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Abstract

Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of
biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer,
and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous
and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes
problems when using machine learning methods. A popular approach to this problem is to search for a set of features that
will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature
extraction is principal component analysis (PCA) which assumes a multivariate Gaussian model of the data. More recently,
non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to
project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning
for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG
pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and
classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is
not used in, and does not bias the classification process—it merely acts as an aid to find the best space in which to search
the data. In our experiments we have found that using our new manifold method gives better classification results than
using either PCA or conventional Isomap.
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Introduction

In machine learning as the dimensionality of the data rises, the

amount of data required to provide a reliable analysis grows

exponentially. Richard E. Bellman referred to this phenomenon as

the ‘‘curse of dimensionality’’ when considering problems in

dynamic optimisation [1]. A popular approach to this problem of

high-dimensional datasets is to search for a projection of the data

onto a smaller number of variables (or features) which preserves

the information as much as possible. Microarray data is typical of

this type of small sample problem. Each data point (microarray)

can have up to 50,000 variables (gene probes) and processing a

large number of data points involves high computational cost for

obtaining a statistical significant result [2].

In the last ten years, machine learning techniques have been

investigated in microarray data analysis. Several approaches have

been tried in order to: (i) distinguish between cancerous and non-

cancerous samples; (ii) classify different types of cancer and (iii) to

identify subtypes of cancer that may progress aggressively. All

these investigations are seeking to generate biologically meaningful

interpretations of complex datasets that are sufficiently interesting

to drive follow-up experimentation.

Many methods have been implemented for extracting only the

important information from the microarrays thus reducing their

size. The simplest is feature selection, in which the number of gene

probes in an experiment is reduced by selecting only the most

significant according to some criterion such as high levels of

activity. A number of investigations of this kind have been used to

examine breast cancer [3,4], while other studies use different

techniques such as support vector machines recursive feature

elimination [5], leave-one-out calculation sequential forward

selection, gradient-based-leave-one-out gene selection, recursive

feature addition and sequential forward selection [6].

Feature extraction methods have also been widely explored.

The most widely used method is principal component analysis

(PCA) and many variations of it have been applied as a way of

reducing the dimensionality of the data in microarrays [7–11]. A

supervised version of PCA was described in [12]. PCA however

has an important limitation: it cannot capture non-linear

relationships that often exists in data, especially in complex

biological systems.

An approach to dimensionality reduction that can take into

account potential non-linearity is based on the assumption that the

data (genes of interest) lie on an embedded non-linear manifold
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which has lower dimension than the raw data space and lies within

it. Algorithms based on manifold learning work well when the high

dimensionality of the data sets is artificially high; although each

point is defined by thousands of variables, it can be accurately

characterised by just a few. Samples are drawn from a low-

dimensional manifold that is embedded in a high-dimensional

space [13]. A commonly used method of finding an appropriate

manifold, Isomap [14], constructs the manifold by joining each

point only to its nearest neighbours. Distances between points are

then taken as geodesic distances on the resulting graph. Many

variants of Isomap have also been used, for example Balasubra-

manian and Schwartz [15] presented a tree connected version

which differs in the way the neighbourhood graph is constructed.

The k-nearest points are found by constructing a minimum

spanning tree using an e-radius hypersphere. Isomap has been

tried on microarray data with some very good results [16,17].

Compared to PCA, Isomap was able to extract more structural

information about the data.

We have been investigating a novel way of constructing the

manifold which makes use of prior knowledge. Prior knowledge

Table 1. Datasets Used.

Type Of Cancer Number Of Samples Number Of Genes

Breast cancer 344 cancer samples vs 1201 Other 10935

Colon cancer 286 cancer samples vs 1259 Other 10935

Kidney cancer 260 cancer samples vs 1285 Other 10935

Ovary cancer 198 cancer samples vs 1347 Other 10935

Lung cancer 126 cancer samples vs 1419 Other 10935

Uterus cancer 124 cancer samples vs 1421 Other 10935

Omentum cancer 77 cancer samples vs 1468 Other 10935

Prostate cancer 69 cancer samples vs 1476 Other 10935

Endometrium cancer 61 cancer samples vs 1484 Other 10935

Acute lymphoblastic leukaemia 19 B-Cell vs 8 T-Cell vs 10 Normal 5000

Description of the datasets used
doi:10.1371/journal.pone.0090562.t001

Figure 1. Evaluation benchmark. The g parameter is estimated and the resulting embedding is evaluated using cluster validation and cluster
accuracy metrics.
doi:10.1371/journal.pone.0090562.g001
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has previously been used in microarray studies [18–20] with the

objective of improving the classification accuracy. Although

several types of prior knowledge could have been used, we chose

the information in the KEGG pathways database. KEGG (Kyoto

Encyclopedia of Genes and Genomes) [21] is a collection of

databases containing information on networks of molecular

interaction in different organisms. It is widely believed that these

lower level interactions can be seen as the building blocks of

genetic systems, and can be used to understand high-level

functions of the biological systems. KEGG pathways have been

quite popular in network constrained methods which use networks

to identify gene relations to diseases [22,23]. Other studies have

used protein-to-protein interaction (PPI) networks for the same

purpose [24]. Gene Ontology (GO) terms are a popular source of

prior knowledge since they describe known functions of genes [18–

20,25]. We chose the KEGG pathways in the hope that they will

provide more information about the diseases related to the genes

than the functionality provided by the more abstract GO terms.

