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Abstract—Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to
maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear
geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label
noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be
close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean
faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance
through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also
explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the
pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by
using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the
discriminative feature embedding as well as strengthen the generative face synthesis.

Index Terms—Large-scale Face Recognition, Additive Angular Margin, Noisy Labels, Sub-class, Model Inversion

1 INTRODUCTION

ACE representation using DCNN embedding is the method of
Fchoice for face recognition [1], [2], [3], [4], [5], [6]. DCNNs
map the face image, typically after a pose normalization step [7],
[8], into a feature that should have small intra-class and large
inter-class distance. There are two main lines of research to train
DCNNs for face recognition. Some train a multi-class classifier
which can separate different identities in the training set, such
by using a softmax classifier [2], [4], [9], [10], [11], and the
others learn directly an embedding, such as the triplet loss [3].
Based on the large-scale training data and the elaborate DCNN
architectures, both the softmax-loss-based methods [9] and the
triplet-loss-based methods [3] can obtain excellent performance
on face recognition. However, both the softmax loss and the triplet
loss have some drawbacks. For the softmax loss: (1) the learned
features are separable for the closed-set classification problem but
not discriminative enough for the open-set face recognition prob-
lem; (2) the size of the linear transformation matrix W & RN
increases linearly with the identities number N. For the triplet
loss: (1) there is a combinatorial explosion in the number of face
triplets especially for large-scale datasets, leading to a significant
increase in the number of iteration steps; (2) semi-hard sample
mining is a quite difficult problem for effective model training.

To adopt margin benefit but avoid the sampling problem in
the Triplet loss [3], recent methods [13], [14], [15] focus on
incorporating margin penalty into a more feasible framework,
the softmax loss, which has global sample-to-class comparisons
within the multiplication step between the embedding feature and
the linear transformation matrix. Naturally, each column of the
linear transformation matrix is viewed as a class center represent-
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ing a certain class. Sphereface [13] introduces the important idea
of angular margin, however their loss function requires a series
of approximations, which results in an unstable training of the
network. In order to stabilize training, they propose a hybrid loss
function which includes the standard softmax loss. Empirically,
the softmax loss dominates the training process, because the
integer-based multiplicative angular margin makes the target logit
curve very precipitous and thus hinders convergence.

In this paper, we propose an Additive Angular Margin
loss [16] to stabilize the training process and further improve
the discriminative power of the face recognition model. More
specifically, the dot product between the DCNN feature and
the last fully connected layer is equal to the cosine distance
after feature and center normalization. We utilize the arc-cosine
function to calculate the angle between the current feature and the
target center. Afterwards, we introduce an additive angular margin
to the target angle, and we get the target logit back again by the
cosine function. Then, we re-scale all logits by a fixed feature
norm, and the subsequent steps are exactly the same as in the
softmax loss. Due to the exact correspondence between the angle
and arc in the normalized hypersphere, our method can directly
optimize the geodesic distance margin, thus we call it ArcFace.

Even though impressive performance has been achieved by
the margin-based softmax methods [17], [13], [14], [15], they
all need to be trained on well-annotated clean datasets [18],
which require intensive human efforts. Wang et al. [18] found
that faces with label noise significantly degenerate the recognition
accuracy and manually built a high-quality dataset including 1.7M
images of 59K celebrities. However, it took 50 annotators to work
continuously for one month to clean the dataset, which further
demonstrates the difficulty of obtaining a large-scale clean dataset
for face recognition. Since accurate manual annotations can be
expensive [18], learning with massive noisy data has recently
attracted much attention [19], [20], [21]. However, computing
time-varying weights for samples [19] or designing piece-wise
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Fig. 1. Comparisons of Triplet [3], Tuplet [12], ArcFace and sub-center ArcFace. Triplet and Tuplet conduct local sample-to-sample comparisons
with Euclidean margins within the mini-batch. By contrast, ArcFace and sub-center ArcFace conduct global sample-to-class and sample-to-subclass

comparisons with angular margins.

loss functions [20] according to the current model’s predictions
can only alleviate the influence from noisy data to some extent as
the robustness and improvement depend on the initial performance
of the model. Besides, the co-mining method [21] requires to train
twin networks together thus it is less practical for training large
models on large-scale datasets.

To improve the robustness under massive real-world noise,
we relax the intra-class constraint of forcing all samples close to
the corresponding positive centers by introducing sub-classes into
ArcFace [22]. As illustrated in Figure 1, we design K sub-centers
for each class and the training sample only needs to be close to
any of the K positive sub-centers instead of the only one positive
center. If a training face is a noisy sample, it does not belong to
the corresponding positive class. In ArcFace, this noisy sample
generates a large wrong loss value, which impairs the model
training. In sub-center ArcFace, the intra-class constraint enforces
the training sample to be close to one of the multiple positive
sub-centers but not all of them. The noise is likely to form a non-
dominant sub-class and will not be enforced into the dominant
sub-class. Therefore, sub-center ArcFace is more robust to noise.
In our experiments, we find the proposed sub-center ArcFace can
encourage one dominant sub-class that contains the majority clean
faces and multiple non-dominant sub-classes that include hard or
noisy faces. This automatic isolation can be directly employed
to clean the training data through dropping non-dominant sub-
centers and high-confident noisy samples. Based on the proposed
sub-center ArcFace, we can automatically obtain large-scale clean
training data from raw web face images to further improve the
discriminative power of the face recognition model.

In Figure 1, we compare the differences between Triplet [3],
Tuplet [12], ArcFace and sub-center ArcFace. Triplet loss [3] only
considers local sample-to-sample comparisons with Euclidean
margins within the mini-batch. Tuplet loss [12] further enhances
the comparisons by using all of the negative pairs within the
mini-batch. By contrast, the proposed ArcFace and sub-center
ArcFace conduct global sample-to-class and sample-to-subclass
comparisons with angular margins.

As the proposed ArcFace is effective for the mapping from
the face image to the discriminative feature embedding, we are
also interested in the inverse problem: the mapping from a low-
dimensional latent space to a highly nonlinear face space. Syn-
thesizing face images [23], [24], [25], [26], [27], [28], [29] has
recently brought much attention from the community. DeepDream
[30] is proposed to transform a random input to yield a high output

activation for a chosen class by employing the gradient from the
pre-trained classification model and some regularizers (e.g. total
variance [31] for maintaining piece-wise constant patches). Even
though DeepDream can keep the selected output response high
to preserve identity, the resulting faces are not realistic, lacking
natural face statistics. Inspired by the pioneer generative face
recognition model (Eigenface [32]) and recent data-free methods
[33], [34], [35] for restoring ImageNet images, we employ the
statistic prior (e.g. mean and variance stored in the BN layers)
to constrain the face generation. In this paper, we show that the
proposed ArcFace can also enhance the generative power. Without
training any additional generator or discriminator like in Genera-
tive Adversarial Networks (GANs) [36], the pre-trained ArcFace
model can generate identity-preserved and visually reasonable
face images only by using the gradient and BN priors.

The advantages of the proposed methods can be summarized
as follows:
Intuitive. ArcFace directly optimizes the geodesic distance margin
by virtue of the exact correspondence between the angle and arc
in the normalized hypersphere. The proposed additive angular
margin loss can intuitively enhance the intra-class compactness
and inter-class discrepancy during discriminative learning of face
feature embedding.
Economical. We introduce sub-class into ArcFace to improve its
robustness under massive real-world noises. The proposed sub-
center ArcFace can automatically clean the large-scale raw web
faces (e.g. MS1MVO [37] and Celeb500K [38]) without expensive
and intensive human efforts. The automatically cleaned training
data, named IBUG-500K, has been released to facilitate future
research.
Easy. ArcFace only needs several lines of code and is extremely
easy to implement in the computational-graph-based deep learning
frameworks, e.g. MxNet [39], Pytorch [40] and Tensorflow [41].
Furthermore, contrary to the works in [13], [42], ArcFace does
not need to be combined with other loss functions in order to have
stable convergence.
Efficient. ArcFace only adds negligible computational complexity
during training. The proposed center parallel strategy can easily
support millions of identities for training on a single server (8
GPUs).
Effective. Using IBUG-500K as the training data, ArcFace
achieves state-of-the-art performance on ten face recognition
benchmarks including large-scale image and video datasets
collected by us. Impressively, our model reaches 97.27%
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TPR@FPR=1e-4 on IJB-C. Code and pre-trained models have
been made available.

Engaging. ArcFace can not only enhance the discriminative power
but also strengthen the generative power. By accessing the network
gradient and employing the statistic priors stored in the BN layers,
the pre-trained ArcFace model can restore identity-preserved and
visually plausible face images for both subjects inside and outside
the training data.

