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ABSTRACT

Recent works in speech recognition rely either on connection-
ist temporal classification (CTC) or sequence-to-sequence
models for character-level recognition. CTC assumes con-
ditional independence of individual characters, whereas
attention-based models can provide nonsequential align-
ments. Therefore, we could use a CTC loss in combination
with an attention-based model in order to force monotonic
alignments and at the same time get rid of the conditional
independence assumption. In this paper, we use the recently
proposed hybrid CTC/attention architecture for audio-visual
recognition of speech in-the-wild. To the best of our knowl-
edge, this is the first time that such a hybrid architecture
architecture is used for audio-visual recognition of speech.
We use the LRS2 database and show that the proposed audio-
visual model leads to an 1.3% absolute decrease in word error
rate over the audio-only model and achieves the new state-of-
the-art performance on LRS2 database (7% word error rate).
We also observe that the audio-visual model significantly
outperforms the audio-based model (up to 32.9% absolute
improvement in word error rate) for several different types of
noise as the signal-to-noise ratio decreases.

Index Terms— Audiovisual Speech Recognition, Atten-
tion Architectures, CTC, Audiovisual Fusion

1. INTRODUCTION

Traditional audiovisual fusion systems consist of two stages,
feature extraction from the image and audio signals and com-
bination of the features for joint classification [1, 2, 3]. Al-
though decades of research in acoustic speech recognition
have resulted in a standard set of audio features, there is not
a standard set of visual features yet. This issue has been re-
cently addressed by the introduction of deep learning in this
field. In the first generation of deep models, deep bottleneck
architectures [4, 5, 6, 7, 8, 9] were used to reduce the dimen-

sionality of various visual and audio features extracted from
the mouth regions of interest (ROI) and the audio signal. Then
these features are fed to a classifier like a support vector ma-
chine or a Hidden Markov Model.

Recently, few deep models have been presented which ex-
tract features directly from the mouth ROI pixels. The main
approaches followed can be divided into two groups. In the
first one, fully connected layers are used to extract features
and LSTM layers model the temporal dynamics of the se-
quence [10, 11]. In the second group, a 3D convolutional
layer is used followed either by standard convolutional layers
[12, 13] or residual networks (ResNet) [14] combined with
LSTMs or GRUs.

These works have also been extended to audio-visual
models. Chung et al. [15] applied an attention mechanism
to both the mouth ROIs and MFCCs for continuous speech
recognition. Petridis et al. [16] used fully connected layers
together with LSTMs are used in order to extract features
directly from raw images and spectrograms and perform clas-
sification on the OuluVS2 database [17]. This method has
been extended to extract features directly from raw images
and audio waveforms using ResNets and bidirectional gated
recurrent units (BGRUs) [18] and achieves the state-of-the-
art performance on the LRW dataset [19] for isolated within
context word recognition in-the-wild.

In this work, we use ResNets to extract features directly
from the mouth ROIs together with a hybrid CTC/attention
architecture [20] for audio-visual continuous speech recogni-
tion in-the-wild. Attention-based speech recognition uses an
attention mechanism to find an alignment between each ele-
ment of the output sequence and the hidden states generated
by the encoder network for each frame of acoustic/visual in-
put. The main problem with this approach is that it allows
non-sequential alignments. This can be addressed using a
connectionist temporal classification (CTC) objective (which
allows for a strictly monotonic alignment) together with the
attention-based encoder-decoder. This hybrid CTC/attention
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Fig. 1: Architectures considered in this work. The encoder consists of a stack of BLSTMs, whereas a joint CTC/attention
approach is followed for decoding together with an external language model.

Table 1: Statistics of the LRS2 dataset.

Set No. No. Vocabulary
Utterances Words

Pre-training 96318 2064118 41427
Training 45839 329180 17660
Validation 1082 7866 1984
Test 1243 6663 1698

architecture has been successfully used in acoustic speech
recognition [20]. A similar idea has been explored in [21]
where a cascaded CTC-attention model is proposed for visual
speech recognition on the GRID database, which has been
recorded in a lab environment. To the best of our knowledge,
this is the first work which uses a hybrid CTC/attention archi-
tecture for audio-visual speech recognition in-the-wild. For
this purpose, we use the LRS2 database, which is the largest
publicly available database of continuous audio-visual speech
in-the-wild.