Our method of building the manifold is as follows. In common

with all previous methods we first build an affinity matrix from a

set of microarrays. A gene-by-gene affinity matrix is a square

matrix whose dimension is the same as the number of gene probes

in the microarray data. The matrix is symmetric and each entry is

a similarity measure (for example covariance) of the expression

levels of the two genes that index it. We then fuse information

from the KEGG pathways increasing the values in the affinity

matrix for gene pairs with a strong relationship in KEGG. Next we

apply a conventional manifold learning method to the fused

affinity matrix to find the manifold. Having found the manifold of

the gene probes we then project the raw data onto it so we can

carry out classification experiments. This means that the KEGG

pathway data is only involved in building the manifold. In contrast

to previous data fusion approaches [26], the prior knowledge is

only used to find a suitable space for representing the data.

Classification algorithms are applied on the raw data alone, and

are not biased by the prior knowledge. This ensures that the results

Figure 2. Dunn Index applied on sample-by-sample manifold for different cancers. The Dunn Index found using a priori manifold learning
learning (Blue) compared with PCA (Green) and Isomap (Red) computed using the sample-by-sample affinity matrix.
doi:10.1371/journal.pone.0090562.g002
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are more specific to the biological content of the dataset under

investigation.

Results

To verify the effectiveness of our method we tested a priori

manifold learning against the original Isomap algorithm and PCA.

We used the Dunn Index which is a metric for evaluating the

density and the structure of the clusters in the embedding. We also

employed the k-Nearest Neighbours (k-NN), Support Vector

Machines (SVMs) and Linear Discriminant Analysis (LDA)

classifiers with 10-fold cross validation to test the accuracy of the

model. Nine different types of cancer were used to evaluate the

methods and we used a smaller dataset to visualise the results. The

datasets are described in table 1. The evaluation scheme is shown

in figure 1.

Internal Evaluation
Dunn Index. The first metric we used to evaluate the density

of the clusters is the Dunn Index. The Dunn Index is a way to

measure the difference of the objects in a cluster with the mean of

the same cluster. The higher the index value the better the state of

the clusters. For our experiments the Dunn Index can indicate

how well the resulting embedding separates the samples according

to their label, since it uses the labels of each sample as the cluster

indicators. In practice manifold learning does not create any

clusters but if the embedding is done in a successful way many

points will end up being next to each other, since the embedding is

just a mapping from the original dataset to a different space. We

ran this experiment for different dimensional embeddings (2 to 50

components) as the components we will end up using in the

embedding is heavily dependent on the complexity of the data. We

applied it on both sample-by-sample affinity matrices, shown in

figure 2, and gene-by-gene affinity matrices shown in figure 3.

The results for the Dunn Index in sample-by-sample experi-

ments in figure 2 and gene-by-gene experiments in figure 3 show

that a priori manifold learning creates denser clusters in all cases

except colon, uterine and lung cancer. From the graph induced

from the colon dataset for both sample-by-sample and gene-by-

Figure 3. Dunn Index applied on gene-by-gene manifold for different cancers. The Dunn Index found using a priori manifold learning
learning (Blue) compared with PCA (Green) and Isomap (Red) computed using the gene-by-gene affinity matrix.
doi:10.1371/journal.pone.0090562.g003
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gene experiments and the uterine dataset in the gene-by-gene

experiments we can see that a priori manifold learning outperforms

PCA and Isomap for embeddings with lower dimensions. Our goal

is to create an embedding with as few components possible to

represent the original high-dimensional data. For the lung dataset

in the sample-by-sample experiments we need more samples to

create a more accurate embedding.

Ten fold cross-validation
To evaluate the accuracy of the embeddings we used the k-NN

and LDA classifiers with ten fold cross validation to measure the

accuracy of our method. In order to get the values we used the

trapezoidal rule which approximates the definite integral of the

plots. Results are shown in table 2 for sample-by-sample

experiments and in table 3 for gene-by-gene experiments using

k-NN. The corresponding results for LDA is shown in table 4 for

sample-by-sample and in table 5 for gene-by-gene experiments.

We have emphasised in bold the cases which a priori manifold

learning outperforms the rest of the methods. It should be noted

that the variance is small enough so we can compare the individual

accuracies of the experiments safely. The variances for the k-NN

classifier for the gene-by-gene experiments are shown in table 6

and for the sample-by-sample experiments in table 7. For the LDA

the variance is shown in table 8 for the gene-by-gene experiments

and in table 9 for the sample-by-sample experiments. We also

demonstrate the accuracy error. The graphs can be found in

Material S2. For the k-NN gene-by-gene experiments the graphs

are shown in figure S1 and for the sample-by-sample in figure S2.

