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Abstract— Hidden conditional random fields (HCRFs) are
discriminative latent variable models that have been shown to
successfully learn the hidden structure of a given classification
problem (provided an appropriate validation of the number
of hidden states). In this brief, we present the infinite HCRF
(iHCRF), which is a nonparametric model based on hierarchical
Dirichlet processes and is capable of automatically learning
the optimal number of hidden states for a classification task.
We show how we learn the model hyperparameters with an
effective Markov-chain Monte Carlo sampling technique, and we
explain the process that underlines our iHCRF model with the
Restaurant Franchise Rating Agencies analogy. We show that the
iHCRF is able to converge to a correct number of represented
hidden states, and outperforms the best finite HCRFs—chosen via
cross-validation—for the difficult tasks of recognizing instances
of agreement, disagreement, and pain. Moreover, the iHCRF
manages to achieve this performance in significantly less total
training, validation, and testing time.

Index Terms— Discriminative models, hidden conditional
random fields, nonparametric Bayesian learning.

I. INTRODUCTION

Hidden conditional random fields (HCRFs) [1] are dis-
criminative models that learn the joint distribution of a
class label and a sequence of latent variables conditioned
on a given observation sequence, with dependencies among
latent variables expressed by an undirected graph. HCRFs
learn not only the hidden states that discriminate one class
label from all the others, but also the structure that is
shared among labels. HCRFs are well suited for a number
of problems, including object recognition, gesture recogni-
tion [1], speech modeling [2], and multimodal cue modeling
for agreement/disagreement recognition [3]. A limitation of
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the HCRFs is that finding the optimal number of hidden
states for a given classification problem is not always intu-
itive, and learning the correct number of states is often a
trial-and-error process involving cross-validation, which can
be computationally very expensive. This limitation moti-
vated our nonparametric HCRF model, which automatically
learns the optimal number of hidden states given a specific
dataset.

Over the past decade, nonparametric methods have been
successfully applied to many existing graphical models, allow-
ing them to grow the number of latent states as necessary
to fit the data. A prominent and well-studied example is
the infinite hidden Markov model (iHMM or HDP-HMM)
[4], [5], which is a Hierarchical Dirichlet Process (HDP)-
driven HMM with an infinite number of potential hidden
states. Other notable examples include the first such model,
i.e., the infinite Gaussian mixture model [6], but also the
more recent infinite factorial HMM [7], the Dirichlet process
mixture/Markov random field (MRF) [8], and the infinite
hidden Markov random field model (iHMRF) [9]. HCRFs
are related to HMRFs in that both employ a layer of latent
variables with an undirected graph specifying dependencies
between those variables. However, there is the important
difference that HMRFs model a joint distribution over latent
variables and observations, whereas an HCRF is a discrimina-
tive model optimizing the conditional probability over latent
variables and label given the observations. In fact, all models
mentioned above are generative and, to our knowledge, the
infinite HCRF (iHCRF) introduced in this brief is the first
discriminative nonparametric sequential model with latent
variables.

The main contribution of this brief is the use of HDPs
to allow an infinite number of hidden states for iHCRF.
Since exact inference for an infinite model is intractable, we
propose an approximation method based on beam sampling,
which is a Markov-chain Monte Carlo (MCMC) sampling
technique used effectively to sample iHMM models [5].
We also provide an analogy that can prove helpful in
understanding the process underlying iHCRF, namely, the
Restaurant Franchise Rating Agencies. We present exper-
iments with beam sampling for iHCRFs on the real-
world problems of recognizing instances of agreement, dis-
agreement, and pain in recordings of spontaneous human
behavior.

In the following section, we concisely present the HDPs.
We present in Section III our iHCRF model, beam sam-
pling for iHCRFs, and our analogy. Finally, we evaluate
our model performance in Section IV, and conclude with
Section V.

II. BACKGROUND

Our iHCRF model, like many other nonparametric Bayesian
models, rely on HDPs. We present in this section, a brief intro-
duction to Dirichlet Processes (DPs) and HDPs, along with the
Chinese Restaurant Franchise, which is an analogy that has
proved helpful in explaining HDPs and their generalizations.

2162–237X/$31.00 © 2012 IEEE
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For a concise but complete discussion of DPs and HDPs, the
reader is advised to read [10].

