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Abstract—Images of facial expressions are often captured
from various views as a result of either head movements or
variable camera position. Existing methods for multi-view and/or
view-invariant facial expression recognition typically perform
classification of the observed expression by using either classifiers
learned separately for each view or a single classifier learned for
all views. However, these approaches ignore the fact that different
views of a facial expression are just different manifestations of
the same facial expression. By accounting for this redundancy,
we can design more effective classifiers for the target task. To
this end, we propose a Discriminative Shared Gaussian Process
Latent Variable Model (DS-GPLVM) for multi-view and view-
invariant classification of facial expressions from multiple views.
In this model, we first learn a discriminative manifold shared by
multiple views of a facial expression. Subsequently, we perform
facial expression classification in the expression manifold. Finally,
classification of an observed facial expression is carried out
either in the view-invariant manner (using only a single view
of the expression) or in the multi-view manner (using multiple
views of the expression). The proposed model can also be used
to perform fusion of different facial features in a principled
manner. We validate the proposed DS-GPLVM on both posed and
spontaneously displayed facial expressions from three publicly
available datasets (MultiPIE, LFPW, and SFEW). We show
that this model outperforms the state-of-the-art methods for
multi-view and view-invariant facial expression classification,
and several state-of-the-art methods for multi-view learning and
feature fusion.

Index Terms—view-invariant, multi-view learning, facial ex-
pression recognition, Gaussian Processes.

I. INTRODUCTION

FACIAL expression recognition (FER) has attracted signif-
icant research attention because of its usefulness in many

applications, such as human-computer interaction, security and
analysis of social interactions, among others [1], [2]. Most
existing methods deal with imagery in which the depicted
persons are relatively still and exhibit posed expressions in a
nearly frontal pose [3]. However, many real-world applications
relate to spontaneous interactions (e.g., meeting summariza-
tion, political debates analysis, etc.), in which people tend to
move their head while being recorded. Furthermore, depending
on the camera position, facial images can be taken from
multiple views. For these reasons, there is an ever growing
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need for automated systems that can accurately perform multi-
view and view-invariant facial expression recognition.

The main challenge here is to perform decoupling of the
rigid facial changes due to the head-pose and non-rigid facial
changes due to the expression, as they are non-linearly coupled
in 2D images [4]. Another challenge is how to effectively
exploit the information from multiple views (or different facial
features) in order to facilitate the expression classification.
Thus, accounting for the fact that each view of a facial expres-
sion is just a different manifestation of the same underlying
facial expression related content is expected to result in more
effective classifiers for the target task.

To date, only a few works that deal with multi-view and/or
view-invariant FER have been proposed. These focus mainly
on recognition of facial expressions of the six basic emotions
[5]. Based on how they deal with variation in head-pose (view)
and expressions in 2D images, they can be divided into: (i)
methods that perform view-invariant, i.e., per-view, FER ([6],
[7], [8]), (ii) methods that perform the view normalization
before performing FER ([9], [10]), and (iii) methods that learn
a single classifier using data from multiple views ([11], [12]).
However, the main downside of these approaches is that they
fail to explicitly model relationships between different views.
This, in turn, results in classifiers that are less robust for the
target task, but also more complex in the case of large number
of views/expressions. All this can efficiently be ameliorated
using the modeling strategy of multi-view leaning methods
(e.g., [13], [14]).

In this work, we introduce the Discriminative Shared Gaus-
sian Process Latent Variable Model (DS-GPLVM) for multi-
view and view-invariant FER. We adopt the multi-view learn-
ing strategy in order to represent multi-view facial expression
data on a common expression manifold. To this end, we use
the notion of Shared GPs [15], [16], the generative framework
for discovering a non-linear subspace shared across different
observation spaces (e.g., the facial views or feature representa-
tions). Since our ultimate goal is the expression classification,
we place a discriminative prior, informed by the expression
labels, over the manifold. The classification of an observed
expression is then performed in the learned manifold using the
kNN classifier. The proposed model is a generalization of the
discriminative GP Latent Variable Models (D-GPLVM) [17]
for non-linear dimensionality reduction and classification of
data from a single observation space. The learning of DS-
GPLVM is carried out using the expression data from multiple
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Fig. 1. The overview of the proposed DS-GPLVM. The discriminative
shared manifold X of facial expressions captured at different views (Yi,
i = 1 . . . V ) is learned using the framework of shared GPs (GPi). The class
separation in the shared manifold is enforced by the discriminative shared prior
p(X), informed by the data labels. During inference, the facial images from
different views are projected onto the shared manifold by using the kernel-
based regression, learned for each view separately (g(Yi)) for view-invariant
approach, or simultaneously from multiple views for multi-view approach. The
classification of the query image is then performed using the kNN classifier.