For the Linear Discriminant Analysis gene-by-gene experiments

graphs are shown in figure S3 and for the sample-by-sample in

figure S4. In the LDA results a priori manifold learning

outperforms PCA and Isomap for 6 out of 9 datasets. These are

the same datasets for both sample-by-sample and gene-by-gene

Table 2. 10 Fold Cross Validation Accuracy On Sample-by-
Sample Transformation using k-Nearest Neighbours.

Type Of Cancer
A Priori Manifold
Learning Isomap PCA

Breast cancer 0.806 0.863 0.879

Colon cancer 0.868 0.897 0.906

Kidney cancer 0.937 0.931 0.932

Ovary cancer 0.841 0.842 0.851

Lung cancer 0.902 0.911 0.917

Uterus cancer 0.891 0.890 0.891

Omentum cancer 0.914 0.912 0.912

Prostate cancer 0.955 0.954 0.954

Endometrium cancer 0.923 0.924 0.926

The results of 10-fold cross-validation on the dataset using sample-by-sample
affinity matrices for PCA and Isomap. The a priori manifold learning method
(which operates using a gene-by-gene affinity matrix) still provides comparable
results with the other methods, while outperforming them in some of the cases.
We have emphasised in bold the cases which a priori manifold learning
outperforms the rest of the methods.
doi:10.1371/journal.pone.0090562.t002

Table 3. 10 Fold Cross Validation Accuracy On Gene-by-Gene
Transformation using k-Nearest Neighbours.

Type Of Cancer
A priori manifold
learning Isomap PCA

Breast cancer 0.806 0.782 0.792

Colon cancer 0.868 0.834 0.834

Kidney cancer 0.937 0.900 0.903

Ovary cancer 0.841 0.834 0.838

Lung cancer 0.902 0.883 0.886

Uterus cancer 0.891 0.882 0.881

Omentum cancer 0.914 0.912 0.912

Prostate cancer 0.955 0.943 0.945

Endometrium cancer 0.923 0.922 0.922

The results of 10-fold cross-validation on the dataset using gene-by-gene
affinity matrices for PCA and Isomap. The a priori manifold learning method
clearly outperforms the other two. We have emphasised in bold the cases
which a priori manifold learning outperforms the rest of the methods.
doi:10.1371/journal.pone.0090562.t003

Table 4. 10 Fold Cross Validation Accuracy On Sample-by-
Sample Transformation using Linear Discriminant Analysis.

Type Of Cancer
A priori manifold
learning Isomap PCA

Breast cancer 0.890 0.901 0.912

Colon cancer 0.906 0.914 0.925

Kidney cancer 0.956 0.952 0.953

Ovary cancer 0.871 0.867 0.870

Lung cancer 0.935 0.938 0.941

Uterus cancer 0.906 0.900 0.905

Omentum cancer 0.927 0.923 0.924

Prostate cancer 0.973 0.972 0.972

Endometrium cancer 0.937 0.934 0.930

The results of 10-fold cross-validation on the dataset using gene-by-gene
affinity matrices for PCA and Isomap. The a priori manifold learning method
clearly outperforms the other two. We have emphasised in bold the cases
which a priori manifold learning outperforms the rest of the methods.
doi:10.1371/journal.pone.0090562.t004

Table 5. 10 Fold Cross Validation Accuracy On Gene-by-Gene
Transformation using Linear Discriminant Analysis.

Type Of Cancer
A priori manifold
learning Isomap PCA

Breast cancer 0.890 0.888 0.910

Colon cancer 0.906 0.914 0.924

Kidney cancer 0.956 0.911 0.954

Ovary cancer 0.871 0.945 0.870

Lung cancer 0.935 0.924 0.940

Uterus cancer 0.906 0.901 0.905

Omentum cancer 0.927 0.926 0.923

Prostate cancer 0.973 0.970 0.972

Endometrium cancer 0.937 0.932 0.930

The results of 10-fold cross-validation on the dataset using gene-by-gene
affinity matrices for PCA and Isomap. The a priori manifold learning method
clearly outperforms the other two. We have emphasised in bold the cases
which a priori manifold learning outperforms the rest of the methods.
doi:10.1371/journal.pone.0090562.t005
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experiments. For the datasets that a priori manifold learning does

not perform as good as the other two methods the problem might

lie to the lack of a sufficient number of pathways in the KEGG

database.

The sample-by-sample affinity matrix cannot be computed

directly using a priori manifold learning since it needs the genes for

constructing the affinity matrix therefore a priori manifold learning

only operates on a gene-by-gene affinity matrix. For the GEMLeR

dataset, the sample-by-sample affinity matrix has dimensions 1545

by 1545. This is the number of microarrays in the dataset. The

gene-by-gene affinity matrix is 10935 by 10935 which is the

number of gene probes in each microarray.

