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Abstract

Well-established databases and benchmarks have been
developed in the past 20 years for automatic facial be-
haviour analysis. Nevertheless, for some important prob-
lems regarding analysis of facial behaviour, such as (a) es-
timation of affect in a continuous dimensional space (e.g.,
valence and arousal) in videos displaying spontaneous fa-
cial behaviour and (b) detection of the activated facial
muscles (i.e., facial action unit detection), to the best of
our knowledge, well-established in-the-wild databases and
benchmarks do not exist. That is, the majority of the pub-
licly available corpora for the above tasks contain sam-
ples that have been captured in controlled recording con-
ditions and/or captured under a very specific milieu. Ar-
guably, in order to make further progress in automatic un-
derstanding of facial behaviour, datasets that have been
captured in in-the-wild and in various milieus have to be
developed. In this paper, we survey the progress that has
been recently made on understanding facial behaviour in-
the-wild, namely the datasets and methodologies that have
been developed thus far, while paying particular attention
to recently proposed deep learning techniques. Finally,
we attempt a significant step further by proposing a novel,
comprehensive benchmark that can be utilized for evalu-
ating and training various methodologies for the problems
of facial affect, behaviour analysis and understanding ”in-
the-wild”. To the best of our knowledge, this is the first
benchmark proposed for measuring continuous affect in the
valence-arousal space ”in-the-wild”.

1. Introduction
The Human face is most likely the most researched ob-

ject in image analysis and computer vision. One of the main
reasons behind this popularity lies in the numerous appli-
cations of automatic face analysis, spanning several fields,
from Human Computer Interaction (expression recognition
for automatic analysis of affect [43]) to law enforcement

(face recognition). Until less than a decade ago, the ma-
jority of face analysis algorithms and systems have been
trained and evaluated in databases that were captured in
constrained conditions, such as FERET for face recognition
[70], Cohn-Kanade [88, 50] and MMI [69, 93] for facial ex-
pression recognition and XM2VTS [59] and BIO-ID [37]
for facial landmark detection.

In this paper we are concerned with the problem of
automatic facial behaviour/affect analysis, which revolves
around three main pillars, as discussed in what follows.
Firstly, the recognition of discrete emotions, usually con-
fined to the recognition of the so-called six universal ex-
pressions (i.e., Anger, Disgust, Fear, Happiness, Sadness
and Surprise) plus neutral. The interested reader may re-
fer to [68, 25] for a comprehensive overview of the first
methods in literature tackling this problem. Recently, re-
search problems that focus on the recognition of particular
non-universal expressions have also attracted attention (e.g.,
recognition of pain [51], recognition of compound expres-
sions [20]). A recent survey on facial expression recogni-
tion can be found in [76]. Secondly, the problem of Facial
Action Unit Detection [12] (FAU) in expressive sequences
1, with the problem of FAU intensity estimation gaining in-
creasing popularity recently amongst researchers in the field
[39]. Finally, the Estimation of Continuous Emotion Di-
mensions. According to the dimensional approach, affective
behaviour can be described by a number of latent continu-
ous dimensions, with valence and arousal being the dimen-
sions most commonly used in literature. Briefly, the valence
dimension records how positive or negative an emotion is,
arousal measures the power of the activation of the emotion
and, finally, dominance captures the sense of control over
the emotion. The interested reader may refer to [28, 65] for
further details on the topic.

In the early years of affect analysis, facial expression

1Facial Action Coding System (FACS) [19, 22] provides a standard-
ised taxonomy of facial muscles’ movement. FACS is widely adopted as a
common standard to systematically categorise the physical manifestation
of complex facial expressions.
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recognition was attempted on databases containing posed
expressions [52, 88]. This was largely due to difficul-
ties arising in terms of collecting, interpreting and anno-
tating recordings that display spontaneous facial behaviour.
It is now understood that the degree of variation between
naturalistic spontaneous facial expressions and posed are
significant (e.g., differences in facial appearance, timing
and dynamics) 2 [107]. Hence, during the past few years,
recording scenarios have been meticulously designed and
implemented in order to elicit spontaneous behaviours. To
this end, several corpora have been made publicly avail-
able [58, 56, 73, 57, 51]. Nevertheless, capturing of the
spontaneous behaviour has been conducted, in the major-
ity of cases, in strictly controlled recording conditions (i.e.,
in a laboratory with well-controlled illumination conditions
[58]) and/or under a very strict context (i.e., elicit of pain
[51]).