2 RELATED WORK

Face Recognition with Margin Penalty. As shown in Figure
1, the pioneering work [3] uses the Triplet loss to exploit triplet
data such that faces from the same class are closer than faces
from different classes by a clear Euclidean distance margin. Even
though the Triplet loss makes perfect sense for face recognition,
the sample-to-sample comparisons are local within mini-batch and
the training procedure for the Triplet loss is very challenging
as there is a combinatorial explosion in the number of triplets
especially for large-scale datasets, requiring effective sampling
strategies to select informative mini-batch [43], [3] and choose
representative triplets within the mini-batch [44], [12]. As the
Triplet loss trained with semi-hard negative mining converges
slower due to the ignorance of too many examples, a double-
margin contrastive loss is proposed in [45] to explore more
informative and stable examples by distance weighted sampling,
thus it converges faster and more accurately. Some other works
tried to reduce the total number of triplets with proxies [46],
[47], i.e., sample-to-sample comparison is changed into sample-
to-proxy comparison. However, sampling and proxy methods only
optimize the embedding of partial classes instead of all classes in
one iteration step.

Margin-based softmax methods [13], [17], [14], [15] focused

on incorporating margin penalty into a more feasible framework,
softmax loss, which has extensive sample-to-class comparisons.
Compared to deep metric learning methods (e.g., Triplet [3],
Tuplet [44], [12]), margin-based softmax methods conduct global
comparisons at the cost of memory consumption on holding the
center of each class as illustrated in Figure 1. Sample-to-class
comparison is more efficient and stable than sample-to-sample
comparison as (1) the class number is much smaller than sample
number, and (2) each class can be represented by a smoothed
center vector which can be updated online during training. To
further improve the margin-based softmax loss, recent works focus
on the exploration of adaptive parameters [48], [49], [50], inter-
class regularization [51], [52], mining [53], [54], grouping [55],
etc.
Face Recognition under Noise. Most of the face recognition
datasets [56], [37], [9], [38] are downloaded from the Internet
by searching a pre-defined celebrity list, and the original labels
are likely to be ambiguous and inaccurate [18]. Learning with
massive noisy data has recently drawn much attention in face
recognition [57], [19], [20], [21] as accurate manual annotations
can be expensive [18] or even unavailable.

Wau et al. [57] proposed a semantic bootstrap strategy, which
re-labels the noisy samples according to the probabilities of the
softmax function. However, automatic cleaning by the bootstrap-
ping rule requires time-consuming iterations (e.g. twice refinement
steps are used in [57]) and the labelling quality is affected by
the capacity of the original model. Hu et al. [19] found that the
cleanness possibility of a sample can be dynamically reflected
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by its position in the target logit distribution and presented a
noise-tolerant end-to-end paradigm by employing the idea of
weighting training samples. Zhong et al. [20] devised a noise-
resistant loss by introducing a hypothetical training label, which
is a convex combination of the original label with probability
p and the predicted label by the current model with probability
1 — p. However, computing time-varying fusion weight [19] and
designing piece-wise loss [20] contain many hand-designed hyper-
parameters. Besides, re-weighting methods are susceptible to the
performance of the initial model. Wang et al. [21] proposed
a co-mining strategy which uses the loss values as the cue to
simultaneously detect noisy labels, exchange the high-confidence
clean faces to alleviate the error accumulation caused by the
sampling bias, and re-weight the predicted clean faces to make
them dominate the discriminative model training. However, the
co-mining method requires training twin networks simultaneously
and it is challenging to train large networks (e.g. ResNet100 [58])
on a large-scale dataset (e.g. MS1MVO [37] and Celeb500K [38]).
Face Recognition with Sub-classes. Practices and theories that
lead to “sub-class” have been studied for a long time [59], [60].
The concept of “sub-class” applied in face recognition was first
introduced in [59], [60], where a mixture of Gaussians was used
to approximate the underlying distribution of each class. For
instance, a persons face images may be frontal view or side view,
resulting in different modalities when all images are represented
in the same data space. In [59], [60], experimental results showed
that subclass divisions can be used to effectively adapt to different
face modalities thus improve the performance of face recognition.
Wan et al. [61] further proposed a separability criterion to divide
every class into sub-classes, which have much less overlaps. The
new within-class scatter can represent multi-modality information,
therefore optimizing this within-class scatter will separate differ-
ent modalities more clearly and further increase the accuracy of
face recognition. However, these work [59], [60], [61] only em-
ployed hand-designed feature descriptor on tiny under-controlled
datasets.

Concurrent with our work, Softtriple [62] presents a multi-
center softmax loss with class-wise regularizer. These multi-
centers can depict the hidden distribution of the data [63] due to
the fact that they can capture the complex geometry of the original
data and help reduce the intra-class variance. On the fine-grained
visual retrieval problem, the Softtriple [62] loss achieves better
performance than the softmax loss as capturing local clusters is
essential for this task. Even though the concept of “sub-class”
has been employed in face recognition [59], [60], [61] and fine-
grained visual retrieval [62], none of these work has considered
the large-scale (e.g. 0.5 million classes) face recognition problem
under massive noise (e.g. around 50% noisy samples within the
training data).

Face Synthesis by Model Inversion. Identity-preserving face
generation [64], [65], [66], [29] has been extensively explored
under the framework of GAN [36]. Even though GAN models can
yield high-fidelity images [67], [68], training a GAN’s generator
requires access to the original data. Due to the emerging concern
of data privacy, an alternative line of work in security focuses
on model inversion, that is, image synthesis from a single CNN.
Model inversion can not only help researchers to visualize neural
networks to understand their properties [69] but also can be used
for data-free distillation, quantization and pruning [33], [34], [35].
Fredrikson et al. [70] propose the model inversion attack to obtain
class images from a network through a gradient descent on the
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Fig. 2. Training the deep face recognition model by the proposed ArcFace loss (K=1) and sub-center ArcFace loss (e.g. K=3). Based on a
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the target (ground truth) angle 6,,. After that, we calculate cos(6,, + m) and multiply all logits by the feature scale s. Finally, the logits go through

the softmax function and contribute to the cross entropy loss.

input. As the pixel space is so large compared to the feature space,
optimizing the image pixels by gradient descent [31] requires
heavy regularization terms, such as total variation [31] or Gaussian
blur [71]. Even though previous model inversion methods [70],
[30] can transform an input image (random noise or a natural
image) to yield a high output activation for a chosen class, it
leaves intermediate representations constraint-free. Therefore, the
resulting images are not realistic, lacking natural image statistics.

The pioneer generative face recognition model is Eigen-
face [32], which can project a training face image or a new face
image (mean-subtracted) on the eigenfaces and thereby record how
that face differs from the mean face. The eigenvalue associated
with each eigenface represents how much the image vary from
the mean image in that direction. The recognition process with
the eigenface method is to project query images into the face-
space spanned by eigenfaces calculated, and to find the closest
match to a face class in that face-space. Even though raw pixel
features used in Eigenface are substituted by the deep convo-
lutional features, the procedure of employing the statistic prior
(e.g. mean and variance) to reconstruct face images can be an
inspiration. Recently, [33], [34], [35] have proposed a data-free
method employing the statistics (e.g. mean and variance) stored
in the BN layers to restore ImageNet images. Inspired by these
works, we synthesize face images by inverting the pre-trained
ArcFace model and considering the face prior (e.g. mean and
variance) stored in the BN layers.

3 PROPOSED APPROACH
3.1 ArcFace

The most widely used classification loss function, softmax loss, is
presented as follows:
eWyTi zi+by,
Ly = —log —«
j=1

Wi witb;” 1)
where x; € R? denotes the deep feature of the i-th sample,
belonging to the y;-th class. The embedding feature dimension
d is set to 512 in this paper following [72], [73], [13], [14].
W; € R? denotes the j-th column of the weight W € RN,
b; € R¥ is the bias term, and the class number is V. Traditional
softmax loss is widely used in deep face recognition [4], [9].
However, the softmax loss function does not explicitly optimize
the feature embedding to enforce higher similarity for intra-class

(b) ArcFace

(a) Norm-Softmax

Fig. 3. Toy examples under the Norm-Softmax and ArcFace loss on 8
identities with 2D features. Dots indicate samples and lines refer to the
center direction of each identity. Based on the feature normalization,
all face features are pushed to the arc space with a fixed radius. The
geodesic distance margin between closest classes becomes evident as
the additive angular margin penalty is incorporated.

samples and diversity for inter-class samples, which results in a
performance degeneration for deep face recognition under large
intra-class appearance variations (e.g. pose variations [74], [75]
and age gaps [76], [77]) and large-scale test scenarios [78], [79],
[80].