Receiver Operating Characteristic Curves. In addition

we created the Receiver Operating Characteristic (ROC) curves to

illustrate the ratio of true positives and false positive results. We

have used three different classification methods for illustrating the

effectiveness of a priori manifold learning.

k - Nearest Neighbours (k-NN). For the k-NN classifier the

results we got for the ROC curves agree with the 10-fold cross

validation results. A priori manifold learning performs better in all

the gene-by-gene experiments as shown in figure 4, while in the

sample-by-sample ones only performs better in one dataset as

shown in figure 5

Support Vector Machines (SVMs). Using SVMs a priori

manifold learning performs better in 7 out of 9 datasets for the

gene-by-gene experiments (figure 6) while in the sample-by-sample

experiments (figure 7) it performs better in all datasets.

Linear Discriminant Analysis (LDA). For the same pur-

pose we also used LDA where for gene-by-gene experiments

(figure 8) and sample-by-sample experiments (figure 9) a priori

manifold learning performs better in 5 out of 9 datasets.

If we compare the ROC curves of the three different classifiers

we can see that the a priori manifold learning gives consistent

results for LDA and SVMs for both genes-by-gene and sample-by-

sample experiments. However, the k-NN classifier seems to

perform very well for the gene-by-gene experiments but not for

the sample-by-sample ones. A possible explanation for this is that

discriminant methods like SVMs and LDA use a data model

computed from the whole data sets, and may therefore be more

robust to noise and other artefacts. By contrast the k-NN classifier

relies on the local distribution of the data, and could therefore be

less effective particularly in small sample size problems.

Table 6. 10 Fold Cross Validation Variance On Gene-by-Gene
Transformation using k-Nearest Neighbours.

Type Of Cancer
A Priori Manifold
Learning Isomap PCA

Breast cancer 32.09034e-5 37.52164e-5 35.38524e-5

Colon cancer 29.24537e-5 29.91476e-5 28.95183e-5

Kidney cancer 6.72999e-5 11.64989e-5 12.68591e-5

Ovary cancer 21.39207e-5 11.13463e-5 12.88114e-5

Lung cancer 14.09877e-5 5.26385e-5 3.13050e-5

Uterus cancer 13.01978e-5 3.44257e-5 5.51030e-5

Omentum cancer 2.54772e-5 0.80620e-5 0.80620e-5

Prostate cancer 2.34272e-5 6.79816e-5 4.34986e-5

Endometrium cancer 1.58922e-5 1.92059e-5 1.10440e-5

The results show that the variance of the cross validation is very small and thus
we can safely compare the methods tested.
doi:10.1371/journal.pone.0090562.t006

Table 7. 10 Fold Cross Validation Variance On Sample-by-
Sample Transformation using k-Nearest Neighbours.

Type Of Cancer
A Priori Manifold
Learning Isomap PCA

Breast cancer 32.09034e-5 27.91171e-5 18.32800e-5

Colon cancer 29.24537e-5 26.86585e-5 16.95718e-5

Kidney cancer 6.72999e-5 10.34294e-5 9.40982e-5

Ovary cancer 21.39207e-5 24.88867e-5 14.85025e-5

Lung cancer 14.09877e-5 14.62143e-5 12.39355e-5

Uterus cancer 13.01978e-5 16.97889e-5 18.60610e-5

Omentum cancer 2.54772e-5 2.79939e-5 2.12314e-5

Prostate cancer 2.34272e-5 2.07739e-5 2.17724e-5

Endometrium cancer 1.58922e-5 5.77868e-5 6.19262e-5

The results show that the variance of the cross validation is very small and thus
we can safely compare the methods tested.
doi:10.1371/journal.pone.0090562.t007

Table 8. 10 Fold Cross Validation Variance On Gene-by-Gene
Transformation using Linear Discriminant Analysis.

Type Of Cancer
A Priori Manifold
Learning Isomap PCA

Breast cancer 4.43639e-5 3.18558e-5 1.64494e-5

Colon cancer 3.97728e-5 1.79713e-5 5.60684e-5

Kidney cancer 6.28824e-5 2.24769e-5 2.73758e-5

Ovary cancer 2.94021e-5 3.21893e-5 3.50449e-5

Lung cancer 1.58082e-5 2.14339e-5 1.26192e-5

Uterus cancer 1.04442e-5 7.45783e-5 7.01667e-5

Omentum cancer 1.21062e-5 3.76439e-5 2.42125e-5

Prostate cancer 4.12092e-5 1.40641e-5 4.41161e-5

Endometrium cancer 1.14222e-5 1.62528e-5 8.67444e-5

The results show that the variance of the cross validation is very small and thus
we can safely compare the methods tested.
doi:10.1371/journal.pone.0090562.t008

Table 9. 10 Fold Cross Validation Variance On Sample-by-
Sample Transformation using Linear Discriminant Analysis.