Via the utilization of the currently available datasets, re-
search on automatic analysis of human facial behaviour has
advanced far enough so as to provide solutions that operate
robustly under certain conditions. For example, currently,
methodologies were proposed which demonstrate excellent
performance in the recognition of a set of posed facial ex-
pressions (i.e., the so-called universal expressions) in con-
strained recording conditions [104, 42]. Similarly, method-
ologies that exhibit good performance in the detection of a
certain number of facial action units (FAUs) in controlled
conditions have been developed [23, 106, 110].

In the fields of computer vision and statistical machine
learning, it is widely accepted that the collection of a signifi-
cant number of samples ”in-the-wild” is paramount to mak-
ing significant progress in a particular application domain3.
Currently, in many face analysis tasks (e.g., face verifica-
tion, face detection etc.), research has gradually shifted to
facial images captured in-the-wild with the introduction of
Labelled Faces in-the Wild (LFW) [32], FDDB for face de-
tection [35], and 300-W series of databases for facial land-
mark localisation/tracking [74, 80]. To a great extent, the
progress we are currently witnessing in the above face anal-
ysis problems is largely attributed to the collection and an-
notation of in-the-wild” databases.

To the best of our knowledge, the only efforts made to-
wards developing databases and benchmarks for analysis of
facial expression in-the-wild” include the following. The
Facial Expression Recognition 2013 (FER-2013) database
introduced in the Challenges in Representation Learning
(ICML 2013) [27]. The dataset was created using the

2The differences are so pronounced that it is possible to train classifiers
in order to discriminate between a posed and a spontaneous behaviour [97]

3This has become much more evident with the prevalence of deep neu-
ral networks as the major learning paradigm in domains with an abundance
of data, e.g., in particular computer vision tasks. Arguably, the collection
and annotation of PASCAL database for object detection in-the-wild” con-
stituted a turning point for the topic [24].

Google image search API targeting images of faces. The
images included in the final dataset were annotated with re-
gards to the universal expressions and neutral. The so-called
Acted Facial Expression In The Wild (AFEW) and Static
Facial Expression In The Wild (SFEW) databases [18, 17].
These databases have been used in the series of Emotion
Recognition “in-the-wild” challenges (EmotiW 2013, 2014
and 2015 [18, 17, 16, 15, 18]). The drawback of the above
benchmarks is that (a) the data contain only posed expres-
sions taken from motion pictures 4 and (b) the data (static
and dynamic) are annotated to discrete labels corresponding
to universal expressions; a taxonomy rarely that is consid-
ered too limited for modelling real-world emotional states
[12, 67]. Furthermore, recent studies have shown that a sig-
nificant larger set of expressions is generally displayed and
easily perceived by humans [20]. Finally, the so-called AM-
FED database [57], containing recordings of people watch-
ing Super Bowl commercials using a private computer (e.g.,
laptop). The recording conditions are arbitrary. That is, the
lighting is varied both in terms of illumination and contrast.
Nevertheless, there is not a huge variance in pose (limited
profiles).

We proceed by presenting a survey on facial behaviour
analysis ”in-the-wild”. In more detail, we present the
databases, the methodologies applied (focusing on recently
proposed techniques based on deep learning), while also
discussing the arising challenges. Subsequently, we pro-
pose to apply principles of data collection ”in-the-wild” for
(i) the problem of automatic affect analysis, in general, and
(ii) FAU detection along with the estimation of valence and
arousal, in particular. To this end, we have:

• Collected 500+ videos that display spontaneous fa-
cial behaviour in-the-wild”, and furthermore annotated
them with regards to the valence and arousal dimen-
sions. The videos have been mainly collected from
YouTube, with recordings depicting people reacting to
various situations.

