1

xT
i Kiixi +

n−1∑
i=1

n∑
j=i+1

(
xT
i Kijxj + xT

j Kjixi

)
(A.4)

Given the properties of Sec. A.1.1, the first part of Eq. A.2 can be written as

∑
∀i,j:(vi,vj)∈E

[
xi

xj

]T
Qij

[
xi

xj

]
=

∑
∀i,j:(vi,vj)∈E

xT
i Qixi + xT

j Qjxj + 2xT
i Qijxj =

=
n∑
i=1

cix
T
i Qixi +

n−1∑
i=1

n∑
j=i+1

2xT
i Qijxj

(A.5)

By equalizing Eqs. A.4 and A.5 we get

n∑
i=1

xT
i Kiixi +

n−1∑
i=1

n∑
j=i+1

(
xT
i Kijxj + xT

j Kjixi

)
=

n∑
i=1

cix
T
i Qixi +

n−1∑
i=1

n∑
j=i+1

2xT
i Qijxj ⇒

⇒

{
xT
i Kiixi = cix

T
i Qixi

xT
i Kijxj + xT

j Kjixi = 2xT
i Qijxj

⇒

 xT
i Kiixi = xT

i (ciQi)xi

xT
i Kijxj +

(
xT
i KT

jixj

)T
= xT

i (2Qij)xj
⇒

⇒

{
Kii = ciQi

Kij = KT
ji = Qij

(A.6)
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Consequently, by defining Gi = {(i−1)k+1, (i−1)k+2, . . . , ik} to be a set of sampling indices

and given Eq. A.1, in order for Eq. A.2 to be true, the structure of Q is

Q =



∑
∀j:(vi,vj)∈E

Qij(G1,G1) +
∑

∀j:(vj ,vi)∈E

Qji(G2,G2), ∀vi ∈ V, at (Gi,Gi)

Qij(G1,G2), ∀i, j : (vi, vj) ∈ E, at (Gi,Gj) and (Gj ,Gi)

0, elsewhere

(A.7)

A.1.3 Proof 2

Similar to the previous case, herein we provide a proof for the precision matrix formulation

of Eq. 5.14. Again, assume that we have a set of vectors of length k that correspond to each

vertex, i.e., xi = [xi1, x
i
2, . . . , x

i
k], ∀i : vi ∈ V . We aim to find the structure of Q, so that∑

∀i,j:(vi,vj)∈E

[xi − xj ]
T Qij [xi − xj ] = xTQx (A.8)

where Qij is the k × k precision matrix corresponding to xi − xj and x = [xT
1 ,x

T
2 , . . . ,x

T
n ]T.

By separating the kn× kn matrix Q in blocks of size k× k as shown in Eq. A.3, the second

part of Eq. A.8 has the same form as shown in Eq. A.4. Given the properties of Sec. A.1.1,

the first part of Eq. A.8 can be written as∑
∀i,j:(vi,vj)∈E

[xi − xj ]
T Qij [xi − xj ] =

∑
∀i,j:(vi,vj)∈E

[
xT
i Qij − xT

j Qij
]

[xi − xj ] =

=
∑

∀i,j:(vi,vj)∈E

xT
i Qijxi + xT

j Qijxj − xT
i Qijxj − (xT

i (Qij)Txj)
T =

=
∑

∀i,j:(vi,vj)∈E

xT
i Qijxi + xT

j Qijxj − 2xT
i Qijxj =

n∑
i=1

cix
T
i Qijxi −

n−1∑
i=1

n∑
j=i+1

2xT
i Qijxj

(A.9)

By equalizing Eqs. A.4 and A.9 we get

n∑
i=1

xT
i Kiixi +

n−1∑
i=1

n∑
j=i+1

(
xT
i Kijxj + xT

j Kjixi

)
=

n∑
i=1

cix
T
i Qijxi −

n−1∑
i=1

n∑
j=i+1

2xT
i Qijxj ⇒

⇒

{
xT
i Kiixi = cix

T
i Qijxi

xT
i Kijxj + xT

j Kjixi = −2xT
i Qijxj

⇒

 xT
i Kiixi = xT

i (ciQ
ij)xi

xT
i Kijxj +

(
xT
i KT

jixj

)T
= xT

i (−2Qij)xj

⇒

{
Kii = ciQ

ij

Kij = KT
ji = −Qij

(A.10)
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Consequently, by defining Gi = {(i − 1)k + 1, (i − 1)k + 2, . . . , ik} to be a set of sampling

indices, in order for Eq. A.8 to be true, the structure of Q is

Q =



∑
∀j:(vi,vj)∈E

Qij +
∑

∀j:(vj ,vi)∈E

Qji, ∀vi ∈ V, at (Gi,Gi)