Type Of Cancer
A Priori Manifold
Learning Isomap PCA

Breast cancer 4.43639e-05 2.70937e-5 1.62271e-5

Colon cancer 3.97728e-5 3.55322e-5 5.32299e-5

Kidney cancer 6.28824e-5 4.56036e-5 3.06760e-5

Ovary cancer 2.94021e-5 2.80513e-5 4.17136e-5

Lung cancer 1.58082e-5 1.97068e-5 1.47822e-5

Uterus cancer 1.04442e-5 4.53130e-05 7.25349e-5

Omentum cancer 1.21062e-5 9.24128e-5 2.14339e-5

Prostate cancer 4.12092e-5 1.25679e-5 2.42809e-5

Endometrium cancer 1.14222e-5 8.63512e-5 8.75652e-5

The results show that the variance of the cross validation is very small and thus
we can safely compare the methods tested.
doi:10.1371/journal.pone.0090562.t009
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We used the Acute Lymphoblastic Leukaemia (ALL) dataset for

leukaemia to demonstrate how the different cells were clustered.

We have chosen the ALL dataset as it is simple enough to visualise

and has been used before in [27] to demonstrate the clustering of

the different types of cells in two dimensions. The embedding with

the samples annotated with their true labels is found in figure 10.

Discussion

Conventional manifold learning algorithms, such as Isomap,

aim to project the microarray data to a lower dimensional space in

which functionally different clusters are better separated. The

lower dimensional space is a manifold (hypersurface) contained in

the original data space and found from the local distribution of the

data. A large representative dataset is used to compute the

manifold. Our method provides a way of improving the way

Isomap finds the k-nearest points and creates the neighbouring

graph by utilising KEGG pathway information. The KEGG data

is a form of prior knowledge which is better curated and more

reliable than the microarray data. Once the manifold has been

constructed the raw microarray data is projected onto it and

clustering and classification can take place. We called this method

a priori manifold learning and we compared it to the original

Isomap and the PCA algorithms, since PCA is the most commonly

used method for dimensionality reduction. By incorporating prior

knowledge we argue that we are able to have less variable and

more biologically significant clusters. Information taken from

KEGG pathways is a way of decreasing the noise in the

microarray experiments. We produced results using ten different

datasets of cancer data, where we tried to distinguish among

different types of cancers. Nine out of ten datasets are considered

to be high dimensional.

The results were similar across the different datasets. In the first

set of results, we showed, using the Dunn Index, that our

Figure 4. ROC curves for gene-by-gene affinity matrices using k-Nearest Neighbours. ROC curves found for a priori manifold learning
(blue) compared with PCA (Green) and Isomap (Red) computed using the gene-by-gene affinity matrix and the k-NN classifier.
doi:10.1371/journal.pone.0090562.g004
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algorithm is able to create denser clusters with objects that lie

closer to the mean of the cluster with a small variance. A priori

manifold learning produces more compact, well - separated

clusters when compared with PCA and the original Isomap. In

some cases a priori manifold learning performs better only for

embeddings with a smaller number of components which is still

useful since we are more interested in embeddings with a lower

number of dimensions. There were also cases were the samples

and the KEGG signatures were not enough for a priori manifold

learning to perform better than PCA and Isomap.

Incorporating prior knowledge using KEGG pathways is not

only limited to cancer data but it can be applied to a number of

diseases that have KEGG signatures. This, along with the fact that

the method does not require any other information, makes it easy

to adapt to any kind of biological problem. Other studies [18–20]

have used Gene Ontology (GO) terms instead of KEGG pathways.

We believe that KEGG pathways carry more information when it

comes to diseases rather than GO terms since GO terms mostly

give information about the function of a gene.

When performing cross validation experiments both PCA and

Isomap features can be computed using either the gene-by-gene

affinity matrix or the sample-by-sample affinity matrix. The latter

is a square matrix with dimension equal to the number of

microarrays used in the experiment. Each entry represents the

similarity (or distance) between the corresponding pair of

microarrays. It is considerably smaller than the gene-gene matrix

and consequently more robust to noise. A priori manifold learning

can only be computed using the gene-by-gene affinity matrix. This

is because the prior knowledge extracted from the KEGG data

base is in the form of similarities between gene pairs. Our results

show that both PCA and Isomap perform better using the sample-

by-sample affinity matrix. A priori manifold learning on average

performs better in all cases when using the LDA and SVM

classifiers. It does not do so well in classification experiments where

Figure 5. ROC curves for sample-by-sample affinity matrices using k-Nearest Neighbours. ROC curves found for a priori manifold learning
(blue) compared with PCA (Green) and Isomap (Red) computed using the sample-by-sample affinity matrix and the k-NN classifier.
doi:10.1371/journal.pone.0090562.g005
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PCA and Isomap are computed using the sample-by-sample

affinity matrix using the k-NN classifier. In this case there is no

significant difference between the three formulations. A possible

reason for this is that both LDA and SVM classifiers create a

model of the underlying classes, but k-NN is a parametric method

which depends on the local distribution of the data, and

consequently may be more susceptible to noise.