For simplicity, we fix the bias b; = 0 as in [13]. Then, we
transform the logit [81] as W.'w; = ||[W; || [|z4]| cos 85, where 6;
is the angle between the weight TW; and the feature x;. Following
[13], [14], [82], we fix the individual weight |[W;|| = 1 by
{5 normalization. Following [83], [14], [82], [15], we also fix
the embedding feature ||z;|| by ¢2 normalization and re-scale it
to s. The normalization step on features and weights makes the
predictions only depend on the angle between the feature and the
weight. The learned embedding features are thus distributed on a
hypersphere with a radius of s.

e cos 0y,

scos by, N )
€ + ZJ:LJ FYi

Ly = —log 2

g5 cos 0; ’

Since the embedding features are distributed around each
feature center on the hypersphere, we employ an additive angular
margin penalty m between x; and W, to simultaneously enhance
the intra-class compactness and inter-class discrepancy as illus-
trated in Figure 2. Since the proposed additive angular margin
penalty is equal to the geodesic distance margin penalty in the
normalized hypersphere, we name our method as ArcFace.

e’ cos(By, +m)

Ly = —log 3)

eS cos 0; ’

5 cos(0y, +m) N
€ + Z]ZLJ#%
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We select face images from 8 different identities containing

enough samples (around 1,500 images/class) to train 2-D fea-
ture embedding networks with the Norm-Softmax and ArcFace
loss, respectively. As illustrated in Figure 3, all face features
are pushed to the arc space with a fixed radius based on the
feature normalization. The Norm-Softmax loss provides roughly
separable feature embedding but produces noticeable ambiguity
in decision boundaries, while the proposed ArcFace loss can
obviously enforce a more evident margin between the nearest
classes.
Numerical Similarity. In SphereFace [13], [42], ArcFace, and
CosFace [14], [15], three different kinds of margin penalty are
proposed, e.g. multiplicative angular margin m, additive angular
margin mg, and additive cosine margin ms, respectively. From
the view of numerical analysis, different margin penalties, no
matter add on the angle [13] or cosine space [14], all enforce
the intra-class compactness and inter-class diversity by penalizing
the target logit [81]. In Figure 4(b), we plot the target logit
curves of SphereFace, ArcFace and CosFace under their best
margin settings. We only show these target logit curves within
[20°,100°] because the angles between W, and x; start from
around 90° (random initialization) and end at around 30° during
ArcFace training as shown in Figure 4(a). Intuitively, there are
three numerical factors in the target logit curves that affect the
performance, i.e. the starting point, the end point and the slope.

By combining all of the margin penalties, we implement
SphereFace, ArcFace and CosFace in a united framework with
m1, mg and mg as the hyper-parameters.

es(cos(m1 Oy, +ma)—ms3)

Ly = —log

es(cos(mleyi +ms)—ms3) i Z;V Lty escos0; .4
As shown in Figure 4(b), by combining all of the above-motioned
margins (cos(m160 + mso) — m3), we can easily get some other
target logit curves which also achieve high performance.

Geometric Difference. Despite the numerical similarity between
ArcFace and previous works, the proposed additive angular margin
has a better geometric attribute as the angular margin has the exact
correspondence to the geodesic distance. As illustrated in Figure
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5, we compare the decision boundaries under the binary classifi-
cation case. The proposed ArcFace has a constant linear angular
margin throughout the whole interval. By contrast, SphereFace
and CosFace only have a nonlinear angular margin.

The minor difference in margin designs can have a significant

influence on model training. For example, the original SphereFace
[13] employs an annealing optimization strategy. To avoid diver-
gence at the beginning of training, joint supervision from softmax
is used in SphereFace to weaken the multiplicative integer margin
penalty. We implement a new version of SphereFace without the
integer requirement on the margin by employing the arc-cosine
function instead of using the complex double angle formula. In
our implementation, we find that m = 1.35 can obtain similar
performance compared to the original SphereFace without any
convergence difficulty.
Other Intra and Inter Losses. Other loss functions can be
designed based on the angular representation of features and
centers. For examples, we can design a loss to enforce intra-class
compactness and inter-class discrepancy on the hypersphere.

Intra-Loss is designed to improve the intra-class compactness
by decreasing the angle/arc between the sample and the ground
truth center.

1
Ls =Ly + 0y, (5)

Inter-Loss targets at enhancing inter-class discrepancy by in-
creasing the angle/arc between different centers.

N
1 } : T
LG = L2 - m e arccos(Winj). (6)

To enhance inter-class separability, RegularFace [51] explicitly
distances identities by penalizing the angle between an identity
and its nearest neighbor, while Minimum Hyper-spherical Energy
(MHE) [84] encourages the angular diversity of neuron weights in-
spired by the Thomson problem. Recently, fixed classifier methods
[85], [86], [87] exhibit little or no reduction in classification per-
formance while allowing a noticeable reduction in computational
complexity, trainable parameters and communication cost. In these
methods, inter-class separability is not learned but inherited from
a pre-defined high-dimensional geometry [87].

Triplet-loss aims at enlarging the angle/arc margin between
triplet samples. In FaceNet [3], Euclidean margin is applied on
the normalized features. Here, we employ the triplet-loss by the
angular representation of our features as arccos(z?**z;) + m <
arccos(x; ;).

3.2 Sub-center ArcFace

Even though ArcFace has shown its power in efficient and ef-
fective face feature embedding, this method assumes that training
data are clean. However, this is not true especially when the dataset
is in large scale. How to enable the margin-based softmax loss to
be robust to noise is one of the main challenges impeding the
development of face recognition [18]. In this paper, we address
this problem by proposing the idea of using sub-classes for each
identity, which can be directly adopted by ArcFace and will
significantly increase its robustness.

As illustrated in Figure 2, we set K sub-centers for each
identity. Based on a f5 normalization step on both embedding
feature x; € R®!'2 and all sub-centers W € ROPIZXNXK e
get the subclass-wise similarity scores S € RY*X by a matrix
multiplication W7'x;. Then, we employ a max pooling step on the
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Fig. 6. (a) The sub-classes of one identity from the CASIA dataset [56]
after using the sub-center ArcFace loss (K = 10). Noisy samples
and hard samples (e.g. profile and occluded faces) are automatically
separated from the majority of clean samples. (b) Angle distribution of
samples from the dominant and non-dominant sub-classes. Clean data
are automatically isolated by the sub-center ArcFace.
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Fig. 7. Data distribution of ArcFace (K=1) and the proposed sub-center
ArcFace (K=3) before and after dropping non-dominant sub-centers.
MS1MVO0 [37] is used here. K = 3 | 1 denotes sub-center ArcFace with
non-dominant sub-centers dropping.

subclass-wise similarity score S € RY*X to get the class-wise
similarity score S’ € RN*!. The proposed sub-center ArcFace
loss can be formulated as:

es cos(0y,; +m)

T
where 0; = arccos (maxk (W]Tkxl)) ke{l,---,K}.

In Figure 6(a), we have visualized the clustering results of one
identity from the CASIA dataset [56] after employing the sub-
center ArcFace loss (K = 10) for training. It is obvious that the
proposed sub-center ArcFace loss can automatically cluster faces
such that hard samples and noisy samples are separated away from
the dominant clean samples. Note that some sub-classes are empty
as K = 10 is too large for a particular identity. In Figure 6(b),
we show the angle distribution on the CASIA dataset [56]. We
use the pre-trained ArcFace model to predict the feature center of
each identity and then calculate the angle between the sample and
its corresponding feature center. As we can see from Figure 6(b),
most of the samples are close to their centers, however, there are
some noisy samples which are far away from their centers. This
observation on the CASIA dataset matches the noise percentage
estimation (9.3% ~ 13.0%) in [18]. To automatically obtain
a clean training dataset, the noisy tail is usually removed by

L7 = —log (N

b
g5 cos 0;

6

a hard threshold (e.g. angle > 77° or cosine < 0.225). Since
sub-center ArcFace can automatically divide the training samples
into dominant sub-classes and non-dominant sub-classes, clean
samples (in red) can be separated from hard and noisy samples (in
blue). More specifically, the majority of clean faces (85.6%) go to
the dominant sub-class, while the rest hard and noisy faces go to
the non-dominant sub-classes.