−Qij , ∀i, j : (vi, vj) ∈ E, at (Gi,Gj) and (Gj ,Gi)

0, elsewhere

(A.11)

A.2 Forward-Additive Optimization of Active Pictorial

Structures

Herein, we show the forward-additive Gauss-Newton optimization for Active Pictorial Struc-

tures (APS) of Chapter 5 and prove that it is much slower than the inverse one. The general

cost function to be optimized is

argmin
p
‖A(S(s̄,p))− ā‖2Qa + ‖S(s̄,p)− s̄‖2Qd (A.12)

By using an additive iterative update of the parameters as

p← p + ∆p (A.13)

and having an initial estimate of p, the cost function of Eq. 5.25 is expressed as minimizing

argmin
∆p

‖A(S(s̄,p + ∆p))− ā‖2Qa + ‖S(0,p + ∆p)‖2Qs (A.14)

with respect to ∆p. In order to find the solution we need to linearize around p, thus using

first order Taylor series expansion at p + ∆p = p⇒ ∆p = 0 as{
A(S(s̄,p + ∆p)) ≈ A(S(s̄,p)) + JA|p=p ∆p

S(0,p + ∆p) ≈ S(0,p) + JS |p=p ∆p
(A.15)

where JS |p=p = JS is the 2n× ns shape Jacobian

JS =
∂S
∂p

= U (A.16)

and JA|p=p = JA is the mn× ns appearance Jacobian

JA = ∇A
∂S
∂p

= ∇AU =


∇F(S1(s̄,p))U1,2

∇F(S2(s̄,p))U3,4

...

∇F(Sn(s̄,p))U2i−1,2i

 (A.17)
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H H−1 JA JA
TΣa S(s̄,p) HSp

O(m2n2ns +mnn2
s) O(ns

3) O(mnns) O(m2n2ns) O(2nns) O(ns
2)

Table A.1: The computational costs of all terms during the computation of the parameters increment.
n is the number of landmark points, m is the length of the features’ vector extracted from a patch and
ns is the number of shape parameters.

where U2i−1,2i denotes the 2i − 1 and 2i row vectors of the basis U. Note that we make an

abuse of notation with ∇F(S1(s̄,p)) because F(Si(s̄,p)) is a vector. However, it represents

the gradient of a patch around landmark i and it has size m× 2. By substituting we get

argmin
∆p

‖A(S(s̄,p)) + JA∆p− ā‖2Qa + ‖S(0,p) + JS∆p‖2Qs =

= argmin
∆p

(
[A(S(s̄,p)) + JA∆p− ā]T Qa [A(S(s̄,p)) + JA∆p− ā] +

+ [S(0,p) + JS∆p]T Qs [S(0,p) + JS∆p]
) (A.18)

Taking the partial derivative with respect to ∆p and solving for equality with 0 we get

2JA
TQa (A(S(s̄,p)) + JA∆p− ā) + 2JS

TQs (S(0,p) + JS∆p) = 0⇒

⇒2JA
TQa (A(S(s̄,p))− ā) + 2JA

TQaJA∆p + 2JS
TQsS(0,p) + 2JS

TQsJS∆p = 0⇒

⇒∆p = −[JA
TQaJA + JS

TQsJS ]−1[JA
TQa (A(S(s̄,p))− ā) + JS

TQsS(0,p)]

(A.19)

Thus by denoting as

HA = JA
TQaJA

HS = JS
TQsJS = UTQsU

}
⇒ H = HA + HS (A.20)

the combined ns × ns Hessian matrix and getting into account that JS
TQsS(0,p) =

UTQsUp = HSp then the parameters increment is given by

∆p = −H−1[JA
TQa (A(S(s̄,p))− ā) + HSp] (A.21)

In Eq. A.21, HS can be precomputed but JA and H−1 need to be computed at each

iteration. Consequently, based on the costs of Tab. A.1, the total computational cost is

O(m2n2ns + mnns + ns
3), which is much slower than the cost of the weighted inverse com-

positional algorithm with fixed Jacobian and Hessian (O(mn)).
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