A. Dirichlet Processes

A DP is a distribution of distributions, parameterized by
a scale parameter γ and a probability measure �, the basis
around which the distributions G ∼ DP(γ,�) are drawn,
with variability governed by the γ parameter. Sethuraman [11]
presented the so-called stick-breaking construction for DPs,
which is based on random variables (β ′k)∞k=1 and (hk)

∞
k=1,

where β ′k |γ,� ∼ Beta(1, γ ), and hk |γ,� ∼ �

βk = β ′k
k−1∏

l=1

(1− β ′l ) G =
∞∑

k=1

βkδhk (1)

where δ is the Dirac delta function. By letting β = (βk)
∞
k=1,

we abbreviate this construction as β|γ ∼ GEM(γ ) [11].
Successive draws from G are conditionally independent

given G. By integrating G out, the conditional distribution
of a draw ci , given all past draws {c1, c2, . . . , ci−1}, is

ci |c1, c2, . . . , ci−1, γ ,� ∼
K∑

k=1

nk

i − 1+ γ δhk +
γ

i − 1+ γ �
(2)

where nk is the number of times a draw was assigned hk .

B. HDPs and the Chinese Restaurant Franchise Analogy

A HDP is a DP, the distributions G j of which are drawn
with scale parameter α0 and base probability measure G0,
which is itself drawn from a DP

G j |α0,G0 ∼ DP(α0,G0) G0 ∼ DP(γ,�).

Let π j = (π j k)
∞
k=1; according to the stick-breaking construc-

tion, the HDP can then be expressed as follows:
β|γ ∼ GEM(γ ) π j |α0,β ∼ DP(α0,β) hk |� ∼ �

G j =
∞∑

k=1

π j kδhk .

A useful analogy for understanding HDPs, and their explicit
clustering effect, is the Chinese Restaurant Franchise Analogy.
According to this analogy, the HDP represents a Chinese
Restaurant Franchise, and every G j represents one of the
restaurants in the franchise. All restaurants share the same
menu of dishes—hidden states hk . Using the notation from
[10], each restaurant has m j. tables, each of which serves only
one dish. There is no limit to the number of tables, and many
tables can serve the same dish. The number of tables serving
dish k in restaurant j is symbolized by m jk , and the number of
tables serving dish k in the entire franchise is m.k . The table
groupings is a quantity helpful for hyperparameter learning
and sampling. A customer c j i , the i th customer to walk in
a restaurant j , sits on table l with a probability proportional
to the number n jl of previous customers sitting at that table.
Customer c j i will refuse to sit on an already occupied table
with a probability proportional to α0. In the former case, the

customer will have whatever dish everyone is having at the
chosen table. In the latter case, the customer will sit at an
unoccupied table and will choose a dish for the table—the
number of tables will be incremented and a hidden state will
be drawn from G0, with a probability of choosing a completely
new dish proportional to γ .

Therefore, the HDP equivalent of (2) is

c j i |c j1, . . . , c j (i−1), α0,G0∼
m j .∑

l=1

n jl

i−1+α0
δψ jl+

α0

i−1+α0
G0

where ψ j l represents the dish served by a specific table,
making it clear that an HDP is only parameterized by its
hyperparameters α0, γ , and a row of counts n j for each DP
G j of the hierarchy. The above can be reexpressed as

ψ j,l |ψ1,1, . . . , ψ j,(l−1), γ ,�∼
K∑

k=1

m.k

m... + γ δhk +
γ

i−1+γ �.

III. iHCRFS

We concisely discuss, in this section, the finite HCRFs for
sequence classification. We then present our iHCRFs as an
HDP-based nonparametric extension of the finite model.

A. (Finite) HCRFs

HCRFs—discriminative models that contain hidden states—
are well suited to a number of problems. Quattoni et al. [1]
presented and used them to capture temporal dependencies
across frames and recognize different gesture classes. They
did so successfully by learning a state distribution among the
different gesture classes in a discriminative manner, allowing
them to not only uncover the distinctive configurations that
uniquely identify each class but also to learn a shared common
structure among the classes.