Overall we see that a priori manifold learning produces better

formed clusters than either PCA or Isomap, and also performs

better in classification experiments using either SVM or LDA

methods. One of the drawbacks of the method is that it has only

been formulated using the gene-by-gene affinity matrix, and this

makes it more susceptible to noise than methods that can be

computed directly on a sample-by-sample affinity matrix. Conse-

quently a current direction of further work is to investigate

methods whereby prior knowledge can be used in a sample-by-

sample formulation. We are also investigating ways in which we

can make the prior knowledge more specific to the particular type

of cancer under investigation. By doing so we hope to make

inroads into the harder problem of recognising subtypes of a

cancer that will progress aggressively.

Materials and Methods

In this paper we present a method which incorporates manifold

learning along with a novel approach for estimating the

neighbourhood graph. The cluster validation and accuracy

measures, along with the original Isomap algorithm and PCA

were implemented using the sklearn [28] package for Python.

Manifold Learning - Isomap
The manifold learning algorithm is used for non-linear

dimensionality reduction [29]. Manifold learning generally works

by embedding inputs from a higher dimensional space in a lower

Figure 6. ROC curves for gene-by-gene affinity matrices using Support Vector Machines. ROC curves found for a priori manifold learning
(blue) compared with PCA (Green) and Isomap (Red) computed using the gene-by-gene affinity matrix and the SVM classifier.
doi:10.1371/journal.pone.0090562.g006
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one while preserving their characteristics. It assumes that all data

points are lying close to or on a manifold and it can be thought as

a generalised principal components analysis (PCA) that can

capture non-linear relations. Isomap, [14] short for Isometric

Mapping, was one of the first approaches to manifold and is an

extension to Kernel PCA. The Isomap algorithm works as follows:

1. Determine the neighbours: For all points in a fixed radius, find

the k nearest points (k - Isomap) or the closest points based on

distance ( -Isomap)

2. Construct the neighbourhood graph: Points are connected to

each other if they are k nearest points away with the edge

length set to their Euclidean distance.

3. Find the shortest path between all the nodes on the graph using

a graph algorithm (Dijkstra or Floyd-Warshall) to construct the

matrix of pairwise geodesic distances between different points.

4. Construct the lower dimensionality mapping. This is the same

procedure as classical MDS. Generally another matrix H is

constructed using:

H~{
1

2
HD2H ð1Þ

where H is the centering matrix:

H~In{
1

N
UN ð2Þ

where UN is an N|N matrix of 1’s;

D is the matrix of geodesic distances;

and In is the identity matrix of size n

Figure 7. ROC curves for sample-by-sample affinity matrices using Support Vector Machines. ROC curves found for a priori manifold
learning (blue) compared with PCA (Green) and Isomap (Red) computed using the sample-by-sample affinity matrix and the SVM classifier.
doi:10.1371/journal.pone.0090562.g007
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5. Calculate the eigenvalues of H: Let lk be the kth eigenvalue

and vk be the kth eigenvector. We construct the kth component

of the embedding P by setting it to
ffiffiffiffiffi
lk

p
vk.

5.

P~

ffiffiffiffiffi
l1

p
v1ffiffiffiffiffi

l2

p
v2ffiffiffiffiffi

l3

p
v3

..

.

ffiffiffiffiffi
ld

p
vd

0
BBBBBBBBB@

1
CCCCCCCCCA

A priori Manifold Learning. Biological pathways are

usually directed graphs with labelled nodes and edges representing

associations of genes participating in a biological process. These

interactions can help in understanding the underlying processes in

different organisms as well as their contribution to diseases. Some

of the interactions include regulation of gene expression,

transmission of signals and metabolic processes. It is not yet clear

as to why and how these interactions came to exist and what other,

if any, external factors contribute to them. When it comes to

machine learning, information from the pathways can be used as

prior knowledge for either feature selection or dimensionality

reduction of the original data set. For our implementation, KEGG

pathways are used as a way to weight the distance between the

gene to gene interactions. Genes that share a greater number of

common pathways should have more probability in being closer

together when it comes to clustering. The metric we have used in

Figure 8. ROC curves for gene-by-gene affinity matrices using Linear Discriminant Analysis. ROC curves found for a priori manifold
learning (blue) compared with PCA (Green) and Isomap (Red) computed using the gene-by-gene affinity matrix and the LDA classifier.
doi:10.1371/journal.pone.0090562.g008
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weighting the distances was based on the method for feature

selection [30]. This method works by assigning weights on the

different features so that the more important ones play a greater

role in the equation. By exploiting the use of these weights we can

modify the classical k nearest points algorithm using the weighted

Mahalanobis shown in equation (6) as a distance metric for

determining which points of the original data space are close to

one another. The algorithm to find the k-Nearest points works as

follows:

1. Given a pair of probes the Jaccard coefficient is used to

evaluate the similarity of pathways they share together. This

index coined by Paul Jaccard [31] is a statistic commonly used

for comparing similarity and diversity of sample sets shown in

equation (3).