Even though using sub-classes can improve the robustness
under noise, it undermines the intra-class compactness as hard
samples are also kept away as shown in Figure 6(b). In [37],
MSIMVO (around 10M images of 100K identities) is released
with the estimated noise percentage around 47.1% ~ 54.4% [18].
In [88], MSIMVO is refined by a semi-automatic approach into a
clean dataset named MS1IMV3 (around 5.1M images of 93K iden-
tities). Based on these two datasets, we can get the clean and noisy
labels on MS1MVO. In Figure 7(b) and Figure 7(c), we show the
angle distributions of samples to their closest sub-centers (training
settings: [MSIMVO0, ResNet50, Sub-center ArcFace K=3]). In
general, there are four categories of samples: (1) easy clean sam-
ples belonging to dominant sub-classes (57.24%), (2) hard noisy
samples belonging to dominant sub-classes (12.40%), (3) hard
clean samples belonging to non-dominant sub-classes (4.28%),
and (4) easy noisy samples belonging to non-dominant sub-classes
(26.08%). In Figure 7(a), we show the angle distribution of
samples to their corresponding centers from the ArcFace model
(training settings: [MSIMVO0, ResNet50, ArcFace K=1]). By
comparing the percentages of noisy samples in Figure 7(b) and
Figure 7(a), we find that sub-center ArcFace can significantly
decrease the noise rate to around one third (from 38.47% to
12.40%) and this is the reason why sub-center ArcFace is more
robust under noise. During the training of sub-center ArcFace,
samples belonging to non-dominant sub-classes are pushed to be
close to these non-dominant sub-centers as shown in Figure 7(c).
Since we have not set any constraint on sub-centers, the sub-
centers of each identity can be quite different and even orthogonal.
In Figure 7(d), we show the angle distributions of non-dominant
samples to their dominant sub-centers. By combining Figure 7(b)
and Figure 7(d), we find that the clean and noisy data have some
overlaps but a constant angle threshold (between 70° and 80°)
can be easily searched to drop most of the high-confident noisy
samples.

Based on the above observations, we propose a straightforward
approach to recapture intra-class compactness. We directly drop
non-dominant sub-centers after the network has enough discrimi-
native power. Meanwhile, we introduce a constant angle threshold
to drop high-confident noisy data. After that, we retrain the
ArcFace model from scratch on the automatically cleaned dataset.

3.3 Inversion of ArcFace

In the above sections, we have explored how the proposed Ar-
cFace can enhance the discriminative power of a face recognition
model. In this section, we take a pre-trained ArcFace model as a
white-box and reconstruct identity preserved as well as visually
plausible face images only using the gradient of the ArcFace loss
and the face statistic priors (e.g. mean and variance) stored in the
BN layers. As shown in Figure 8 and illustrated in Algorithm 1, the
pre-trained ArcFace model has encoded substantial information of
the training distribution. The distribution, stored in BN layers via
running mean and running variance, can be effectively employed
to generate visually plausible face images, avoiding convergence
outside natural faces with high confidence.

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

estrictions apply.



0162-8828 (c) 2021 IEEE, Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3087709, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

f Feature Distribution e
Regularization
Forward t\'ﬂ
IS 2 g Target ID
= o
2 3 3 [*  ArcFace
(]
Backward| Feature % o Loss
A maps B Pre.trained
= o BN Prior

Fig. 8. ArcFace is not only a discriminative model but also a generative
model. Given a pre-trained ArcFace model, a random input tensor can
be gradually updated into a pre-defined identity by using the gradient of
the ArcFace loss as well as the face statistic priors stored in the Batch
Normalization layers.

Algorithm 1 Face Image Generation from the ArcFace Model

Input: model M with L BN layers, class label y;

Output: a batch of generated face images: I”

Generate random data /™ from Gaussian (4 = 0,0 = 1)

Get p;, 0; from BN layers of M, i€ 0,...,L

forj=1,2,...,T do
Forward propagate M (I") and calculate ArcFace loss
Get [1; and &; from intermediate activations, ¢ € 0,..., L
Compute statistic loss min Zf:o it — will3 + |67 — o]
Backward propagate and update 1"

end for

2
25

Besides the ArcFace loss (Eq. 3) to preserve identity, we also
consider the following statistic priors during face generation:

L
Ls =Y a5 — wills + 1167 — oill3, (8)
=0

where (1} /o] are the mean/standard deviation of the distribution at

layer 4, and p;/o; are the corresponding mean/standard deviation
parameters stored in the i-th BN layer of a pre-trained ArcFace
model. After jointly optimizing Eq. 3 and Eq. 8 (L3 + ALg, A =
0.05) for T steps as in Algorithm 1, we can generate faces, when
fed into the network, not only have same identity as the pre-defined
identity but also have a statistical distribution that closely matches
the original data set.

The above approach exploits the relationship between an input
image and its class label for the reconstruction process. As the
output similarity score is fixed according to predefined IV classes,
the reconstruction is limited on images of training subjects. To
solve open-set face generation from the embedding feature, the
constraints on predefined classes need to be removed. Therefore,
we substitute the classification loss to the /5 loss between feature
pairs. Open-set face generation can restore the face image from
any embedding feature, while close-set face generation only re-
constructs face images from the class centers stored in the linear
weight.

Concurrent with our work, [33], [34], [35] have proposed a
data-free method employing the BN priors to restore ImageNet
images for distillation, quantization and pruning. Their model
inversion results contain obvious artifact in the background due
to the translation augmentation during training. By contrast, our
ArcFace model is trained on normalized face crops without back-
ground, thus the restored faces exhibit less artifact. Besides, these
data-free methods only considered close-set image generation but
ArcFace can freely restore both close-set and open-set subjects. In
this paper, we show that the proposed additive angular margin loss
can also improve face generation.

ublication/redistribution requires IEEE

TABLE 1
Face datasets for training and testing. “(D)” refers to the distractors.
IBUG-500K is the training data automatically refined by the proposed
sub-center ArcFace. LFR2019-Image and LFR2019-Video are the
proposed large-scale image and video test sets.

Datasets #ldentity | #Image/Video
CASIA [56] 10K 0.5M
VGG2 [9] 9.1K 3.3M
MSIMVO [37] 100K 10M
MS1IMV3 [88] 93K 5.IM
Celeb500K [38] 500K 50M
IBUG-500K 493K 11.96M
LFW [89] 5,749 13,233
YTF [90] 1,595 3,425
CFP-FP [74] 500 7,000
CPLFW [75] 5,749 11,652
AgeDB [76] 568 16,488
CALFW [77] 5,749 12,174
MegaFace [78] 530 IM (D)
1JB-B [79] 1,845 76.8K
1JB-C [80] 3,531 148.8K
LFR2019-Image [88] 5.7K 1.58M(D)
LFR2019-Video [88] 10K 200K

4 EXPERIMENTS
4.1 Implementation Details

Training Datasets. As given in Table 1, we separately employ
CASIA [56], VGG2 [9], MSIMVO [37] and Celeb500K [38] as
our training data in order to conduct fair comparison with other
methods. MS1IMVO (loose cropped version) [37] is a raw data
with the estimated noise percentage around 47.1% ~ 54.4%
[18]. MSIMV3 [88] is cleaned from MSIMVO [37] by a semi-
automatic approach. We employ ethnicity-specific annotators (e.g.
African, Caucasian, Indian and Asian) for large-scale face image
annotations, as the boundary cases (e.g. hard samples and noisy
samples) are very hard to distinguish if the annotator is not
familiar with the identity. Celeb500K [38] is collected in the
same way as MS1IMVO [37], using the celebrity name list [37]
to search identities from Google and download the top-ranked
face images. We download 25M images of 500K identities, and
employ RetinaFace [8] to detect faces larger than 50 x 50 from the
original images. By employing the proposed sub-center ArcFace,
we can automatically clean MS1MVO0 [37] and Celeb500K [38].
After removing the overlap identities (about 50K) through the
ID string, we combine the automatically cleaned MS1IMVO and
Celeb500K and obtain a large-scale face image dataset, named
IBUG-500K, including 11.96 million images of 493K identities.
Figure 9 illustrates the gender, race, pose, age and image number
distributions of the proposed IBUG-500K dataset.

Test Datasets. During training, we explore efficient face verifica-
tion datasets (e.g. LFW [89], CFP-FP [74], AgeDB [76]) to check
the convergence status of the model. Besides the most widely used
LFW [89] and YTF [90] datasets, we also report the performance
of ArcFace on the recent datasets (e.g. CPLFW [75] and CALFW
[77]) with large pose and age variations. We also extensively
test the proposed ArcFace on large-scale image datasets (e.g.
MegaFace [78], IIB-B [79], IIB-C [80] and LFR2019-Image [88])
and large-scale video datasets (LFR2019-Video [88]). Detailed
dataset statistics are presented in Table 1. For the LFR2019-Image
dataset, there are 274K images from the 5.7K LFW identities [89]
and 1.58M distractors downloaded from Flickr. For the LFR2019-
Video dataset, there are 200K videos of 10K identities collected
from various shows, films and television dramas. The length of

) i F germission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Imperial College London. Downloaded on September 27,2021 at 15:50:54 UTC from IEEE Xplore.

estrictions apply.



0162-8828 (c) 2021 IEEE, Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3087709, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Male Asian Asian
Female mmm African °
Female 1% Indian g
. &
35.3% Caucasian 26
African 3
57.6% E 4
64.7% Caucasian
2
Male iy
0
Indian -0 60 0
(a) Gender (b) Race

Yaw Angle Age

(c) Pose (Yaw)

Image Numbers

4 210
6
5 010
4
3
2
1
0

20 60 %0 10 20 30 40 50 6 70 8 90 o 20 60 % 120 150

(d) Age (e) Image Number

Fig. 9. IBUG-500K statistics. We show the (a) gender, (b) race, (c) yaw pose, (d) age and (e) image number distributions of the proposed large-scale

training dataset.

each video ranges from 1 to 30 seconds. Both the LFR2019-Image
dataset and the LFR2019-Video dataset are manually cleaned
to ensure the unbiased evaluation of different face recognition
models.