views. Classification of an observed facial expression, how-
ever, can be carried out either in the view-invariant manner (in
case only a single view of the observed expression is available
at runtime) or in the multi-view manner (in case multiple
views of the observed expression are available at runtime).
The proposed model can also perform fusion of different facial
features in order to improve view-invariant facial expression
classification. In order to keep the model computationally
tractable in the presence of large number of views, we propose
a learning algorithm that splits the learning into different sub-
problems (for each view), and then employs the Alternating
Direction Method (ADM) [18] to optimize each sub-problem
separately. The outline of the proposed approach is given in
Fig. 1.

The contributions of this work can be summarized as
follows.

1) We propose the DS-GPLVM for multi-view and/or view-
invariant FER. The proposed model is a generalization of
existing discriminative dimensionality reduction meth-
ods from single to multiple observation spaces. This
is, also, the first approach that exploits the multi-view
learning strategy in the context of multi-view FER.

2) We propose a novel learning algorithm for efficient
optimization of the model parameters that is based on
the ADM strategy. This allows us to solve the model
parameters’ optimization problem for each-view, as a
separate sub-problem, to perform parameter optimiza-
tion for each view separately, resulting in the model
being computationally efficient even in the case of a
large number of views.

3) The proposed DS-GPLVM is applicable to a variety of
tasks (multi-view classification, multiple-feature fusion,
pose-wise classification, etc.). Compared to state-of-
the-art methods for multi-view learning, which employ
linear techniques to align different views on a manifold,
the DS-GPLVM is a kernel-based method, being able to
discover non-linear correlations between different views.

In contrast to state-of-the-art methods for view-invariant
and/or multi-view FER, the DS-GPLVM exploits de-
pendencies between different views, improving the FER
performance.

Note that an earlier version of this work appeared in [19].
There are two major extensions introduced: 1) in [19], the
projections of data from different views to the shared space
are learned independently of the manifold, while in the DS-
GPLVM proposed here they are learned simultaneously. We
show in our experiments that this results in improved recog-
nition of the target facial expressions. 2) Our previous work
in [19] is capable only of view-invariant FER, while here we
generalize it to the multi-view and feature fusion settings.

Finally, we use the GPs as a basis for our (non-parametric)
multi-view learning framework because, in contrast to majority
of parametric models, it allows us to capture subtle details
of facial expressions and preserve them on the expression
manifold that is largely robust to the view/subject differences.
Furthermore, due to the probabilistic nature of GPs, different
types of priors can seamlessly be integrated into the model for
multi-view learning (in our case, discriminative priors over the
expression manifold). Last but not least, GPs are known for
their ability to generalize quite well even from a small number
of training data (on the order of several hundreds) [17]. While
this may not seem a big advantage when data are abundant, it is
of crucial importance for multi-view FER due to the scarcity of
existing datasets containing annotated expressions and poses.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of the related work. In Section III
we present the theoretical background of the base GPLVM and
the D-GPLVM. In Section IV, we introduce the proposed Dis-
criminative Shared Gaussian Process Latent Variable Model
for multi-view FER. Section V describes the conducted exper-
iments and shows the results obtained. Finally, in Section VI
we conclude the paper.

II. RELATED WORK

A. Multi-view and View-invariant FER

As mentioned above, recent advances toward multi-view fa-
cial expression recogniton can be divided into three groups. A
representative of the first group is [6], where the authors used
Local Binary Patterns (LBP) [20] (and its variants) to perform
a two-step facial expression classification. In the first step, they
select the closest head-pose to the (discrete) training pose/view
by using the Support Vectors Machine (SVM) [21] classifier.
Once the view is known, they apply the view-specific SVM
to perform facial-expression classification. In [7], different
appearance features, e.g., Scale Invariant Feature Transform
(SIFT) [22], Histogram of Oriented Gradients (HOG) [23],
LBP, are extracted around the locations of characteristic facial
points, and used to train various pose-specific classifiers. Simi-
larly, [8] used per-view-trained 2D Active Appearance Models
(AAMs) [24] to locate a set of characteristic facial points, and
extract LBP, SIFT and Discrete Cosine Transform (DCT) [25]
features around them. By learning separate classifiers for each
view, these approaches ignore correlations across different
views, which makes them suboptimal for the target task. As
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shown by [6], [7], classification of some facial expressions
can be performed better in 15◦ view than in the frontal
view, for instance. Hence, the data from more discriminative
views for expression classification can be used during learning
to improve the underperforming expression classification in
the other views. In the proposed DS-GPLVM, we do so by
performing the classification in a discriminative feature space
shared across views.