• Collected 10,000+ facial images in-the-wild” and an-
notated with regards to 16 FAUs.

To the best of our knowledge this is first database for va-
lence and arousal in-the-wild”. In an upcoming challenge,
a benchmark will be designed on the database developed.
In the next sections we detail the efforts made towards the
collection and annotation of FAUs, as well as in terms of the
continuous emotion dimensions of valence and arousal.

2. Databases and Benchmarks
In this Section we survey the databases collected for var-

ious affect analysis tasks, such as (a) recognition of discrete
4As aforementioned, there exist many indications that naturalistic

spontaneous expressions differ from posed, even well-acted, expressions
[67, 107]



facial expressions, (b) detection of FAUs and (c) estimation
of valence and arousal.

2.1. Databases and Benchmarks for Facial Expres-
sion Recognition

Arguably, the database that had the largest impact in the
early days of face analysis is the so-called CK database [88],
which contains videos of posed universal expressions cap-
tured in controlled conditions. Other databases containing
posed expressions in controlled conditions include the so-
called JAFFE [52], MMI [69] and the GEMEP [4, 99] 5. To
the best of our knowledge the only benchmarks that contain
samples captured ”in-the-wild” are the ones that have been
used in the EmotiW series of competitions (the benchmarks
are the so-called AFEW and the SFEW datasets [17, 18])
and the FER-2013 database [27] 6.

The FER-2013 [27] was created using the Google im-
age search engine to search for images of faces that match a
set of 184 emotion-related keywords like blissful, enraged,
etc. These keywords were combined with words related to
gender, age or ethnicity, to obtain nearly 600 strings which
were used as facial image search queries. The first 1000
images returned for each query were kept for the next stage
of processing. Viola-Jones face detection was applied and
human clear the database and corrected the face detection
output. The images were resized to 48× 48 pixels and con-
verted to grayscale. The final images have been mapped to
the set of universal expressions plus neutral. The resulting
dataset contains 35887 images, with 4953: anger images,
547:disgust images, 5121:fear images, 8989:happiness im-
ages, 6077: sadness images, 4002: surprise images, and
6198: neutral images.

The AFEW database [17] contains video clips taken
from 54 movies. The video clips display a total of 330
subjects aged 1-77 years. The behaviour displayed in the
clips was annotated with regards to the universal expres-
sions plus neutral. The SFEW database has been developed
by selecting frames from AFEW. The database covers un-
constrained facial expressions, varied head poses, large age
range, occlusions, varied focus, different resolution of face
and close to real world illumination. Frames were extracted
from AFEW sequences and labelled based on the label of
the sequence. In total, SFEW [18] contains 700 images that
have been labeled by two independent annotators to the uni-
versal expressions plus the neutral class.

Currently, it is widely accepted that recognition of posed
expressions, even though an interesting research problem, is
rarely encountered in real world applications. The expres-
sions encountered are far more complex and a mapping to

5There are also 3D and 4D facial expression databases [103, 102].
For more details regarding 3D/4D facial expression analysis the interested
reader may refer to [75].

6Another database exists for smile recognition ”in-the-wild” [100].

universal expressions is a simplistic approximation. Hence,
the focus has gradualy shifted to automatic FAU detection
and estimation of continuous affect dimensions [66, 39].