We represent T observations as X = [x1, x2, . . . , xT ].
Each observation at time t ∈ {1, . . . , T } is represented by a
feature vector ft ∈ �d , where d is the number of features,
which can include any features of the observation sequence. In
this brief, we assume that every dimension of ft is independent.
We wish to learn a mapping between observation sequence X
and class label y ∈ Y , where Y is the set of available labels.
The HCRF does so by estimating the conditional joint distribu-
tion over a sequence of latent variables s = [s1, s2, . . . , sT ],
each of which is assigned to a hidden state hi ∈ H, and a
label y, given X. One of the main representational powers of
HCRFs is that the latent variables can depend on arbitrary
features of the observation sequence. This allows us to model
long-range contextual dependencies; i.e., st , the latent variable
at time t , can depend on observations that happened earlier or
later than t .

An HCRF, being discriminative, models the conditional
probability of a class label given an observation sequence by

P(y | X; θ) =
∑

s

P(y, s | X; θ) =
∑

s	(y, s,X; θ)∑
y′∈Y,s	(y ′, s,X; θ) .

(3)

The potential function 	(y, s,X; θ) ∈ � is parameterized
by θ , which measures the compatibility between a label, a
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sequence of observations, and a configuration of the hidden
states. In this brief, the graph of our model is a chain where
each node corresponds to a latent variable st at time t . Our
parameter vector θ is made up of three components: θ =
[θ x T θ yT θ eT ]T . Parameter vector θ x models the relationship
between features ft and hidden states hi ∈ H and is typically
of length (d × |H|). θ y models the relationship of the hidden
states hi ∈ H and labels y ∈ Y and is of length (|Y| × |H|).
θ e represents the links between hidden states. It is equivalent to
the transition matrix in a HMM, but an important difference
is that an HCRF keeps a matrix of “transition” weights for
each label and θ e is of length (|Y| × |H| × |H|). We define
potential functions for each of these relationships, and our 	
as their product along the chain

	(y, s,X; θ) = 	x(s,X; θ x)	 y(y,s; θ y)	e(y, s; θ e)

(4)

	x(s,X; θ x) =
T∏

t=1

d∏

φ=1

ψ x ( ft [φ], st ; θ x) ft [i] (5)

	 y(y, s; θ y) =
T∏

t=1

ψ y(y, st ; θ y) (6)

	e(y, s; θ e) =
T∏

t=2

ψe(st−1, y, st ; θ e) (7)

ψ x ( ft [φ], st ; θ x) = exp{θ x [φ, st ]} (8)

ψ y(y, st ; θ y) = exp{θ y[y, st ]} (9)

ψe(st−1, y, st ; θ e) = exp{θ e[sλ, y, sκ ]}. (10)

In this brief, we use the notation θ x [φ, hi ] and ψ x [φ, hi ]1 to
refer to the weight or potential that measures the compatibility
between the feature indexed by φ and state hi ∈ H. Similarly,
θ y[y, hi ] and ψ y [y, hi ] stand for weights or potentials that
correspond to class y and state hi , whereas θ e[y, hi , h′] and
ψe[hi , y, h′] measure the compatibility of the label y with a
transition from hi to h′.

B. iHCRF Model

Allowing an infinite number of hidden states in H implies
a more flexible model but also the need for an infinite number
of weights and corresponding potentials. The key to our
iHCRF is that the potentials ψ x , ψ y, and ψ e are sampled
directly from a set of HDPs, a separate process for each
of the three ψ groups, i.e., HDPx , HDPy , and HDPe. The
choice to use HDPs and not separate DPs was clear and in
line with previous work (e.g., [4]) as for each kind of the
iHCRF potentials, we want to introduce intraset dependencies
that should be different for each kind. The latter was also
precisely the reason for our choosing three distinct processes
with different hyperparameters to derive our potentials. The
iHCRF is therefore not parameterized by weights θ but
by the parameters of those processes that will allow our
model to have a potentially infinite number of potentials. We

1We abuse here the notation ψ . It was used in Section II to represent the
dish served by a specific table in HDPs with notation identical to [10]. It will
be used to represent potentials for the rest of this brief.
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Fig. 1. Graphical representation of our iHCRF. The ψx ,ψ y ,ψe

weights are derived from three HDPs conditioned on their hyperparameters
αx

0 , γ
x , α

y
0 , γ

y , αe
0, γ

e.

define ωx ,ωy, and ωe to be these sets of parameters for the
processes we will use to derive a potentially infinite number
of ψ x , ψ y , and ψ e, respectively. The iHCRF, visualized in
Fig. 1, is then parameterized only by the six hyperparameters–
ω = {αx