The approaches in the second group ([9], [10]) first per-
form view normalization, and then apply facial expression
classification in the canonical view, usually chosen to be
the frontal. For the view normalization, the authors propose
the Coupled GP (CGP) regression model that exploits pair-
wise correlations between the views in order to learn robust
mappings for projecting facial features (i.e., a set of facial
points) from non-frontal to the frontal view. A limitation of
this approach is that the view normalization and learning of
the expression classifier are done independently, thus bounding
the accuracy of the expression classification by that of the
view normalization. Also, since the view normalization is
performed directly in the observed space, errors in the view
normalization step can adversely affect the classification. This
is even more so due to the high-dimensional noise affecting
the view normalized features. Furthermore, the canonical view
has to be selected in advance. This can further limit the
accuracy of the expression classification as such view may not
be the most discriminative for classification of certain facial
expression categories, as mentioned above. These limitations
are addressed by the proposed DS-GPLVM, which avoids the
need for a canonical view as it performs the classification on
a shared manifold of facial expressions from multiple views,
the topology of which is optimized for classification of the
target expressions.

In the third group of methods ([11], [12]), a single classifier
is learned using the expression data from multiple views.
Specifically, [11] used variants of dense SIFT [26] features
extracted from multi-view facial expression images. Likewise,
[12] used the Generic Sparse Coding scheme ([27]) to learn
a dictionary that sparsely encodes the SIFT features extracted
from facial images in different views. However, because of
high variation in appearance of facial expressions in differ-
ent views and of different subjects, the complexity of the
learned classifier increases significantly with the number of
views/expressions. This can easily lead to overfitting, and, in
turn, poor generalization of the classifier to unseen data. On
the other hand, the complexity of the classifier in DS-GPLVM
is reduced by accounting for underlying structure of the data
(e.g., the correspondences between the views) via the shared
manifold.

B. Multi-view Learning

In what follows, we make a short overview of the most
popular multi-view learning methods that can be applied to
the multi-view FER. A common approach in multi-view clas-
sification is to learn the view-specific projection using paired
samples from different views, and to project those samples
onto a common latent space, followed by their classification.

The paired samples usually refer to samples that come from the
same subject (e.g., face images of a person in two different
views). The goal here is to learn a latent space where the
paired samples are placed close if they come from the same
class/subject, and far apart otherwise.

A widely used unsupervised approach to learn such latent
spaces is Canonical Correlation Analysis (CCA) [28] and its
non-linear variant Kernel CCA (KCCA) [29]. The goal of
these methods is to find projection to a common subspace
where the correlation between the low-dimensional embed-
dings is maximized. These methods can handle data only in
the pair-wise manner (thus, only two views at the time), which
makes them unfit for multi-view classification problems with
more than two views. A generalization of CCA to the multi-
view setting, Multiview CCA (MCCA), has been proposed
in [30]. The main idea of MCCA is to find a common
subspace where the correlation between the low-dimensional
embeddings of any two views is maximized. Apart from
CCA-based methods, there are a few works that extend the
single-view subspace learning to the multi-view case. [31] is
a representative of this approach. It is a spectral clustering
approach for the multi-view setting. In particular, the spectral
embedding from one view is used to constrain the data of
the other view. Note that the methods mentioned above are
proposed for unsupervised learning. Thus, in the context of
the multi-view FER, they are not expected to perform well
as the view alignment by these methods is not optimized for
classification.

Another group of methods performs supervised multi-view
analysis. For instance, Multi-view Fisher Discriminant Anal-
ysis (MFDA) [32] learns classifiers in different views, by
maximizing the agreement between the predicted labels of
these classifiers. However, MFDA can only be used for binary
problems. In [14], the authors extended Linear Discriminant
Analysis (LDA) [33] to the multiview case, named Multi-
view Discriminant Analysis (MvDA). This model maximizes
the between-class and minimizes the within-class variations,
across all the views, in the common subspace. Generalized
Multiview Analysis (GMA) [13] has also been proposed for
extending dimensionality reduction techniques for single views
to multiple views. An instance of GMA, the Generalized Mul-
tiview LDA (GMLDA), finds a set of projections in each view
that attempt to separate the content of different classes and
unite different views of the same class in a common subspace.
Another example of GMA is the GM Locality Preserving
Projections (GMLPP), that extends the LPP [34] model, which
can be used to find a discriminative data manifold using
the labels. Although effective in some tasks, these models
are all based on linear projection functions. This can limit
their performance when dealing with high-dimensional input
features (i.e., appearance based facial features), as well as
their ability to successfully unravel non-linear manifold(s) of
multiple views. All this is addressed by the proposed DS-
GPLVM model.
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III. THEORETICAL BACKGROUND: GAUSSIAN PROCESS
LATENT VARIABLE MODELS (GPLVM)