2.2. Databases and Benchmarks for FAU estimation

Currently the benchmarks for FAU detection include:
(1) MMI [69] corpus, captured in strictly controlled con-
ditions (having two views, frontal and profile) and display-
ing around 75 people, (2) CK+ 7 [50] containing 123 sub-
jects recorded with faces in strictly frontal positions, (3)
GEMEP [4, 98] corpus, which once again was captured in
controlled conditions and displays only 10 actors and was
used in two challenges for FAU detection. The difference
with CK+ and MMI is that in GEMEP the actors were al-
lowed to act freely. (4) The ISL databases [108, 90, 89]
for posed FAU detection (frontal and multiview). (5) The
DISFA [56] database, which contains only 27 people whose
spontaneous facial expressions were captured in controlled
recording conditions. (6) The SEMAINE [58] corpus which
contains recordings of people interacting with a Sensitive
Artificial Listener (SAL) in controlled conditions. A subset
of the SEMAINE corpus was used in the recent FAU de-
tection competitions [96]. (7) The RU-FACS dataset which
consists of 100 subjects participating in a false opinion sce-
nario (two minutes of each of the subjects are coded with
regards to FAUs). The database contains facial images with
out-of-plane head rotations but it is still captured in con-
trolled conditions [5]. (8) UNBC-McMaster [51] database
which contains FAU annotations of 20 individuals that ex-
perience shoulder pain.

To the best of our knowledge only one database in-the-
wild has been recorded and annotated, the so-called AM-
FED dataset [57], which contains in total 242 people. The
videos have been collected by people watching a commer-
cial. Nevertheless, due to limited expressivity of the sub-
jects the majority of AUs are under-represented.

2.3. Databases and Benchmarks for Valence and
Arousal Estimation

To the best of our knowledge, the currently available
databases and benchmarks providing continuous dimen-
sional annotations in terms of valence and arousal have
been recorded under controlled conditions, though in many
cases the behaviour captured in these datasets is closer to
spontaneous, or elicited rather than posed. Relevant efforts
in literature are detailed in what follows. (a) The bench-
mark that was used in the AVEC series of competitions
[95, 79, 78, 72, 94]. The benchmark uses videos from the
SEMAINE database [58]; (b) the RECOLA benchmark [73]
which contains videos of dyadic teams that participated in a
video conference completing a task which requires collabo-
ration. Both emotion (continuous time and scale) and social

7CK+ is a super-set of the original CK database [88].



labels(discrete time and scale) are provided from internal
and external views; (c) the Belfast induced nature emotion
database [83]. The database contains recordings of mild
to moderate emotionally colored responses to a series of
laboratory-based emotion induction tasks. The recordings
have been annotated with regards to continoous affect di-
mensions.

In this paper, we present a database of 500+ videos dis-
playing spontaneous facial behaviour captured in uncon-
strained conditions.

3. Deep Learning methodologies for facial ex-
pression recognition ”in-the-wild”

In the recent EmotiW series of competitions, many
methodologies have been applied based on hand-crafted
and learnable features. For example, the baseline of the
EmotiW 2013 competition was based on using simple non-
linear features and non-linear SVMs [16]. Even top per-
forming methodologies [81, 101] applied handcrafted fea-
tures, e.g. bag of word/feature representations on Scale
Invariant Feature Transform (SIFT) features [101] or His-
togram of Oriented Gradients (HoGs) and their pyramids
[81]. Similarly, hand-crafted features (i.e., dense SIFT
and bag of words) achieved high performance in FER-2103
competition [34]. Nevertheless, in this paper we focus on
methodologies that are based on neural networks since they
achieved the best performance. The interested reader may
refer to [14, 3, 61, 33, 9, 60, 71, 40, 84] for further details.

Recently, it was shown that certain multi-layer (i.e.,
deep) neural network architectures, e.g. Deep Convolu-
tional Neural Networks (DCNNs) [77, 45, 46], when pre-
sented with large amounts of data (and a lot of computa-
tional power), can learn representations that lead to state-
of-the-art results in various very challenging computer vi-
sion tasks, such as generic object recognition and detection
[44, 26], as well as in various face analysis problems such as
face detection [105], face verification [86] and facial land-
mark localisation [[109]. Briefly a DCNN is a multi-layer
neural network architecture formed by a stack of distinct
non-linear layers that map the input signal to an output sig-
nal (usually containing class labels or scores) via a differ-
entiable function. In this paper, the input signal consists
of 2D images. The convolutional layers are the core build-
ing blocks of a DCNN. The parameters of the convolutional
layers comprise a set of learnable 2D filters. The convo-
lution between the input and the filters produce a 2D ac-
tivation map. That is, the network learns filters that are
activated when they observe some specific type of feature
at some spatial position in the input. Pooling, a type of
non-liner down-sampling, is usually applied between lay-
ers, with Max-Pooling being the most frequently used type.
The functionality of the pooling layer is to progressively re-
duce the spatial size of the representation in order to reduce