0 , γ
x , α

y
0 , γ

y, αe
0, γ

e}–and the model can be expressed
as follows2:

P(y | X;ωx ,ωy,ωe) ∝
∑

s

	x(s,X;ωx)	 y(y, s;ωy)

×	e(y, s;ωe)

ωx = {αx
0 , γ

x}, ωy = {αy
0 , γ

y}, ωe = {αe
0, γ

e}
βx ∼ GEM(γ x ), ψ x[ j, :] | βx ∼ DP(αx

0 ,β
x)

β y ∼ GEM(γ y), ψ y[ j, :] | β y ∼ DP(αy
0 ,β

y)

βe ∼ GEM(γ e), ψ e[ j, :, :] | βe ∼ DP(αe
0,β

e) (11)

where j is the index for the features in ψ x , the labels in ψ y,
or the previous hidden states in ψ e.

In iHCRFs, K , which is the same for all three underlying
HDPs, is the number of visited states represented in the
counts for each process nx ,ny,ne (see Section II), which are
populated based on a latent variable sequence assignment.
The infinitely many unvisited states are represented by an
additional single “state,” which we call hK+1. Potentials ψ x ,
ψ y, and ψ e are also associated with each of these K+1 states,
and as K changes, so does the length of the number of ψ x , ψ y,
and ψ e. The potentials associated with hK+1 are ψ x [:, hK+1],
ψ y[:, hK+1], ψ e[:, :, hK+1] and represent the compatibility of
visiting a new state given the features, the label, or the previous
latent variable assignment and the label, respectively. Although
all HDPs have the same number of represented states K ,
each HDP has separate concentration hyperparameters and
counts: {αx

0 , γ
x ,nx } for HDPx ; {αy

0 , γ
y,ny} for HDPy ; and

{αe
0, γ

e,ne} for HDPe. Separate β sticks are sampled for each
HDP, based on which the equivalent proportions ψ x ,ψ y, and
ψ e are also sampled.

2In this brief, the normalization factor Z is estimated by the forward-filtering
performed during beam sampling, as described in Section III-C.
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C. Hyperparameter Learning—Beam Sampling for the iHCRF

In this section, we present our technique to automatically
learn the hyperparameters based on beam sampling,3 which is
an MCMC sampling method that has successfully been used
to sample whole trajectories for the iHMM [5].

Beam sampling achieves forward filtering and backwards
sampling for a chain of latent variables by introducing an
auxiliary variable ut for each latent variable st . In iHMM, the
“beam” ut acts as a threshold for the transition probabilities;
if a transition probability is below the “beam,” it is not
considered feasible. This means that we are able to sample
whole trajectories effectively, by conditioning the transition
probabilities on u, making the number of possible trajectories
finite. Since we have adopted in this brief a chain structure
for our model, the beam sampler can easily be adapted for
the iHCRF. Unlike the iHMM, the iHCRF is an undirected
model, and the equivalent of transition probabilities are the
values Mt , a matrix of the product of node and edge potentials
for a specific node-latent variable st [1]. In iHCRFs, the node
potentials vt are

vt =
[
v(t,1), . . . , v(t,K ), v(t,K+1)

]

where

v(t,k) = ψ y[y, hk]
d∏

i=1

(ψ x [hk]) ft [i]

and the edge potentials Bt are

Bt =
⎛

⎜⎝
Bt,(1,1) · · · Bt,(1,K ) Bt,(1,K+1)
...

. . .
...

...
Bt,(K ,1) · · · Bt,(K ,K ) Bt,(K ,K+1)

⎞

⎟⎠

where
Bt,(k, j ) = ψe[y, hk, h j ]. (12)

By letting 1K be a column vector of K 1s and At = 1K · vt ,
in iHCRF a ut acts as a threshold for Mt

Mt = At � Bt

Mt (y, st−1, st ,X;ψ) = ψ y [y, st ]
d∏

i=1

(ψ x [st ]) ft [i]

×ψe[y, st−1, st ]
where � symbolizes the Hadamard product, i.e., entry-
wise matrix multiplication. For example, if st = h2
and st−1 = h4, then Mt (y, h4, h2,X;ψ) = ψ y [y, h2]∏d

i=1(ψ
x [h2]) ft [i]ψe[y, h4, h2], and for the special case of

st being assigned to one of the infinite unrepresented states,
Mt (y, h4, hK+1,X;ψ) = ψ y[y, hK+1]∏d

i=1(ψ
x [hK+1]) ft [i]

ψe[y, h4, hK+1].
Given a set of L training sequences {X(1),X(2), . . . ,X(L)},

the iHCRF hyperaparameters are learned using the beam
sampler as follows.