Experimental Settings. For data prepossessing, we follow the
recent papers [13], [14] to generate the normalized face crops
(112 x 112) by utilizing five facial points predicted by RetinaFace
[8]. For the embedding network, we employ the widely used CNN
architectures, ResNet50 and ResNet100 [58], [91] without the
bottleneck structure. After the last convolutional layer, we explore
the BN [92]-Dropout [93]-FC-BN structure to get the final 512-
D embedding feature. In this paper, we use ([training dataset,
network structure, loss]) to facilitate understanding of different
experimental settings.

We follow [14] to set the feature scale s to 64 and choose the
angular margin m of ArcFace at 0.5. All recognition experiments
in this paper are implemented by MXNet [39]. We set the batch
size to 512 and train models on eight NVIDIA Tesla P40 (24GB)
GPUs. We set the momentum to 0.9 and weight decay to e — 4.
For the ArcFace training, we employ the SGD optimizer and
follow [14], [9] to design the learning rate schedules for different
datasets. On CASIA, the learning rate starts from 0.1 and is
divided by 10 at 20, 28 epochs. The training process is finished
at 32 epochs. On VGG2, the learning rate is decreased at 6, 9
epochs and we finish training at 12 epochs. On MSIMV3 and
IBUG-500K, we refer to the verification accuracy on CFP-FP and
AgeDB to reduce the learning rate at 8, 14 epochs and terminate
at 18 epochs.

For the training of the proposed sub-center ArcFace on
MSIMVO [37], we also employ the same learning rate schedule
as on MS1MV3 to train the first round of model (=3). Then, we
drop non-dominant sub-centers (K = 3 | 1) and high-confident
noisy data (> 75°) by using the first round model through an
off-line way. Finally, we retrain the model from scratch using the
automatically cleaned data. For the experiments of the sub-center
ArcFace on Celeb500K [38], the only difference is the learning
rate schedule, which is same as on IBUG-500K.

During testing of the face recognition models, we only keep
the feature embedding network without the fully connected layer
(160MB for ResNet50 and 250MB for ResNet100) and extract
the 512-D features (8.9 ms/face for ResNet50 and 15.4 ms/face
for ResNet100) for each normalized face. To get the embedding
features for templates (e.g. [JB-B and IJB-C) or videos (e.g. YTF
and LFR2019-Video), we simply calculate the feature center of all
images from the template or all frames from the video.

4.2 Ablation Study on ArcFace

In Table 2, we first explore the angular margin setting for ArcFace
on the CASIA dataset with ResNet50. The best margin observed
in our experiments is 0.5. Using the proposed combined margin

ublication/redistribution requires IEEE

TABLE 2
Verification results (%) of different loss functions ([CASIA, ResNet50,
Loss™)).
Loss Functions LFW | CFP-FP | AgeDB
ArcFace (0.4) 99.53 95.41 94.98
ArcFace (0.45) 99.46 95.47 94.93
ArcFace (0.5) 99.53 95.56 95.15
ArcFace (0.55) 99.41 95.32 95.05
SphereFace [13] 99.42 - -
SphereFace (1.35) 99.11 94.38 91.70
CosFace [14] 99.33 - -
CosFace (0.35) 99.51 95.44 94.56
CM1 (1, 0.3,0.2) 99.48 95.12 94.38
CM2 (0.9, 0.4, 0.15) 99.50 95.24 94.86
Softmax 99.08 94.39 92.33
Norm-Softmax (s = 64) 98.56 89.79 88.72
Norm-Softmax (s = 20) 99.20 94.61 92.65
Norm-Softmax-+Intra 99.30 94.85 93.58
Norm-Softmax+Inter 99.22 94.73 92.94
Norm-Softmax+Intra+Inter | 99.31 94.88 93.76
Triplet (0.35) 98.98 91.90 89.98
ArcFace+Intra 99.45 95.37 94.73
ArcFace+Inter 99.43 95.25 94.55
ArcFace+Intra+Inter 99.43 95.42 95.10
ArcFace+Triplet 99.50 95.51 94.40

framework in Eq. 4, it is easier to set the margin of SphereFace
and CosFace which we find to have optimal performance when
setting at 1.35 and 0.35, respectively. Our implementations for
both SphereFace and CosFace can lead to excellent performance
without observing any difficulty in convergence. The proposed
ArcFace achieves the highest verification accuracy on all three
test sets. In addition, we perform extensive experiments with the
combined margin framework (some of the best performance is
observed for CM1 (1, 0.3, 0.2) and CM2 (0.9, 0.4, 0.15)) guided
by the target logit curves in Figure 4(b). The combined margin
framework leads to better performance than individual SphereFace
and CosFace but upper-bounded by the performance of ArcFace.
Besides the comparison with margin-based methods, we con-
duct a further comparison between ArcFace and other losses which
aim at enforcing intra-class compactness (Eq. 5) and inter-class
discrepancy (Eq. 6). As the baseline, we choose the softmax
loss. After weight and feature normalization, we have observed
obvious performance drops on CFP-FP and AgeDB with the
feature re-scale parameter s set as 64. To obtain comparable
performance as the softmax loss, we have searched the best scale
parameter s = 20 for Norm-Softmax. By combining the Norm-
Softmax with the intra-class loss, the performance improves on
CFP-FP and AgeDB. However, combining the Norm-Softmax
with the inter-class loss only slightly improves the accuracy.
Employing margin penalty within triplet samples is less effective
than inserting margin between samples and centers as in ArcFace,
indicating local comparisons in the Triplet loss are not as effective
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TABLE 3
Ablation experiments of different settings of the proposed sub-center
ArcFace on MS1MV0, MS1MV3 and Celeb500K. The 1:1 verification
accuracy (TPR@FPR=1e—4) is reported on the IJB-B and IJB-C
datasets. ((MS1MV0 / MS1MV3 / Celeb500K, ResNet50, Sub-center

ArcFace])
Settings IB-B  1IB-C
(1) MSIMVO0,K=1 87.87  90.27
(2) MSIMVO0,K=3 91.70  93.72
(3) MSIMVO0,K =3, softmax pooling [62] | 91.53  93.55
(4) MSIMVO,K=5 91.47 93.62
(5) MSIMVO0,K=10 63.84 67.94
(6) MSIMVO, K = 3 | 1, drop > 70° 94.44 9591
(7) MSIMVO0, K =3 | 1, drop > 75° 9456  95.92
(8) MSIMVO0, K =3 | 1, drop > 80° 94.04 95.74
(9) MSIMVO0, K = 3 | 1, drop > 85° 93.33  95.10
(10) MS1IMVO0, K =3, regularizer [62] 91.53 93.64
(11) MS1IMVO0,Co-mining [21] 91.80 93.82
(12) MSIMVO,NT [19] 91.57 93.65
(13) MSIMVO,NR [20] 91.58 93.60
(14) MSIMV3, K=1 95.13  96.50
(15) MS1IMV3, K=3 94.84  96.35
(16) MSIMV3, K =31 94.87 96.43
(17) Celeb500K, K=1 90.96 92.15
(18) Celeb500K, K=3 93.76  94.90
(19) Celeb500K, K =3 | 1 95.65 96.91

as global comparisons in ArcFace. Finally, we incorporate the
Intra-loss, Inter-loss and Triplet-loss into ArcFace, but no obvious
improvement is observed, which leads us to believe that ArcFace is
already enforcing intra-class compactness, inter-class discrepancy
and classification margin.