the amount of parameters and computation taking place in
the network (and also to achieve relative invariance to trans-
lation). Finally, after several convolutional and max pool-
ing layers, the high-level reasoning in the architecture is
conducted via fully connected layers. The learning of all
the parameters of the network is performed by calculating
the gradient of a differentiable loss function with respect to
all the weights in the network and updating the weights by
backward propagation of errors.

Popular DCNN architectures in computer vision in-
clude the so-called LeNet5 [46], which was used for op-
tical character recognition, the, now known as, AlexNet
which recently revolutionarised the field of object recogni-
tion/detection [44] and the winner of the 2014 ImageNet
challenge for object recognition known as GoogleLeNet
[85]. The AlexNet architecture, as adopted for expression
recognition is shown in Figure 1.

Yet another NN architecture that came to prominence
during the past decade is the family of Boltzmann Machines
(BM) [1], in general, and the Restricted Botzmann Ma-
chine (RBM [6]), in particular. A general BM is a type of
Markov Random Field (MRF) that is composed of neurons
connected in an inter-layer and intra-layer fashion. Even
though BM can be used for solving difficult combinatorial
problems, lack of efficient learning strategies steered the re-
search towards a special case of BM, the so-called RBM
8. RBMs form bipartite graphs, that is there are symmet-
ric connections between the units in the visible and hidden
layer, but does not allow intra-layer connections between
hidden units. In the mid 2000s, efficient algorithms for
training RBMs were proposed [30]. Furthermore, it was
shown how RBMs can be stacked together to form deep
architectures forming Deep Belief Networks. Efficient al-
gorithms for training DBNs in a greedy fashion have been
proposed in [29, 30]. BMs and RBMs are generative models
which are trained in an unsupervised manner, the output of
which can be used for initialising deep supervised learning
algorithms.

Due to the aforementioned challenges with respect to the
collection and annotation of facial behaviour, the majority
of available repositories contain a small number of subjects,
thus making the application of deep learning metehodolo-
gies difficult. In order to tackle this challenge, the so-called
FER-2013 database was developed and used in a Kaggle
contest. The results were presented in an ICML 2013 com-
petition [27], with the best performing methodologies based
on CNNs [87]. In particular, the winning methodology con-
sists of an one layer CNN with a linear one-vs-all Support
Vector Machine (SVM) on top 9. The CNN plus SVM ar-
chitecture was trained end-to-end, that is, the CNNs weights

8RBMs were first introduced under the name Harmonium [82]
9Similar architectures have been proposed in [111, 11, 63] for other

pattern recognition problems



Figure 1. A convolutional architecture for facial expression recognition ”in-the-wild” [87].

were learned by backpropagating the gradients from the top
layer linear SVM. Two types of SVMs were used, one that
uses the hinge loss function and one that uses the `2-SVMs.
The methodology scored around 69.4% with hinge loss
SVM and 71.2% with an `2 SVM in the public and private
leaderboard, respectively. The CNN plus SVM architecture
was trained end-to-end. That is, the CNNs weights were
learned by backpropagating the gradients from the top layer
linear SVM. Two types of SVMs were used, one that uses
the hinge loss function and one that uses the `2-SVMs. The
methodology scored around 69.4% with hinge loss SVM
and 71.2% with an `2 SVM in the public and private leader-
board, respectively.