In this section, we first give a brief overview of the
GPLVM [35] for learning a non-linear low-dimensional man-
ifold of a single observation space (e.g., the facial expression
data from a single view). We then describe two types of
discriminative priors for the manifold, which are used to obtain
the discriminative GPLVMs [17], [36] for data classification.

A. GPLVM

The GPLVM [35] is a probabilistic model for non-linear
dimensionality reduction. It learns a low dimensional manifold
X = [x1, . . . ,xN ]T ∈ RN×q , with q � D, corresponding to
the high-dimensional observation space Y = [y1, . . . ,yN ]T ∈
RN×D. The learning of the manifold and its mapping to the
observation space is modeled using the framework of Gaussian
Processes (GP) [37]. Specifically, by using the covariance
function k(xi,xj) of GPs, the likelihood of the observed data,
given the manifold, is defined as

p(Y|X, θ) = 1√
(2π)ND|K|D

exp(−1

2
tr(K−1YYT )), (1)

where K is the kernel matrix, the elements of which are
obtained by applying the covariance function k(xi,xj), to
each training data-pair (i, j) ∈ {1 . . . N}. The covariance
function is usually chosen as the sum of the Radial Basis
Function (RBF) kernel, bias and noise terms

k(xi,xj) = θ1 exp(−
θ2
2
‖xi − xj‖2) + θ3 +

δi,j
θ4
, (2)

where δi,j is the Kronecker delta function, and θ =
(θ1, θ2, θ3, θ4) are the kernel parameters [37]. The manifold
X is then obtained as the mean of the posterior distribution

p(X, θ|Y) ∝ p(Y|X, θ)p(X) (3)

where the spherical Gaussian prior is usually placed over
the manifold. This prior prevents the GPLVM from placing
latent points infinitely far apart, i.e. latent positions close to
the origin are preferred [17]. The learning of the manifold is
accomplished by minimizing the negative log-likelihood of the
posterior in Eq. (3), w.r.t. the latent coordinates in X, which
is given by

L =
D

2
ln |K|+ 1

2
tr(K−1YYT )− log(p(X)). (4)

To enforce the latent positions to be a smooth function of
the data space, [38] proposed to back-constrain the GPLVM.
This ensures that the points that are close in the data space are
also close on the manifold. More importantly, these constraints
allow us to learn the inverse mappings, which are used during
the inference step to map the query points from the data
space onto the manifold. Specifically, each datum yi is back-
constrained so that it satisfies

xij = gj(yi;Aj) =

N∑
m=1

amjkbc(yi,ym), (5)

where xij is the j-th dimension of xi ∈ Rq , gj is the kernel
based regression over Y, and A is the matrix that holds the

parameters for the regression. Different projection vectors Aj

are used for each feature dimension in order to be able to
learn different weights for each feature dimension, as in the
standard linear kernel regression. To obtain a smooth inverse
mapping in the back-constraints, we use the RBF kernel

kbc(yi,ym) = exp(−γ
2
‖yi − ym‖2), (6)

where γ is the inverse width parameter. With such defined
back constraints, the model learning is accomplished either by
minimizing the likelihood in Eq.(4) s.t. the back constraints,
or by plugging the expression in Eq.(5) into the likelihood
function, and solving the unconstrained optimization problem.

B. Discriminative GPLVM (D-GPLVM)

The GPLVM is a generative model of the data, where a sim-
ple spherical Gaussian prior is placed over the manifold [17].
However, this model can be adapted for classification by using
a discriminative prior that encourages the latent positions of
the examples of the same class to be close and those of
different classes to be far on the manifold. This has firstly been
explored in [17], where a prior based on Linear Discriminant
Analysis (LDA) is proposed. LDA tries to maximize between-
class separability and minimize within-class variability by
maximizing

J(X) = tr(S−1w Sb), (7)

where Sw and Sb are within- and between-class matrices,
respectively, defined as

Sw =

L∑
i=1

Ni
N

[
1

Ni

Ni∑
k=1

(x
(i)
k −Mi)(x

(i)
k −Mi)

T

]
, (8)