1) Initialization: We choose an initial number for K . For
each training sequence, we randomly create a latent
variable sequence s = {s(1), s(2), . . . , s(L)}.

3The code for the beam sampler for iHCRF is available at
www.doc.ic.ac.uk/~kb709/.

2) Sample αx
0 , γ

x , α
y
0 , γ

y, αe
0, γ

e,βx ,β y,βe,ψ x,ψ y,ψ e|s:
Based on s, we populate the counts nx ,ny,ne for each of
the three HDPs. We then sample, based on these counts,
βx,β y,βe, the six hyperparameters, and the potentials
ψ x,ψ y,ψ e, as shown in the equations and figure that
describe our model in the main text. These follow
directly from the theory of hyperparameter sampling
for HDPs, for details of which the interested reader is
referred to [10].

3) Sample u: For each t in each sequence X(i) of our
training set, we sample u(i)t from a beta distribution
p(u(i)t |s(i), y(i),X(i);ψ) : u(i) ∼ Betaa,b(0,M(i)

t (y(i),
s(i)t−1, s(i)t ,X(i);ψ)). For our experiments we used
a = 1 and b = 2. Note that the distribution of
our beam values does not necessarily have to be
a beta one–a uniform distribution was used in the
beam sampler of [5]. If there is a s(i)t−1 for which

u(i)t < M(i)
t (y(i), s(i)t−1, s(i)t = hK+1,X(i);ψ), i.e., if the

M(i)
t -value for an unrepresented state is higher than

u(i)t , we increment the number of represented states K .
Note that by increasing K , the M(i)

t -values for an
unrepresented state decrease. We repeat this step until
∀i, t u(i)t > M(i)

t (y(i), s(i)t−1, s(i)t = hK+1,X(i)
t ;ψ).

4) Sample s: We sample whole trajectories for all sequences
in our training set by applying “beam”-assisted forward
filtering–backward sampling.
Forward Filtering: We calculate forward probabilities
pw along the undirected chain for each training sequence
as follows (the sequence indicators (i) are omitted for
clarity):

pwt =
1∑
pwt

vt � [q(1), q(2), . . . , q(K + 1)]

where q( j) is the sum of the j th column of the pointwise
product of forward probabilities and edge potentials

q( j) =
K∑

k=1

Ct ( j, k) Ct = (1K · pwt−1)� Bt

pw1 = v1 · 1
∑K

k=1 v1(k)
.

That is

pwt (st |y, f1:t , u1:t ;ψ x,ψ y,ψ e)

∝ ψ y[y, st ]
d∏

i=1

(ψ x [st ]) ft [i]

·
∑

st−1

pwt (st−1|y, f1:t−1, u1:t−1) ψe[y, st−1, st ].

(13)

If any values in Mt are below the “beam” value, we
set the corresponding elements in pwt to 0, rejecting
trajectories that pass through the corresponding hidden
state at time t .
Backwards Sampling: Once all forward probabilities are
computed, a hidden state is sampled for the last latent
variable in the sequence, sT ∼ pwT . Conditioned on
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Algorithm 1 Beam Sampler for iHCRFs
Initialize hidden states s
while number of sampling iterations is not reached do

Sample ψ x ,ψ y ,ψe | s
Sample p(u|s, y,X,ψ) : u(i)t ∼ Betaa,b(0,M(i)

t )
for i = 1→ L do

for t = 1→ T (i) do

p(i)wt
(s(i)t |y(i), f (i)1:t , u(i)1:t )

∝ ψ y[y, st ]
d∏

i=1

(ψ x [st ]) ft [i]

×
∑

s(i)t−1:u(i)t ≤M(i)
t

[
p(i)wt

(s(i)t−1|y(i), f (i)1:t−1, u(i)1:t−1)

· ψe[y, st−1, st ]
]

end for
end for
for i = 1→ L do

Sample s(i)T ∼ p(i)wT

for t = T (i) → 1 do
Sample p(st |st+1, y) ∝ pwt (st )ψ

e[y, st , st+1]
end for

end for
end while

sT , we sample sT−1, and subsequently the entire chain
backwards to s1

p(st |st+1, y, f1:t , u1:t ;ψ)
∝ pwt (st |y, f1:t , u1:t ;ψ)ψe[y, st , st+1].