In 2013, the first competition on facial expression recog-
nition ”in-the-wild” was organised, utilizing the recordings
of the AFEW database (the challenge was based on auto-
matic classification to seven emotional classes). The win-
ning approach was based on deep learning, and used a
DCNN architecture based on the AlexNet, the configuration
of which is shown in Figure 1 on the frame-based classifi-
cation of facial expressions on aligned facial images. The
DCNN input consists of images of size 40 × 40 that are
cropped randomly from the original 48× 48 images. These
images are flipped horizontally with a probability of 0.5. At
each epoch, the cropping and flipping were repeated and
the cropped images were different. The DCNN consisted of
3 stages with different layers. The first 2 stages included
a convolution layer followed by a max or average pool-
ing layer, then a local response normalisation layer (with
the same mapping) and the third stage contained a con-
volution layer followed by an average-pooling layer. This
stage had 128,000 units. The first stage had a max-pooling
layer whereas the second was using average-pooling. The
last stage (classification) is a fully-connected layer with 7
classes (universal expressions plus neutral) with a softmax
layer as classifier. The test error is computed on patches
cropped from centre only. The early-stopping method was
based on AFEW validation and train sets, and it was stopped
at 453 epochs. The training was performed on the FER 2013
data, while the AFEW training set is only used to train the

Figure 3. The hierarchial committee MCDNN of [10].

SVM. A frame aggregation strategy based on SVMs was
used to classify the whole video clip. The pre-processing
step included face aligned using 51 facial landmarks. Illu-
mination normalisation was also applied using a diffusion-
based approach. This architecture resulted in 35.58% clas-
sification in the test set (the baseline was 22.44% hence
over a 13% performance increase in absolute terms was re-
ported). 10

One of the top performing submissions in the most re-
cent EmotiW competition [18] was proposed in [64], where
a transfer learning approach for DCNN architectures was
proposed. The proposed methodology uses two different
DCNN architectures that were pre-trained for the task of
generic object detection (i.e., AlexNet [44] and VGG-CNN-
M-2048 [8]). The DCNNs were trained on the ImageNet
dataset. The first-stage fine-tuning was applied using the
FER 2013 dataset [27]. A second-stage fine-tuning was ap-
plied based only on the training part of the EmotiW dataset,
adapting the network weights to the characteristics of the
SFEW sub-challenge. Both architectures were found to
improve their performance through each of the fine-tuning
stages, while the cascade fine-tuning combination was the
among the top performing. A figure of the architectures is
shown in Figure 2. The best architecture achieved a 55.6%

10In the same paper other architectures were proposed for expression
recognition using audio information and the final submission included a
system that fuses audio, mouth motion and general image features.



Figure 2. Schematic diagram of the different fine-tuning combinations used in [64].

recognition rate, again more than 15% (in absolute terms)
better than the baseline.

An interesting observation arising from the work of [64],
is that a DCNN trained on sufficiently large auxiliary facial
expression datasets alone can be used to obtain much bet-
ter than baseline results, without using any data from the
EmotiW dataste. Only marginal improvement is achieved
by using the EmotiW training dataset.

Motivated by the success of the so-called multi-column
DCNN (MCDNN) architecture [10] in various visual clas-
sification tasks, the MCDNN was applied for facial ex-
pression recognition ”in-the-wild” in [41]. The standard
MCDNN is a group of DCNNs with a simple averaging
decision rule in a single structure level. Various network
architectures, input normalisation and random weight ini-
tialisation were tested. Furthermore, external data were in-
corporated for training the DCNNs. Finally, in order to
train more diverse decisions, an ensemble rule based on an
exponentially-weighted decision fusion was applied. The
system architecture is depicted in Figure 3. The best ar-
chitecture achieved a recognition rate of around 57% which
was the highest reported in EmotiW 2015.