R(i,j)~
jj(i)\j(j)j
jj(i)|j(j)j ð3Þ

where j5P(KEGG Pathways).

2. The distance metric selected to calculate the gene-to-gene

distance was the Mahalanobis distance. It is measured using the

correlations between two datasets.

d(~xx,~yy)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(~xx{~yy)T S{1(~xx{~yy)

q
ð4Þ

where S is the covariance matrix.

Figure 9. ROC curves for sample-by-sample affinity matrices using Linear Discriminant Analysis. ROC curves found for a priori manifold
learning (blue) compared with PCA (Green) and Isomap (Red) computed using the sample-by-sample affinity matrix and the LDA classifier.
doi:10.1371/journal.pone.0090562.g009
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3. The weights equation is shown in equation (5)

wij~exp({g|R(i,j)) ð5Þ

where g a learning parameter and R is the Jaccard coefficient.

The learning parameter g is a way of minimising and

maximising the influence of any given feature in the dataset.

When g is large the changes in the dataset are exponentially

reflected on the weights. They way the parameter g affects the

results is shown in Material S1 in figure S5.

4. The weights along with the Mahalanobis distance are

expressed as:

D(a,b)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi,j|d(~aai,~bbi)

q
ð6Þ

The algorithm is shown in figure 11.

Geodesic matrix and eigenvalues.The shortest paths   are

found using either the Dijkstra [32] or Floyd-Warshall algorithm

[33]. Dijkstra’s algorithm is usually preferred since it is faster and

the weights are non-negative. The Isomap mapping is done by

calculating the eigenvalues of H as shown in equation (1). If the

mapping has been calculated from the gene to gene affinity matrix

we denote it as P
G|G

. The corresponding eigenvalue basis for the

sample-by-sample affinity matrix PS|S can be found by

multiplying PG|G by the original data.

PS|S ~expressionData P
G|G

Figure 10. Leukaemia cell. Two dimensional manifold of the three
different leukaemia cells. Clusters of the different cell types are formed
and are easily distinguished in the lower dimensional space.
doi:10.1371/journal.pone.0090562.g010

Figure 11. Calculation of the k-Nearest points of the manifold.
First the Jaccard coefficient is calculated, the the Mahalanobis distances
among the genes and the weights.
doi:10.1371/journal.pone.0090562.g011

Figure 12. Pathway Robustness (Endometrium). A plot of the
Dunn Index with different percentages of pathways.
doi:10.1371/journal.pone.0090562.g012

Figure 13. Pathway Robustness (Prostate). A plot of the Dunn
Index with different percentages of pathways.
doi:10.1371/journal.pone.0090562.g013
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Cluster evaluation methods
k-fold Cross Validation. To evaluate the results k-fold cross-

validation [34] was used, where k~10. The embedding produced

gets partitioned in 10 subsets, one of them is used for validation

and the other 9 are used as the training data. The process is

repeated 10 times so that every subset is used as validation exactly

once. The results are averaged along 10 times and a single

estimation is produced.

Support Vector Machines. A Support Vector Machine [35]

is a classifier defined by a separating hyperplane. Given labelled

training data, the algorithm outputs an optimal hyperplane which

classifies new examples. Given a labelled training set xi,yi where

i~1,:::,n SVMs can find a solution to the following optimisation

problem:

minw,b,j~
1

2
W T WzC

Xn

i~1

ji ð8Þ

Linear Discriminant Analysis. Linear discriminant analysis

[36] works by finding a linear combination of features which

characterises or separates two or more classes if the likelihood

ratios are less than a threshold T such that:

(~xx{~mm0)TS{1
y~0(~xx{~mm0)z ln jSy~0j{

(~xx{~mm1)TS{1
y~1(~xx{~mm1){ ln jSy~1jv T

ð9Þ

assuming that the conditional probability density function

Figure 14. Pathway Robustness (Lung). A plot of the Dunn Index
with different percentages of pathways.
doi:10.1371/journal.pone.0090562.g014

Figure 15. Pathway Robustness (Breast). A plot of ROC curves with
different percentages of pathways.
doi:10.1371/journal.pone.0090562.g015

Figure 16. Pathway Robustness (Colon). A plot of ROC curves with
different percentages of pathways.
doi:10.1371/journal.pone.0090562.g016

Figure 17. Pathway Robustness (Kidney). A plot of ROC curves
with different percentages of pathways.
doi:10.1371/journal.pone.0090562.g017
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p(~xxjy~0) and p(~xxjy~1) are normally distributed with mean

~mm0,Sy~0

� �
and covariance ~mm1,Sy~1

� �
.