The proposed system, Fig. 1, results in an absolute de-
crease of 6.9% in word error rate (WER) for visual-only
speech recognition over the state-of-the-art on LRS2 (without
using external datasets). The audio-visual model leads to a
1.3% absolute improvement over the audio-only model in
clean audio conditions and achieves the new state-of-the-art
audio-visual performance (7% WER) outperforming even

models which were pre-trained on external datasets. We also
investigate the effect of different types of noise at varying
levels of signal-to-noise ratio (SNR), from -5dB to 20dB, on
the audio-only and and audio-visual models. As expected
the audio-visual model is more robust to all types of noise
leading to an absolute decrease in WER of up to 32.9% at
high SNR levels over the audio-based model.

2. LRS2 DATABASE

For the purposes of this study we use the Lip Reading Sen-
tences 2 (LRS2) database [15, 22] which is the largest pub-
licly available dataset for lip reading sentences in-the-wild.
The database consists of short segments (up to 6.2 seconds)
from BBC programmes, mainly news and talk shows. It is a
very challenging set since it contains thousands of speakers
and large variation in head pose (from frontal to profile) and
illumination.

The dataset contains more than 2 million words and more
than 140K utterances. An example of large head pose vari-
ation can be seen in Fig. 2. The dataset is already divided
into training, validation and test sets and also contains a pre-
training set which contains longer segments (up to 181.8 sec-
onds) which can be used to pre-train a model. Details about
the dataset can be found in Table 1.



Fig. 2: Example of significant head pose variation from the LRS2 dataset.

3. ARCHITECTURE

3.1. Features

Visual Features: The visual feature extractor is based on the
model proposed in [14]. It consists of a spatiotemporal con-
volution with a filter width of 5 frames, which is capable of
capturing the short-term dynamics of the mouth region, fol-
lowed by an 18-layer residual network (ResNet). The ResNet
drops progressively the spatial dimensionality until its output
becomes a single dimensional tensor per time step. The out-
put of the last fully connected of the ResNet is used as the
visual feature representation. The features are extracted at 25
frames per second (fps) which is the frame rate of the input
video.

Audio Features: We use 80 log Mel features together
with pitch, delta pitch and probability of voicing, so there are
83 features in total. The features are extracted using a 25ms
Hamming window with stride 10ms which results in 100 fps.

3.2. Hybrid CTC/Attention

To map a set of input sequences such as audio or video
streams to corresponding output sequences, we consider a
hybrid CTC/attention architecture [20] in this paper. This ar-
chitecture uses a typical encoder-decoder attention structure.
A stack of Bidirectional Long Short Term Memory Net-
works (BLSTMs) is employed in the encoder to convert input
streams x = (x1, ..., xT ) into frame-wise hidden feature rep-
resentations. These features are then consumed by a joint
decoder including a recurrent neural network language model
(RNN-LM), attention and CTC mechanisms to output a label
sequence y = (y1, ..., yL). To perform alignment between
input frames and output characters, we use a location-based
attention mechanism, which takes into account both content
and location information for selecting the next step in the
input sequence [23].

This architecture is proven to be advantageous for three
reasons. First, the attention mechanism is built without any
conditional independence assumptions. This helps build a
more precise model. Second, a new blank token introduced
in CTC is capable of directly transcribing between variable
sequences without any intermediate annotation. Furthermore,
the joint architecture introduces CTC for satisfying the mono-
tonic alignment property required in speech recognition.

The joint architecture shares the same encoder but uses
separate mechanisms in the decoder, which can be considered
as multi-task learning. During training, the objective function
is performed by a linear combination of the CTC and attention
objectives, which is computed as follows:

L = αlogpctc(y|x) + (1− α)logpatt(y|x) (1)

where α controls the relative weight in CTC and attention
mechanisms.

In the decoding phase, a joint CTC/attention approach
is employed. This approach overcomes the drawback of the
attention-only approach that has non-monotonic alignment
and end-of-sentence detection issues. We obtain a joint score
based on attention probabilities and CTC probabilities for de-
coding character-level sequences. The most probable output
hypothesis ŷ is computed as follows:

ŷ = argmax
y∈U

{λlogpctc(y|x) + (1− λ)logpatt(y|x)} (2)

where λ1 is the weight of CTC and U is the set of labels plus
an extra end-of-sentence label. This approach also includes a
beam search algorithm that recursively advances to the next
label using the joint score of each partial hypothesis.

For decoding, we include a character-level RNN-LM,
which we train on LRS2 (train and pretrain sets) as well as
on LibriSpeech [25]. The RNN-LM is incorporated through
shallow fusion [26], which is described as follows:

logphyb(y|x) =λlogpctc(y|x) + (1− λ)logpatt(y|x)
+ βlogpRNN−LM (y) (3)

ŷ? =argmax
y∈U

{logphyb(y|x)} (4)

where β is a relative weight for the RNN-LM model.