4.3 Ablation Study on Sub-center ArcFace

In Table 3, we conduct extensive experiments to investigate
the proposed sub-center ArcFace on noisy training data (e.g.
MSIMVO [37] and Celeb5S00K [38]). Models trained on the
manually cleaned MSIMV3 [88] are taken as the reference. We
train ResNet50 networks under different settings and evaluate
the performance by adopting TPR@FPR=1e-4 on 1JB-C, which
is more objective and less affected by the noise within the test
data [94].
From Table 3, we have the following observations:

e ArcFace has an obvious performance drop (from (14)
96.50% to (1) 90.27%) when the training data is changed
from the clean MSIMV3 to the noisy MS1IMVO0. By
contrast, sub-center ArcFace is more robust ((2) 93.72%)
under massive noise.

o Too many sub-centers (too large K') can obviously under-
mine the intra-class compactness and decrease the accu-
racy (from (2) 93.72% to (5) 67.94%). This observation
indicates that noise tolerance and intra-class compactness
should be balanced during training. Considering the GPU
memory consumption, we select K'=3 in this paper.

e The nearest sub-center assignment by the max pooling is
slightly better than the softmax pooling [62] ((2) 93.72%
vs. (3) 93.55%). Thus, we choose the more efficient max
pooling operator in the following experiments.

e Dropping non-dominant sub-centers and high-confident
noisy samples can achieve better performance than adding
regularization [62] to enforce compactness between sub-
centers ((7) 95.92% vs. (10) 93.64%). Besides, the perfor-
mance of our method is not very sensitive to the constant
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TABLE 4
Verification performance (%) of different methods on LFW and YTF.
([Dataset*, ResNet100, ArcFace])

Method #Image LFW | YTF
DeeplD [1] 0.2M 99.47 | 93.20
Deep Face [2] 4.4M 97.35 91.4
VGG Face [4] 2.6M 98.95 | 97.30
FaceNet [3] 200M 99.63 | 95.10
Baidu [95] 1.3M 99.13 -
Center Loss [72] 0.7M 99.28 | 94.9
Range Loss [73] M 99.52 | 93.70
Marginal Loss [17] 3.8M 99.48 | 95.98
SphereFace [13] 0.5M 9942 | 95.0
SphereFace+ [84] 0.5M 99.47 -
CosFace [14] M 99.73 | 97.6
RegularFace [51] 3.1M 99.61 | 96.7
UniformFace [52] 6.1M 99.8 97.7
DAL [96] 0.5M 99.47 -
FTL [97] M 99.55 -
Fair Loss [98] 0.5M 99.57 | 96.2
Unequal-training [20] 0.55M 99.53 | 96.04
Noise-Tolerant [19] 1M noisy | 99.72 | 97.36
AdaptiveFace [50] M 99.62 -
AFRN [99] 3.1M 99.85 | 97.1
PFE [100] 4.4M 99.82 | 97.36
DUL [101] 3.6M 99.78 | 96.78
RDCFace [102] 1.7M 99.80 | 97.10
HPDA [103] M 99.80 -
URFace [104] M 99.78 -
CircleLoss [105] 3.6M 99.73 | 96.38
GroupFace [55] 5.8M 9985 | 97.8
BioMetricNet [106] 3.8M 99.80 | 98.06
BroadFace [107] 5.8M 99.85 | 98.0
MSIMV3, R100, ArcFace 5.1IM 99.83 | 98.02
IBUGS500K, R100, ArcFace 11.96M | 99.83 | 98.01

threshold ((6) 95.91%, (7) 95.92% and (8) 95.74%), and
we select 75° as the threshold for dropping high-confident
noisy samples in the following experiments.

e Co-mining [21] and re-weighting methods [19], [20] can
also improve the robustness under massive noise, but sub-
center ArcFace can do better through automatic clean and
noisy data isolation during training ((7) 95.92% vs. (11)
93.82%, (12) 93.65% and (13) 93.60%).

e On the clean dataset (MSIMV3), sub-center ArcFace
achieves similar performance as ArcFace ((16) 96.43%
vs. (14) 96.50%). By employing the threshold of 75°
on MS1MV3, 4.18% hard samples are removed, but the
performance only slightly decreases, thus we estimate
MS1MV3 still contains some noises.

e The proposed sub-center ArcFace trained on noisy
MS1MVO can achieve comparable performance compared
to ArcFace trained on manually cleaned MS1MV3 ((7)
95.92% vs. (14) 96.50%).

o By enlarging the training data, sub-center ArcFace can
easily achieve better performance even though it is trained
from noisy web faces ((19) 96.91% vs. (13) 96.50%).

4.4 Benchmark Results

Results on LFW, YTF, CFP-FP, CPLFW, AgeDB, CALFW.
LFW [89] and YTF [90] datasets are the most widely used bench-
mark for unconstrained face verification on images and videos.
In this paper, we follow the unrestricted with labelled outside
data protocol to report the performance. As reported in Table
4, ArcFace models trained on MS1IMV3 and IBUG-500K with
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TABLE 5
Verification performance (%) of different methods on CFP-FP, CPLFW,
AgeDB and CALFW. ([Dataset*, ResNet100, ArcFace])

Method CFP-FP CPLFW | AgeDB CALFW
Center Loss [72] - 77.48 - 85.48
SphereFace [13] - 81.40 - 90.30
VGGFace2 [9] - 84.00 - 90.57
MV-Softmax [53] 98.28 92.83 97.95 96.10
Search-Softmax [108] 95.64 89.50 97.75 95.40
FaceGraph [109] 96.90 92.27 97.92 95.67
CurricularFace [54] 98.36 93.13 98.37 96.05
MS1MV3, R100, ArcFace 98.79 93.21 98.23 96.02
IBUGS500K, R100, ArcFace 98.87 93.43 98.38 96.10
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Fig. 10. Angle distributions of both positive and negative pairs on LFW,
YTF, CFP-FP, CPLFW, AgeDB and CALFW. The red histogram indicates
positive pairs while the blue histogram indicates negative pairs. All
angles are represented in degree. ([IBUG-500K, ResNet100, ArcFace])

ResNet100 beat the baselines (e.g. SphereFace [13] and CosFace
[14]) on both LFW and YTF, which shows that the additive angular
margin penalty can notably enhance the discriminative power
of deeply learned features, demonstrating the effectiveness of
ArcFace. As the margin-based softmax loss has been widely used
in recent methods, the performance begins to be saturated around
99.8% and 98.0% on LFW and YTF, respectively. However,
the proposed ArcFace is still among the most competitive face
recognition methods.

Besides on LFW and YTF datasets, we also report the per-
formance of ArcFace on the recently introduced datasets (e.g.
CFP-FP [74], CPLFW [75], AgeDB [76] and CALFW [77])
which show large pose and age variations. Among all of the
recent face recognition models, our ArcFace models trained on
MS1MV3 and IBUG-500K are evaluated as the top-ranked face
recognition models as shown in Table 5, outperforming coun-
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TABLE 6
Face identification and verification evaluation of different methods on
MegaFace Challenge1 using FaceScrub as the probe set. “Id” refers to
the rank-1 face identification accuracy with 1M distractors, and “Ver”
refers to the face verification TPR at 10~¢ FPR. “R” refers to data
refinement on both probe set and 1M distractors of MegaFace. ArcFace
obtains state-of-the-art performance under both small and large

protocols.
Methods Id (%) | Ver (%)

Softmax [13] 54.85 65.92
Contrastive Loss[13], [1] 65.21 78.86
Triplet [13], [3] 64.79 78.32
Center Loss[72] 65.49 80.14
SphereFace [13] 72.729 | 85.561
CosFace [14] 77.11 89.88
AM-Softmax [15] 72.47 84.44

SphereFace+ [84] 73.03 -
RegularFace [51] 70.23 84.07
CASIA, R50, ArcFace 77.42 91.69
CASIA, R50, ArcFace, R 91.12 93.56
FaceNet [3] 70.49 86.47
CosFace [14] 82.72 96.65
UniformFace [52] 79.98 95.36
RegularFace [51] 75.61 91.13
AdaptiveFace, R [50] 95.02 95.61
MV-Softmax, R [53] 98.00 98.31

P2SGrad,R [48] 97.25 -

Adocos, R [49] 97.41 -
PFE [100] 78.95 92.51
Fair Loss [98] 77.45 92.87
Search-Softmax, R [108] 96.97 97.84
Domain Balancing, R [110] 96.35 96.56
URFace [104] 78.60 95.04

DUL, R [101] 98.60 -
CircleLoss, R [105] 98.50 98.73
CurricularFace, R [54] 98.25 98.44
GroupFace, R [55] 98.74 98.79
MC-FaceGraph, R [109] 99.02 98.94
SST, R [111] 96.27 96.96
BroadFace, R [107] 98.70 98.95
MSIMV3, R100, ArcFace 80.71 97.46
MS1MV3, R100, ArcFace, R 98.51 98.74
IBUG-500K, R100, ArcFace 81.43 97.63
IBUG-500K, R100, ArcFace,R | 98.98 99.08

terparts by an obvious margin on the pose-invariant and age-
invariant face recognition. In Figure 10, we show the results of
ArcFace model trained on IBUG-500K by illustrating the angle
distributions of both positive and negative pairs on LFW, YTF,
CFP-FP, CPLFW, AgeDB and CALFW. We can clearly find that
the intra-variance due to pose and age gaps significantly increases
the angles between positive pairs thus making the best threshold
for face verification increasing and generating more confusion
regions on the histogram.