If one of the K represented states is not represented
anymore after sampling the entire set of our training
sequences, the state and any potentials associated with
it are removed and K is decremented.

5) Repeat from Step 2 for a set number of iterations.
The beam sampler for iHCRF is summarized in Algorithm 1.

D. Restaurant Franchise Rating Agencies Analogy

In order to further explain (11) and beam sampling
for iHCRFs, we present an analogy in the spirit of the
Chinese Restaurant Franchise Analogy, which is widely used
to explain generalizations of HDPs (see Section II). In our
analogy, we have a number of rating agencies (e.g., Zagat
and TimeOut) reviewing restaurant franchises (e.g., Pizza Hut,
Gaby’s, Strada). Restaurant franchises represent hidden states,
and there is one rating agency for each of HDPx , HDPy ,
and HDPe. Each agency has different criteria with which they
rate each restaurant franchise. Each franchisee hk has a number
of branches, and each agency may rate a different number
m.k of branches4 for each hk , depending on their criteria.
A customer represents a single sample of a latent variable s(i)t .
The following is our analogy for beam sampling an iHCRF.

4The equivalent quantity for tables from the Restaurant Franchise Analogy.

1) A customer s(i)t sends a query to each rating agency
with a number of requirements for her dining experience.
These are the variables our sampling is conditioned to.
Since we use beam sampling, these are {x(i)t , y(i), s(i)t−1}.

2) Each restaurant-franchise rating agency HDPx , HDPy ,
and HDPe rates each franchise based on the user’s
requirements.

3) The customer chooses, based on the different sugges-
tions from the rating agencies, to dine at a branch of
franchise hk that is listed in the ratings with a probability
proportionate to the product of the number of branches
rated by the agencies, mx

.kmy
.kme

.k . The customer will
choose to dine at a new franchise not listed in any of
the agencies with probability proportionate to γ xγ yγ e.

4) Our customer notifies the agencies regarding which
franchise and branch he chose to dine at—the value
assigned to s(i)t —and each rating agency updates their
databases nx ,ny,ne to improve future suggestions to
similar customers.

E. Inference

A learned iHCRF model can be described as
the collection of hyperparameters and count tables
� = {αx

0 , γ
x ,nx , α

y
0 , γ

y,ny, αe
0, γ

e,ne} learned from a
training set. Equation (3) can be efficiently evaluated via
forward filtering. Since our parameters are not fixed, inference
can be achieved by sampling new ψ∗ conditioned on �.
Given a new testing sequence X̄ and one such sampling
of ψ∗, we will estimate the label of the new sequence to be

arg max
y∈Y

P(y | X̄;�).
The iHCRF model will assign the mode of these predictions
as the label of the new sequence. We found that for our
experiments, the number of samplings for accurate estimates
was not higher than 100.

IV. EXPERIMENTS

The problem of classifying episodes of high-level emo-
tional states, such as pain and agreement and disagreement,
based on nonverbal cues in audiovisual sequences of sponta-
neous human behavior is rather complex. In this brief, we
used an audiovisual dataset of spontaneous agreement and
disagreement and a visual dataset of pain to evaluate the
performance of the proposed iHCRF on four classification
problems: 1) agreement and disagreement recognition with
two labels (agreement versus disagreement); 2) agreement and
disagreement recognition with three labels (agreement versus
disagreement versus neutral); 3) pain recognition with two
labels (strong pain versus no pain); and 4) pain recognition
with three labels (strong pain versus moderate pain versus
no pain). We show that: 1) our model is capable of quickly
converging to a correct number K of represented states and
2) iHCRFs perform better than the best performing finite
HCRF in each of these problems in terms of recognition
rates.