3.3. Fusion Types

Two types of fusion are considered in this work, early fusion
and late fusion as shown in Fig. 1. In early fusion, audio and
visual features are concatenated inside the encoder as shown

1We follow the notation of the ESPnet toolkit[24] where the relative
weight of CTC during training can be different than the CTC weight during
decoding.



in Fig. 1a. They are fed to two independent 2-layer BLSTMs
whose outputs are concatenated. This is followed by another
2-layer BLTSM which produces the hidden representations
fed to the CTC/attention decoder.

In late fusion, Fig. 1b, audio and video are modeled inde-
pendently by separate encoder-decoder architectures and then
the generated character probabilities are fused as follows:

logphyblate fusion = γlogphybaudio + (1− γ)logphybvisual (5)

where γ, from 0.0 to 1.0, is a hyper-parameter to control the
relative weight between audio and visual probabilities.

4. EXPERIMENTAL SETUP

4.1. Pre-processing

The first step is the extraction of the mouth ROI from the
LRS2 dataset. Since the mouth ROIs are already centered,
a fixed bounding box of 130 by 80 is used for all videos,
which is then resized to 122 by 122 (the input frame size of
the ResNet is 112 by 112, using random cropping in training
and the central patch in testing). Finally, the frames are trans-
formed to grayscale and are normalized with respect to the
overall mean and variance. The audio features are normalised
by removing the mean and dividing by the standard deviation
in each utterance.

4.2. Evaluation Protocol

Details about the data, which are already divided into train-
ing, validation and test sets, can be found in Table 1. The
utterances in the pre-training set correspond to part-sentences
as well as multiple sentences, whereas the training set only
consists of single full sentences.

5. TRAINING

Training is divided into 3 phases: first the visual feature ex-
tractor is pre-trained on LRW and fine-tuned on LRS2. Then,
the hybrid CTC/Attention model is trained with the extracted
visual and audio features. The ESPnet toolkit [24] is used
for training the hybrid CTC/attention architecture. Finally, an
external language model is trained using 2 text corpora.

5.1. Pre-training of Visual Feature Extractor

The ResNet is first pretrained on LRW for isolated word
recognition. A 2-layer BLSTM is added on top of the ResNet
and the model is trained end-to-end (using a softmax output
layer) as described in [14]. The Adam training algorithm [27]
is used for end-to-end training with a mini-batch size of 36
sequences and an initial learning rate of 0.0003. Early stop-
ping with a delay of 5 epochs is also used. Data augmentation

is also performed on the video sequences of mouth ROIs.
This is done by applying random cropping and horizontal
flips with probability 50% to all frames of a given clip.

The model is then further fine-tuned on the pretrain set
LRS2. The pretrain set is useful for this purpose, not merely
due to its large number of utterances, but also due to its more
detailed annotation files, containing information about the
(estimated) time each word begins and ends. Word bound-
aries permit us to excerpt fixed-duration video segments
containing specific words and essentially mimic the LRW
set-up. To this end, we select the 2000 most frequently ap-
pearing words containing at least 4 phonemes and we extract
frame sequences of 1.5sec duration, having the target word in
the center.

5.2. Hybrid CTC/Attention

The hybrid CTC/Attention model is trained for 20 epochs us-
ing Adadelta with a mini-batch size of 10. Data augmenta-
tion is applied to the raw audio sequences before computing
the mel and pitch features. During training babble noise at
different SNR levels (0 dB, 5 dB and 10 dB) from the NOI-
SEX database [28] might be added to the original audio clip.
The selection of one of the noise levels or the use of the clean
audio is done using a uniform distribution.

We also used label smoothing during training for the au-
dio and visual models. There was no improvement on the val-
idation set in case of audio-visual models so label smoothing
was not applied in this case.

5.3. Language Model

The language model is trained by combining two different
text corpora. The first one contains the transcriptions of the
LibriSpeech corpus which contains 9.4 million words. The
second one contains the transcriptions of the LRS2 pre-train
set which contains more than 2 million words.

5.4. Parameters

The default parameters of the ESPnet toolkit [24] have been
used. The only exception is the CTC weight α and λ from eq.
1 and 2, respectively, which are optimised on the validation
set. The optimal values for α and λ are 0.2 and 0.1, respec-
tively. The late fusion weight γ from eq. 5 is also optimised
on the validation set and the optimal value found is 0.85. The
language model weight β is set to 0.4 for the audio and audio-
visual models and 0.1 for the visual models. Finally, the width
of beam search is set to 20.
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Fig. 3: WER of the video-only (V), audio-only (A) and audio-visual (AV) models as a function of the SNR for various noise
types.