Results on MegaFace. The MegaFace dataset [78] includes 1M
images of 690K different individuals as the gallery set and 100K
photos of 530 unique individuals from FaceScrub [112] as the
probe set. As we observed an obvious performance gap between
identification and verification in the previous work (e.g. CosFace
[14]), we performed a thorough manual check in the whole
MegaFace dataset and found many face images with wrong labels,
which significantly affects the performance. Therefore, we man-
ually refined the whole MegaFace dataset and report the correct
performance of ArcFace on MegaFace. In Table 6, we use “R”
to denote the refined version of MegaFace and the performance
comparisons also focus on the refined version.
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(a) CMC

(b) ROC

Fig. 11. CMC and ROC curves of different models on MegaFace. Re-
sults are evaluated on both original and refined MegaFace dataset.

1 1

0.90

— VGG2
—— MS1MV3
—— IBUG500K

— VGG2
—— MS1MV3
—— IBUG500K

True Positive Rate
True Positive Rate

o 104 To> 102 10 10 10 To+ 0 102 T
False Positive Rate False Positive Rate

(a) ROC for IJB-B (b) ROC for IB-C

Fig. 12. ROC curves of 1:1 verification protocol on 1JB-B and [JB-C.
([Dataset*, ResNet100, ArcFace])

On MegaFace, there are two testing scenarios (identification
and verification) under two protocols (large or small training set).
The training set is defined as large if it contains more than 0.5M
images. For the fair comparison, we train ArcFace on CASIA
and IBUG-500K under the small protocol and large protocol,
respectively. In Table 6, ArcFace trained on CASIA achieves the
best single-model identification and verification performance, not
only surpassing the strong baselines (e.g. SphereFace [13] and
CosFace [14]) but also outperforming other published methods
[72], [84].

Under the large protocol, ArcFace trained on IBUG-500K

surpasses ArcFace trained on MS1MV3 by a clear margin (0.47%
improvement on identification), which indicates that large-scale
training data is very beneficial and the proposed sub-center Arc-
Face is effective for automatic data cleaning under different data
scales. As shown in Figure 11, ArcFace trained on IBUG-500K
forms an upper envelope of other models under both identification
and verification scenarios. Compared to MC-FaceGraph [109],
ArcFace trained on IBUG-500K obtains comparable results on
identification and better results on verification. Considering 18.8M
images of 636K identities are used in MC-FaceGraph [109], the
performance of our method is very impressive, as we only use
images automatically cleaned from noisy web data. Similar to
LFW, the identification results on MegaFace are also saturated
(around 99%). Therefore, the performance gap of 0.04% on
identification is negligible and our model is among the most
competitive face recognition methods.
Results on IJB-B and IJB-C. The 1JB-B dataset [79] contains
1,845 subjects with 21.8K still images and 55K frames from
7,011 videos. The IJB-C dataset [79] is a further extension of
1JB-B, having 3, 531 subjects with 31.3K still images and 117.5K
frames from 11,779 videos. On IJB-B and IJB-C datasets, there
are two evaluation protocols, 1:1 verification and 1:N identifica-
tion.

For the widely used 1:1 verification protocol, there are 12,115
templates with 10, 270 genuine matches and 8M impostor matches
on 1JB-B, and there are 23,124 templates with 19,557 genuine
matches and 15,639K impostor matches on IJB-C. In Table 7,
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TABLE 7
1:1 verification (TPR@FPR=1e-4) on IJB-B and IJB-C.
Method UB-B (%) | IIB-C (%)
ResNet50 [9] 78.4 82.5
SENet50 [9] 80.0 84.0
MN-vc [113] 83.1 86.2
DCN [94] 84.9 88.5
Crystal Loss [114] - 92.29
AIM [115] - 89.5
P2SGrad [48] - 92.25
Adocos [49] - 92.4
PFE [100] - 93.3
MV-Softmax [53] 93.6 95.2
AFRN [99] 88.5 93.1
PFE [100] - 93.25
DUL [101] - 94.61
URFace [104] - 96.6
CircleLoss [105] - 93.95
CurricularFace [54] 94.86 96.15
GroupFace [55] 94.93 96.26
BroadFace [107] 94.61 96.03
VGG2, R50, ArcFace 89.8 92.79
MS1MV3, R100, ArcFace 95.42 96.83
IBUG-500K, R100, ArcFace 96.02 97.27

TABLE 8
1:1 verification (TPR@FPR=1e-5) and 1:N identification (Rank-1) on
IJB-B and IJB-C. ([Dataset*, ResNet100, ArcFace])

Training Datasets ‘ UB-B UB-C
Ver.(%) 1d.(%) | Ver.(%) 1d.(%)
CASIA [56] 62.42 86.70 69.61 88.05
IMDB-Face [18] 64.87 9341 66.85 94.52
VGG2 [9] 41.64 93.20 59.33 94.44
MSIMV1 [17] 80.27 92.19 88.16 93.54
MSIMV2 [16] 89.33 94.50 93.15 95.72
MC-FaceGraph [109] 92.82 95.76 95.62 96.93
MS1MV3 91.27 95.04 95.56 96.94
IBUG-500K 93.48 95.94 96.07 97.21

we compare the TPR (@FPR=1e-4) of ArcFace with the previous
state-of-the-art models. We first employ the VGG2 [9] dataset as
the training data and the ResNet50 as the embedding network
to train ArcFace for the fair comparison with the most recent
softmax-based methods [9], [113], [94]. As we can see from
the results, the proposed additive angular margin can obviously
boost the performance on both IJB-B and IJB-C compared to the
softmax loss (about 3 ~ 5%, which is a significant reduction in
the error).

Drawing support from more training data (IBUG-500K) and
deeper neural network (ResNet100), ArcFace can further im-
prove the TPR (@FPR=1e-4) to 96.02% and 97.27% on 1JB-
B and IJB-C, respectively. Compared to the joint margin-based
and mining-based method (e.g. CurricularFace [54]), our method
further decreases the error rate by 22.57% and 29.09% on 1JB-B
and 1JB-C, which indicates that the automatically cleaned data
by the proposed sub-center ArcFace are effective to boost the
performance. In Table 8, we compare the proposed sub-center
ArcFace with FaceGraph [109] on large-scale cleansing. In Face-
Graph [109], one million celebrities (87.0M face images) [37] are
cleaned into a noise-free dataset named MC-FaceGraph (including
18.8M face images of 636.2K identities) by employing a global-
local graph convolutional network. Even though the proposed
sub-center ArcFace is only applied to half million identities, the
cleaned dataset, IBUG-500K (including 11.96M face images of
493K identities), still outperforms MC-FaceGraph [109]. Under
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TABLE 9
Verification results (%) on the LFR2019-Image (TPR@FPR=1e-8) and
LFR2019-Video (TPR@FPR=1e-4) datasets. ([Dataset*, Network*,

ArcFace])
Methods Image | Video
YMIJ' [116] 88.78 -
count? [117] 88.42 -
NothingLC3? 88.14 -
NothingLC* - 63.23
Rhapsody? - 61.87
xfr 3 - 61.05
Our Method 88.65 | 63.60
MSI1MV3, EfficientNet-BO, ArcFace | 86.44 | 61.47
MS1MV3, R100, ArcFace 92.75 | 64.89
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Fig. 13. ROC curves of 1:1 verification protocol on the LFR2019-Image
and LFR2019-Video datasets. ((MS1MV3, EfficientNet-B0, ArcFace])

the evaluation metric of TPR@FPR=1e-5, the ArcFace model
trained on IBUG-500K surpasses the counterpart trained on MC-
FaceGraph by 0.66% and 0.45% on IJB-B and 1JB-C, respec-
tively. In Figure 12, we show the full ROC curves of the proposed
ArcFace on IJB-B and IJB-C, and ArcFace achieves impressive
performance even at FPR=1e-6 setting a new baseline.

For the 1:N end-to-end mixed protocol, there are 10, 270 probe

templates containing 60, 758 still images and video frames on
IJB-B, and there are 19, 593 probe templates containing 127, 152
still images and video frames on IJB-C. In Table 8, we report the
Rank-1 identification accuracy of our method compared to base-
line models. ArcFace trained on IBUG-500K achieves impressive
performance on both IJB-B (95.94%) and IJB-C (97.21%), setting
a new record on this benchmark.
Results on LFR2019-Image and LFR2019-Video. Lightweight
Face Recognition (LFR) Challenge [88] targets on bench-marking
face recognition methods under strict computation constraints (i.e.
computational complexity < 1.0 GFlops). For a fair comparison,
all participants in the challenge must use MSIMV3 [88] as the
training data. On LFR2019-Image, trillion-level pairs between
gallery and probe set are used for evaluation and TPR@FPR=1e-
8 is selected as the main evaluation metric. On LFR2019-Video,
billion-level pairs between all videos are used for evaluation and
TPR@FPR=1e-4 is employed as the main evaluation metric.