The audiovisual dataset of spontaneous agreement and dis-
agreement comprises 53 episodes of agreement, 94 episodes of
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Fig. 2. Convergence analysis of iHCRF number of represented states K for the Canal9 dataset on the three-label problem (ADA3). We ran iHCRF experiments
with initial K = 10, 20, . . . , 100 and all of them converged to K = 2−3, which seems to be the correct value for K for the given problem, as HCRFs with a
higher number of hidden states start showing signs of overfitting. (a) Number of represented iHCRF hidden states K for the Canal9 dataset with three labels.
(b) Total finite HCRF F1 measures for training and validation sets of the Canal9 dataset with three labels.

disagreement, and 130 neutral episodes of neither agreement
nor disagreement. These episodes feature 28 participants and
they occur over a total of 11 real political debates from
The Canal9 Database of Political Debates5 [12]. We used
automatically extracted prosodic features, based on previous
work on agreement and disagreement classification, and man-
ually annotated visual features, the hand and head gestures
hypothesized relevant according to the literature [13]. The
two prosodic features used were F0 and Energy, and the eight
gestures used in our experiments are the “Head Nod,” “Head
Shake,” “Forefinger Raise,” “Forefinger Raise-Like,” “Fore-
finger Wag,” “Hand Wag,” “Hands Scissor,” and “Shoulder
Shrug” (see [13] for details). We encoded each gesture in a
binary manner, based on its presence at each of the 5700 total
number of video frames, with each sequence ranging from 30
to 120 frames. The prosodic features were extracted with the
publicly available software package OpenEar [14].

The database of pain we used was the UNBC-McMaster
Shoulder Pain Expression Database6 [15], which features 25
subjects/patients spontaneously expressing various levels of
elicited pain in a total of 200 video sequences. The database
was coded for, among others, pain level per sequence by expert
observers on a 6-point scale from 0 (no pain) to 5 (extreme
pain). Furthermore, each of the 48 398 video frames in the
database was coded for each of the observable facial muscle
movements–action units (AUs) according to the Facial Action
Coding System (FACS) [16] by expert FACS coders. In our
experiments, we encoded each of the possible 45 AUs in a
binary manner, based on their presence. We labeled sequences
coded with 0 as “no pain,” sequences coded with 1–2 as
“moderate pain,” and those coded as 3–5 as “strong pain.”

For our experiments, we compared the finite HCRFs to our
iHCRF based on the F1 measure they achieved in each of the
classification problems at hand. We evaluated the performance
of the models on five different folds in the case of the Canal9
dataset (leave–2–debates–out for testing) and on 25 different
folds in the case of the UNBC dataset (leave–1–subject–out

5Publicly available at http://canal9-db.sspnet.eu/.
6Publicly available at http://www.pitt.edu/~jeffcohn/PainArchive/.

for testing). In each case, we concatenated the predictions for
every test sequence of each fold and calculated the F1 measure
for each label. The measure we used was the average F1 over
all labels. We ran both HCRF and iHCRF experiments with 10
random initializations, selecting the best trained model each
time by examining the F1 measure achieved on a validation
set consisting of the sequences from three debates in the case
of the Canal9 dataset and from seven subjects in the case
of the UNBC dataset. In every fold, our training, validation,
and testing sets comprised not only unique sequences but
also unique debates or subjects. In addition to the random
initializations, the best HCRF model was also selected by
experimenting with different number of hidden states and
different values for the HCRF L2 regularization coefficient.
Specifically, for each random initialization, we considered
models with two, three, four, and five hidden states and a
coefficient of 1, 10, and 100. This set of values for the hidden
states was selected after preliminary results showed that a
larger number of hidden states was unnecessary for all the
problems considered. All our iHCRF models had their initial
number of represented hidden states set to K = 10 and their
beam numbers were sampled from a beta distribution with
parameters a = 1 and b = 2. These were also chosen based
on preliminary experiments, which showed that different initial
values for K did not have a big impact on our model—
see discussion on convergence of K below—and that these
parameters for the beta distribution seemed the best for all four
of our problems. Finally, our HCRF models were trained with
a maximum of 300 iterations of the gradient ascent method
used [1], whereas our iHCRF models were trained with 100
sampling iterations, and tested by considering 100 samples of
optimal ψ∗ values.