Table 2: Character error rate (CER) and Word Error Rate
(WER) of the Audio-only (A), Video-only (V) and Audio-
Visual models (A + V) on the LRS2 database. * The model
in [29] is first pre-trained on a non-publicly available dataset.

Stream CER WER

A 4.4 8.3
A [29]* - 9.7
A [30] 14.3 29.9

V 42.1 63.5
V [15] 2 - 70.4
V [29]* - 50.0

A + V (Late Fusion) 4.7 8.5
A + V (Early Fusion) 3.6 7.0
A + V [29]* - 8.2
A + V [30] 14.1 30.5

6. RESULTS

Results are shown in Table 2. We report the performance of
the audio-only, visual-only and audiovisual models for both
fusion types. It should be noted that the results shown cor-
respond to visual features upsampled to 50 fps using linear
interpolation. This is due to better performance observed on
the validation set. Further upsampling did not improve the
performance. The audio frame rate did not affect the perfor-
mance so we report audio results at 100 fps. However, for all
types of fusion we downsample audio to 50fps.

The proposed visual-only system results in an absolute
improvement of 6.9% in WER compared to [15] which is
the state-of-the-art performance when training only on LRS2,
i.e., without using any external databases. Afouras et al. [29]
achieve a much lower WER but their model is pre-trained on
a non-publicly available dataset.

The audio-only model achieves an 8.3% WER and 4.4%
CER. The audio-visual system using early fusion leads to an
improvement over the audio-only models of 1.3% and 0.8%
in WER and CER, respectively. Late fusion performs worse
than early fusion resulting in an 8.5% WER, possibly be-
cause it cannot directly model the correlation between audio
and visual features. It is worth pointing out that both the
audio-only and audio-visual models, which are trained only
on LRS2, outperform [29] which has been pre-trained on ex-
ternal databases. The WER of 7% achieved by the audio-
visual model is also the new state-of-the-art performance on
LRS2.

In order to investigate the robustness to audio noise of the
audiovisual fusion approach we run experiments under vary-
ing noise levels (using early fusion). The audio signal for each

2Video-only results from [15] are reported on http://www.robots.
ox.ac.uk/˜vgg/data/lip_reading/lrs2.html.

sequence is corrupted by additive noise so as the SNR varies
from -5 dB to 20 dB. Five different noise types from [31] are
used, cafe, street, construction drilling, train and car noises.
Three more noise types are used from [32], white, pink and
doing dishes noises.

Results for the audio, visual and audiovisual models un-
der noisy conditions are shown in Fig. 3. The video-only
classifier (blue line) is not affected by the addition of the au-
dio noise and therefore its performance remains constant over
all noise levels. On the other hand, as expected, the perfor-
mance of the audio-only model (red line) is significantly af-
fected. The WER of the audio-only model for all noise types
lies between 8.3% and 10.3% at 20dB. On the other hand, the
WER lies between 84.5% and 93.7% at -5dB. The only ex-
ception is the case of car noise, which corresponds to noise
recorded inside a car driving at 60 miles per hour. The WER
of the audio-only model for this type of noise is 30.9%.

The audiovisual model (yellow line) is more robust to
audio noise than the audio-only models. It results in an abso-
lute improvement of up to 7.6% (pink noise) under low noise
levels (10 dB to 20 dB) but it significantly outperforms the
audio-only model under high noise levels (-5 dB to 5 dB).
In particular, it leads to an absolute improvement between
10.6% (car noise) and 32.9% (construction drilling noise)
at -5dB. It is clear from Fig. 3 that although the absolute
improvement of the audio-visual model over the audio-only
model is noise dependent, it generally increases as the SNR
level becomes lower.

7. CONCLUSIONS

In this work, we present a joint CTC/attention hybrid ar-
chitecture for audio-visual speech recognition. Results on
the largest publicly available database for continuous speech
recognition in-the-wild (LRS2) show that the audio-visual
model significantly outperforms the audio-only model es-
pecially at high levels of noise and also achieves the new
state-of-the-art performance on this dataset. We use different
types of noise and we show that this is true independently of
the noise type considered. Finally, it would also be interesting
to investigate in future work an adaptive fusion mechanism
which learns to weight each modality based on the noise
levels.
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