Dunn Index. The Dunn Index is an internal evaluation

metric for clusters [37]. Internal evaluation means that it only

depends on the data of the cluster itself, mainly by considering

better the clusters with little variance. It is defined as:

DIm~ min
1ƒiƒm

min
1ƒjƒm,j=i

d(Ci,Cj)

max
1ƒkƒm

Dk

8<
:

9=
;

8<
:

9=
; ð10Þ

where d is the distance metric between the cluster Ci and Cj and D

is

Di~

P
x[Ci

d(x,m)

jCij
,m~

P
x[Ci

x

jCij
ð11Þ

and it computes the distance of all points from the mean.

Pathway Robustness
We demonstrate the robustness and the effectiveness of using

pathways by removing pathways using a uniform distribution with

different probabilities. By removing a percentage of the KEGG

pathways in different runs of the algorithm we show how the

number of pathways affects its performance. We show how the

Dunn Index is affected in the Endometrium (figure 12), Prostate

(figure 13) and Lung (figure 14) datasets. We also show how the

ROC curves are affected for Breast in figure 15, Colon in figure

16, Kidney in figure 17, Omentum in figure 18 and Ovary in

figure 19.

Datasets
To test our a priori Manifold Learning method we used two

different types of datasets.

1. GEMLeR, provides a collection of gene expression datasets

that can be used for benchmarking gene expression oriented

machine learning algorithms. Each of the gene expression

samples in GEMLeR came from a large publicly available

repository. GEMLeR was mainly preferred as:

N The processing procedure of tissue samples is consistent

N The same Affymetrix microarray assay platform is used

(Affymetrix GeneChip U133 Plus 2.0)

N There is large number of samples for different tumour types

N Additional information is available for combined genotype-

phenotype studies

2. Acute lymphoblastic leukaemia (ALL) is a form of leukaemia

characterised by excess lymphoblasts. There are two main

types of acute leukaemia: T-cell ALL and B-cell ALL. T-Cell

acute leukaemia is aggressive and progresses quickly but is

more common in older children and teenagers. B-Cell ALL

leukaemia [38] is another type of ALL, originated in a single

cell and characterised by the accumulation of blast cells that

are phenomenologically reminiscent of normal stages of B-cell

differentiation.

Information on the contents of the datasets is shown in table 1.

Execution Times
Our algorithm takes approximately 45 minutes for each

embedding which is the same as the original Isomap algorithm.

PCA is however a lot faster since is only takes ten minutes to fit the

data and create an embedding. This is because PCA is linear while

a priori manifold learning and Isomap are non-linear methods and

they need more time to fit the data.

Supporting Information

Figure S1 Accuracy with variance for all nine datasets
for gene-by-gene affinity matrices k-Nearest Neigh-
bours. Accuracy with variance calculated for a priori manifold

learning (blue) compared with PCA (Green) and Isomap (Red)

computed using the gene-by-gene affinity matrix and the k-NN

classifier.

(TIFF)

Figure 18. Pathway Robustness (Omentum). A plot of ROC curves
with different percentages of pathways.
doi:10.1371/journal.pone.0090562.g018

Figure 19. Pathway Robustness (Ovary). A plot of ROC curves with
different percentages of pathways.
doi:10.1371/journal.pone.0090562.g019
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Figure S2 Accuracy with variance for all nine datasets
for sample-by-sample affinity matrices using k-Nearest
Neighbours. Accuracy with variance calculated for a priori

manifold learning (blue) compared with PCA (Green) and Isomap

(Red) computed using the sample-by-sample affinity matrix and

the k-NN classifier.

(TIFF)

Figure S3 Accuracy with variance for all nine datasets
for gene-by-gene affinity matrices using Linear Discrim-
inant Analysis. Accuracy with variance calculated for a priori

manifold learning (blue) compared with PCA (Green) and Isomap

(Red) computed using the gene-by-gene affinity matrix and the

LDA classifier.

(TIFF)

Figure S4 Accuracy with variance for all nine datasets
for sample-by-sample affinity matrices using Linear
Discriminant Analysis. Accuracy with variance calculated for

a priori manifold learning (blue) compared with PCA (Green) and

Isomap (Red) computed using the sample-by-sample affinity

matrix and the LDA classifier.

(TIFF)

Figure S5 Endometrium Cancer. How the g value affects

the value for the Dunn Index.

(TIFF)

Material S1 The g Value. We show how the g value improves

the Dunn Index. The g value selected for the embedding of the

Endometrial cancer was 19000. It is the value with the highest

Dunn Index as shown in figure S5.

(PDF)

Material S2 Accuracy Variance. We present the error bars

with one standard deviation of uncertainty for the 10-fold cross

validation with a k-NN classifier in figure S2 for the sample-by-

sample affinity matrix and in figure S1 for gene-by-gene affinity

matrix. For Linear Discriminant Analysis the gene-by-gene

errorbars are shown in figure S3 and for the sample-by-sample

experiments in figure S4.

(PDF)
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