As one can see in Fig. 2, the beam sampler for iHCRF is
able to quickly converge to a stable number of represented
states within only 10 sampling iterations, regardless of the
initialization for K . The final K ranged from two to three
hidden states in the case of the three-label agreement and
disagreement recognition task. This seems to be a correct
choice, as evident from Fig. 2, which shows the average—
over all labels—F1 achieved on the training and validation
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Fig. 3. F1 measure achieved by our iHCRF versus the best, in each
fold of each problem, finite HCRF versus a random classifier. ADA2: Two-
label classification for the Canal9 dataset of agreement and disagreement.
ADA3: Three-label classification for the Canal9 dataset. PAIN2: Two-label
classification for the UNBC dataset of shoulder pain. PAIN3: Three-label
classification for the UNBC dataset.

TABLE I

DISTRIBUTION OF EXECUTION TIME. THE FIRST TWO COLUMNS SHOW

THE AVERAGE TIME IT TOOK A MODEL TO TRAIN AND TEST FOR A

GIVEN SET OF PARAMETERS. THE LAST TWO COLUMNS SHOW THE

TOTAL TIME IT TOOK ALL HCRFS VERSUS ALL iHCRFS TO COMPLETE

ALL THE EXPERIMENTS, INCLUDING CROSS-VALIDATION, AS OUTLINED

IN THE TEXT EXCLUDING PRELIMINARY TESTS

Dataset Mean HCRF Mean iHCRF All HCRF All iHCRF

ADA2 71 s (σ = 4 s) 419 s (σ = 103 s) 11.1 h 3.5 h
ADA3 160 s (σ = 98 s) 399 s (σ = 92 s) 22.2 h 15.4 h
PAIN2 357 s (σ = 143 s) 864 s (σ = 108 s) 143.5 h 48.6 h
PAIN3 714 s (σ = 236 s) 1985 s (σ = 209 s) 273.7 h 95.5 h

Total 1302 s 3667 s 450.5 h 163 h

sets by the best HCRF models selected via cross-validation.
Fig. 3 shows the average—over all labels—F1 measure on

the test sets for all four of our problems. Evidently, the iHCRF
managed to achieve better results than the best HCRF models
we could find in each case. Since the infinite model structure is
not specified a priori but is instead determined from our data,
the iHCRF model is more flexible and is able to achieve better
performance. Another reason for the better performance may
be the fact that the finite HCRF optimization function is not
convex and the parameter learning process is therefore prone
to get stuck into local optima.

Beam sampling for iHCRFs was able to train a typical
iHCRF model for the two-label agreement versus disagreement
classification task in 84 s. Under the same conditions, an
HCRF model took 211 s to train. Testing can be slower for
iHCRFs, making the average amount of combined training
and testing time required of a single iHCRF model higher
than the equivalent one of a single HCRF model, as evident
from Table I. Note that this is the time reported for training
one HCRF model; however, selecting an HCRF model requires
training 12 different models, according to our experimental
setup, in order to select the best one. As an indication of
running times, we compared the time required for HCRF and
iHCRF models to train and test for a run of all the experiments
reported above. The experiments were all timed on the same
computing cluster of identical machines, and the time reported
by each experiment involved only one node processor and
included the tasks of training on a given training set, choosing
parameters based on performance on the given validation set,

and testing on the respective test set. As one can see in Table I,
the time spent by iHCRF to achieve performance higher than
the HCRF was a staggering 287.5 h less, just 27% of the
total experimentation time. Naturally, this would only check a
very limited HCRF parameter subspace. On the contrary, the
iHCRF is able to achieve better F1 performance in a more
efficient way each time even in such difficult classification
problems where the data to be analyzed is spontaneous human
behavior as is manifested in audiovisual sequences. It is worth
noting that the implementation we used for the HCRF was
optimized and compiled code written in C++, whereas our
iHCRF implementation was in MATLAB.

V. CONCLUSION

In this brief, we introduced the first discriminative non-
parametric sequential model with latent variables, namely, the
iHCRF. We also presented an efficient sampling technique that
allows us to not only learn the model’s hyperparameters and
correct number of hidden states, but also to predict the label of
a new observation sequence. We conducted experiments with
four challenging tasks of classification of naturalistic human
behavior. iHCRFs were able to quickly converge to the exact
number of states, and to perform well in all problems. Our next
step entails further experimentation with a variety of datasets
and the examination of different approaches to learning for
iHCRFs, e.g., variational inference [17].
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