An interesting system for facial expression recognition
”in-the-wild” was proposed in [47]. That is, the system
combined Local Binary Patterns (LBP) [2] features with
DCNNs. LBPs exhibit a certain robustness to illumination
variability [2]. The LBP variant proposed in [47] produces
values in a metric space which can be processed by DCNN
models. Transformed images from the CASIA webface col-
lection are used to train an ensemble of DCNN models us-
ing different network architectures and applied to different
representations. The DCNNs were afterwards fine-tuned
on facial images labelled with expressions. The particular
methodology achieved a 15.36% improvement over base-
line scores in SFEW for the EmotiW 2015 competition (ac-
tual recognition rate around 54%).

The majority of deep learning techniques applied for
facial expression recognition ”in-the-wild” revolve around
learning static discriminative templates via DCNNs and us-
ing score aggregation for video classification to universal

expressions [38]. Recently, there has been a significant in-
crease in the application of the so-called Recurrent Neu-
ral Networks (RNN) [77], a neural-network based trainable
variant of a non-linear dynamical system, in which con-
nections between units form a directed cycle. While the
temporal modelling properties of RNNs are beneficial to
many real-world tasks, a typical problem that RNNs face
when including many layers is the so-called vanishing gra-
dient problem (i.e., the error signal explonetially decreases
with the number of layers, hence the front layers train very
slowly). An instance of RNNs coined the Long Short Term
Memory (LSTM) networks [31] has been receiving increas-
ing attention, mostly due to the fact that such problems
are alleviated. In more detail, all RNNs have the form of
a chain of repeating neural network modules. In standard
RNNs, this repeating module will have a very simple struc-
ture, such as a single hyperbolic tangent layer. LSTM NNs
also have this chain like structure, but the repeating module
has a different structure. Instead of having a single neural
network layer, there are four, interacting in a very special
way. This special structure of LSTM NNs makes them more
suitable for utilization in deep learning architectures (i.e.,
do not suffer from the vanishing gradient problem). In [21]
the output of the DCNN was fed to an RNN for video-based
expression recognition ”in-the-wild”. The DCNN and RNN
layers were trained separately leading to recognition rate of
53%. In [36] similar architectures were tested in the data of
the FERA-2105 and AV+EC 2015 challenges. Recently, it
was shown that end-to-end training of DCNN+RNN archi-
tectures lead to state-of-the-art performance in various tasks
[92, 91]. Nevertheless, it could be challenging to train such
architectures with the currently available samples.

Inspired by the so-called GoogleLeNet network [85] a
DCNN with ”inception” layers was proposed in [62] for fa-
cial expression recognition. The idea of ”inception” lay-
ers is that it is possible to approximate a sparse structure
with spatially repeated dense components and using di-
mension reduction to keep the computational complexity in
bounds, but only when required [85]. The DCNN proposed
in [62] consists of two convolutional layers each followed



Figure 4. AU DCNN architecture proposed in [48].

Figure 5. Example frames extracted from the videos annotated with regards to valence and arousal.

by max pooling and then four ”Inception” layers. The pa-
per presents comprehensive experiments on many publicly
available facial expression databases including SFEW, and
FER2013. The results of the proposed architecture are com-
parable to or better than the state-of-the-art methods.

In [48], a so-called AU-aware Deep Network (AUDN)
for facial expression recognition was proposed. In partic-
ular, the network exploits the fact that facial expressions
can be decomposed to FAU. The AUDN comprises of three
modules. The first module consists of a convolution layer
plus max-pooling layer. The second module is an AU-aware
receptive field layer which simulates the combination of
AUs. The last module is constructed by a multilayer RBM
to learn hierarchical features, which are then concatenated
for expression recognition. The method has been applied on
a number of facial expression databases, including SFEW
were an improvement of about 6% over the baseline was re-
ported. The features from this architecture were used in the
Emotiw entry [49].

4. The Proposed Aff-Wild Database(s)
As detailed above, past research on ”in-the-wild” fa-

cial behaviour analysis revolves around the recognition of

seven discrete categories. In this work, we present the ”in-
the-wild” databases we collected for the task of estimating
continuous emotion dimensions (in terms of valence and
arousal) as well as FAU detection.