In Table 9, we compare the performance of ArcFace with
the top-ranked competition solutions [88]. For the design of
our lightweight model, we explore EfficientNet-BO [118] as the
backbone. When training from scratch with the proposed Ar-
cFace loss, EfficientNet-BO can obtain 86.44% on LFR2019-
Image and 61.47% on LFR2019-Video, respectively. Following
the top-ranked solutions, we also employ knowledge distillation
[119] to boost the performance of our lightweight model. Ar-
cFace trained on MS1MV3 with ResNet100 provides a high-
performance teacher network, achieving 92.75% on LFR2019-
Image and 64.89% on LFR2019-Video. With the assistance of the
teacher network, our lightweight model is trained by minimizing

ublication/redistribution requires IEEE

Fig. 14. Close-set face generation. ArcFace can generate identity-
preserved face images only by using the model parameters without
training any additional discriminator and generator like in GAN. The first
column is the identity from the training data. Column 2 to 4 are the
outputs from our ArcFace model. Column 5 to 7 are the outputs from
the baseline CosFace model.

TABLE 10
FID and cosine similarity of different model inversion results. ArcFace
model (ResNet50) for inversion is trained on MS1MV3, but the
generated face images also exhibit high similarity from the view of the
more powerful ArcFace model (ResNet100) trained on IBUG-500K. The
margin parameter for each method is given in the bracket.

Method FID  Cosine Similarity
Softmax 75.59 0.5612
SphereFace (1.35) | 73.18 0.5919
CosFace (0.35) 71.64 0.6176
ArcFace (0.5) 70.39 0.6248

(1) the ArcFace loss (2) the /5 regression loss between 512-D
features of the teacher and student networks, and (3) the KL
loss [119] between class-wise similarities predicted by the teacher
and student networks. The weights of the f5 regression loss and
the KL loss is set to 1.0 and 0.1, respectively. With knowledge
distillation, our method finally achieves 88.65% on LFR2019-
Image and 63.60% on LFR2019-Video. As shown in Figure 13,
our method obtains comparable performance with the champion
of the LFR2019-Image track and envelops the ROC curves of
all top-ranked challenge solutions in the LFR2019-Video track,
surpassing the champion by 0.37%.

4.5

This section demonstrates the capability of the proposed ArcFace
model in terms of effectively synthesizing identity-preserved face
images from subject’s centers (the close-set setting) or features
(the open-set setting).

We adopt the ArcFace (ResNet50) trained on MS1IMV3 to
conduct the inversion experiments, which include two settings,

Inversion of ArcFace
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(f) Bad Cases of ArcFace Inversion (Gender Confusion)

Fig. 15. Open-set face generation from the pre-trained ArcFace model. We show the ArcFace inversion results (right) under age, gender, race, pose
and occlusion variations by only using the embedding features from LFW [89] test samples (left). In the bottom, we show some bad cases (e.g.
gender confusion) generated from the ArcFace inversion.

r l >

Fig. 16. Open-set face generation without and with BN constraints. The first row is the original LFW [89] samples. The second row is the ArcFace
inversion results without BN constraints, and the third row is the ArcFace inversion results with BN constraints.

TABLE 11
FID, cosine similarity and verification accuracy on LFW of different
model inversion results. The cosine similarity and the verification
accuracy are tested by the ArcFace model (ResNet100) trained on
IBUG-500K. The margin parameter for each method is given in the

mode, embedding features predicted by the pre-trained models are
used as the targets to generate face images. Identity preservation
is constrained by a /5 loss. For each time, we synthesize 256 face
images of different identities at the resolution of 112 x 112 in

bracket. one mini-batch using one NVIDIA V100 GPU. We employ Adam

Method FID _ Cosine Sim LEW Acc (%) optimizer [120] at a learning rate of 0.25 and the iteration lasts

Sphersé)lle?ea)((l.%) ;;?g 8222471 38(1)451 20K steps. Regularization parameters [30] for total variance and

CosFace (0.35) 74.02 0.5762 92.69 Uy nonp of the generated faces are set as le — 3 and le — 4,
ArcFace (0.5) | 73.16 0.5849 93.30 respectively.

In order to quantitatively validate how well the proposed
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i.e. close-set and open-set. In the close-set mode, centers stored
in the linear layer are selected as the targets to generate face
images. Identity preservation is constrained by a classification loss
(e.g. Softmax, SphereFace, CosFace and ArcFace). In the open-set
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method can preserve the identity of the subject and how visu-
ally plausible the reconstructed face image is, three metrics are
adopted: (1) Frechet Inception Distance (FID) [121]; (2) cosine
similarity from a third-party model ([IBUG-500K, ResNet100,
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ArcFace]); and (3) face verification accuracy on LFW for open-set
experiments.

Close-set Face Generation. In Table 10, we quantify the realism
and identity preservation of the reconstructed faces from different
face recognition models. For each model, we synthesize training
identities by using the 5K randomly selected class indexes. For
each identity, different random inputs are gradually updated by
the network gradient into identity-preserved face images. The
proposed ArcFace model obviously outperforms the baseline
methods (e.g. softmax, SphereFace and CosFace) in the image
quality, achieving the FID score of 70.39. By employing the
powerful ArcFace model trained on IBUG-500K, we calculate all
cosine similarities between real training faces and corresponding
generated faces. The average cosine similarity of ArcFace is
0.6248, surpassing all the baseline models by a clear margin.

In Figure 14, we show the synthesized faces from the proposed

ArcFace in comparison with the baseline CosFace model. As can
be seen, ArcFace is able to reconstruct identity-preserved faces
only by using the model parameters without training any addi-
tional discriminator and generator like in GAN [36]. Considering
the image quality is only constrained by the classification loss
and the BN priors, it is quite understandable that there exist some
identity-unrelated artifacts in the generation results. Besides, there
are many grey images in MS1MV3 and this statistic information
is also stored in the BN parameters, thus some generated faces
are not colorful. Compared to the baseline CosFace model, our
ArcFace can depict better facial features of the real faces in terms
of identity preservation and image quality.
Open-set Face Generation. In Table 11, we compare inversion
results of different models on LFW. For each pre-trained model,
we first calculate the embedding features of 13,233 face images
from LFW, and then we generate faces constrained to these target
features through a /5 loss. As we can see, ArcFace maintains
best reconstruction quality and identity preservation, consistently
outperforming the baseline models in both FID and average
cosine similarity metrics. On the real faces of LFW, the ArcFace
model (ResNet50) achieves 99.81% verification accuracy. On the
generated faces, the verification accuracy slightly drops to 97.75%
by using the same model ([MS1MV3, ResNet50, ArcFace]) for
testing. For unbiased evaluation, we report the matching accuracy
on LFW by employing the powerful ArcFace model (ResNet100)
trained on IBUG-500K and this model is more susceptible to
artifacts in the generated results. Even though there is a further
drop in the verification accuracy (93.30%), the results compared
to the baseline models further demonstrate the advantages of
ArcFace in the inversion problem.

Figure 15 illustrates our synthesis from features of LFW faces
that contain appearance variations (e.g. age, gender, race, pose and
occlusion). Similar to the previous experiment, our ArcFace model
robustly depicts identity-preserved faces. The success of robustly
handling with those challenging factors comes from two proper-
ties: (1) the ArcFace network was trained to ignore those facial
variations in its embedding features, and (2) real face distributions
stored in the BN layers can be effectively exploited for face image
synthesis. Even though ArcFace can inverse most of the faces
with realism and identity preservation, there exist some confusions
during generation. In Figure 15(f), we show some inversion results
from ArcFace containing gender confusions. Even though these
confusions can be easily distinguished by human eyes, they exhibit
high similarity from the view of the machine. In Figure 16, we
further conduct an ablation study about ArcFace inversion without

ublication/redistribution requires IEEE
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BN constraints. As we can see from these results, constraints
from the BN layers can enforce the generated face more visually
plausible. Without the BN constraints, the resulting face images
lack natural image statistics and can be quite easily identified as
unnatural.

5 CONCLUSIONS

In this paper, we first propose an Additive Angular Margin
Loss function, named ArcFace, which can effectively enhance
the discriminative power of deep feature embedding for face
recognition. We further introduce sub-class into ArcFace to relax
the intra-class constraint under massive real-world noises. The
proposed sub-center ArcFace encourages one dominant sub-class
that contains the majority of clean faces and non-dominant sub-
classes that include hard or noisy faces. This automatic isola-
tion can be employed to clean large-scale web faces and we
demonstrate that our method consistently outperforms the state
of the art through the most comprehensive experiments. Apart
from enhancing discriminative power, ArcFace can also strengthen
the model’s generative power, mapping feature vectors to face
images. The pre-trained ArcFace model can generate identity-
preserved face images for both subjects inside and outside the
training data only by using the network gradient and BN priors.
As the proposed ArcFace inversion only focuses on approximating
the target identity feature, the facial poses and expressions are not
controllable. In the future, we will explore controlling intermediate
neuron activations to target specific facial poses and expressions
during inversion. In addition, we will also explore how to make the
face recognition model not invertible so that face images cannot
be easily reconstructed from model weights to protect privacy.
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