4.1. Continuous Emotion Annotations

We have collected more than 500 videos from YouTube,
capturing subjects displaying a number of spontaneous
emotions. The collected videos display subjects that (a) re-
act while watching a particular video (e.g., an unexpected
plot twist of a movie or series, a trailer of a highly antici-
pated movie or a gruesome video) by displaying positive or
negative emotions (or even both), (b) react while perform-
ing an activity (e.g., riding a rolling coaster), (c) react on a
practical joke or on positive surprises (e.g., receiving a gift).
Some sample stills from the collected dataset can be found
in Figure 5.

In this first stage of development regarding our database,
the videos have been annotated by three human raters, uti-
lizing a joystick-based tool for annotation (similarly to the
interest annotations obtained for [53]). Although in the past,
continuous emotions have been mostly annotated with the
FeelTrace tool using a regular mouse [13, 58], the joystick-



Figure 6. Examples of images annotated with regards to FAUs.

based annotation employed provides further control over
the annotation process, with user-defined dead-zones, as
well as ensuring that the stick returns to the neutral position
upon release. We note that currently, the annotators have
rated the videos with respect to the dimensions of valence
and arousal, while in case of multiple subjects appearing in
a single video, the annotation process was repeated indepen-
dently for each of the subjects. Finally, we note that issues
of reliability regarding annotations for continuous emotion
dimensions have been raised, a significant issue since the
ground-truth inferred from fusing multiple, imperfect an-
notations is crucial to the appropriate training of machine
learning methodologies. To this end, research has been con-
ducted towards alleviating such problems (c.f., [55, 54]. We
aim to utilize such more informed methods in an upcoming
challenge based on this dataset.

4.2. FAUs

We have also collected a database of 10,000+ ”in-the-
wild” facial images of more than 2,000 individuals using
Google image. We performed a tag based search using
emotion-related keywords as ”feeling, anger, hysteria, sor-
row, fear, pain, surprise, joy, sadness, disgust, love, wrath,
contempt” etc.

While these lines were written, another similar database
is presented in [7] . The facial images have been annotated
with regards to the following FAUs 1, 2, 4, 5, 9, 10, 12,15,
16,17,18, 20, 23 ,24, 25, 26, by a trained FAU coder. Exam-
ple images are shown in Figure 6. We aim to use the newly
collected data for a challenge on facial behaviour ”in-the-
wild”.

5. Conclusions and Discussion
For various facial analysis tasks such as face detec-

tion and facial landmark localisation, many ”in-the-wild”
databases and benchmarks have been proposed and de-
veloped. Furthermore, currently developed methodologies
show very good performance when applied on ”in-the-wild”

data. Until recently, the databases used for Automatic Fa-
cial Behaviour Analysis (AFBA) were collected in con-
trolled recording conditions and usually under a restricted
scenario. The majority of the techniques currently ap-
plied for AFBA are largely based on statistical machine
learning methodologies. Hence, their performance depends
strongly on the amount of annotated facial behaviour. Cur-
rently, databases containing posed and spontaneous facial
behaviour are collected ”in-the-wild”. It is highly antici-
pated that the availability of data along with recent advances
in deep learning will improve the performance of certain
AFBA tasks, such as facial action unit detection, signifi-
cantly. Furthermore, the availability of a large amount of
annotated ”in-the-wild” data will make the training of end-
to-end techniques (that both learn features and model non-
linear dynamics of behaviour, e.g. DCNN plus RNN). Nev-
ertheless, the analysis of human facial behaviour is a very
complex and challenging problem, and it’s interpretation
and mapping to emotions depends on the context, on top of
being, in many cases, person specific. Hence, it is inevitable
that certain research hypothesis will continue to be tested in
controlled recording conditions and under a well designed
scenario. Finally, we would like to note that video sharing
web-sites, such as Youtube, provide videos of elicited facial
behaviour that would be challenging to collect in an aca-
demic environment (i.e., it would be challenging to secure
ethical approval for such data collection). Hence, we would
also like to raise the question: what kind of ”in-the-wild”
data can we use?
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