Sb =

L∑
i=1

Ni
N

(Mi −M0)(Mi −M0)
T . (9)

Here, Ni training points from class i are stored in X(i) =

[x
(i)
1 , . . . , x

(i)
Ni

], Mi is the mean of examples of class i, and
M0 is the mean of examples of all the classes. The energy
function in Eq. (7) is used to define discriminative prior over
the manifold as

p(X) =
1

Zd
exp

{
− 1

σ2
d

J−1
}
, (10)

where Zd is a normalization constant, and σd represents a
global scaling of the prior. Then, the Discriminative GPLVM
(D-GPLVM) [17] is obtained by replacing the Gaussian prior
in Eq. (3) with the prior in Eq. (10). The authors also proposed
a version of the prior based on Generalized Discriminant
Analysis (GDA).

A more general prior based on the notion of the graph
Laplacian matrix [39] has been used to derive a discrimina-
tive GPLVM model named Gaussian Process Latent Random
Field (GPLRF) [36]. To define the prior, an undirected graph
G = (V, E) is first constructed, where V = {V1, V2, . . . , VN}
is the node set, with node Vi corresponding to a training
example xi, and E = {(Vi, Vj)i,j=1...N |i 6= j,xi and
xj belong to the same class} is the edge set. By pairing each
node with the random vector X∗k = (X1k,X2k, . . . ,XNk)

T
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(for k = 1, 2, . . . , q), we obtain a Gaussian Markov Random
Field (GMRF) [40] w.r.t. graph G. Next, each edge in the graph
is associated with a weight (in this case, 1), and the weights
are stored in the weight matrix defined as

Wij =

{
1 if xi and xj , i 6= j, belong to the same class
0 otherwise.

(11)
The graph Laplacian matrix is then defined as L = D −W,
where D is a diagonal matrix with Dii =

∑
j Wij . Finally,

using L, the discriminative GMRF prior is defined as

p(X) =

q∏
k=1

p(X∗k) =
1

Zq
exp

[
−β
2

tr(XTLX)

]
, (12)

where Zq is a normalization constant and β > 0 is a scaling
parameter. The term tr(XTLX) in the discriminative prior in
Eq. (12) reflects the sum of the distances between the latent
positions of the examples from the same class. Thus, the latent
positions from the same class that are closer will be given
higher probability. This prior can be seen as a more general
version of the LDA prior in Eq. (10), without the restriction on
the size of the manifold. Also, the weights used to compute L
can be defined using not only the labels, but also the observed
data, resulting in additional smoothing constraints. Finally, the
cost function of the GPLRF model is obtained by plugging the
prior in Eq. (12) into Eq. (4).

IV. DISCRIMINATIVE SHARED GPLVM (DS-GPLVM)

The D-GPLVM from Sec. III-B is designed for a single ob-
servation space. In this section, we generalize the D-GPLVM
so that it can simultaneously learn a discriminative manifold
of multiple observation spaces. This is attained by using the
framework of Shared GPs ([15], [16]). In our approach, we
assume that the multiple observation spaces (e.g., different
views of facial expressions) are dependent, and that they can be
aligned on a discriminative shared manifold. In what follows,
we first introduce the Shared GP model for alignment (fusion)
of multiple observation spaces in the shared manifold, and
define the discriminative shared-space prior for the manifold.
We then describe learning and inference in the proposed
model.

A. Shared-space GPLVM

Given a set of corresponding features Y =
{Y(1), . . . ,Y(V )}, extracted from V views, instead of
learning independent manifold of data from each view as
done in GPLVM, we learn a single manifold X that is
assumed to be shared among the views. Within the Shared
GPs framework, the joint likelihood of Y, given the shared
manifold X, is factorized as follows

p(Y|X, θs) = p(Y1|X, θ(1)) . . . p(YV |X, θ(V )), (13)

where θs = {θ(1), . . . , θ(V )} are the kernel parameters for
each observation space, and the kernel function is defined as
in Eq. (2). It is assumed here that each observation space
is generated from the shared manifold via separate GP. The
shared latent space X is then found by minimizing the joint

negative log-likelihood penalized with the prior placed over
the shared manifold, and is given by

Ls =
∑
v

L(v) − log(p(X)) (14)

where L(v) is the negative log-likelihood of data from view
v = 1, . . . , V , and is given by

L(v) =
D

2
ln |K(v)|+1

2
tr[(K(v))−1Y(v)(Y(v))T ]+

ND

2
ln 2π,

(15)
where K(v) is the kernel matrix associated with the input
data Y(v). In Eq. (15), the spherical Gaussian prior is placed
over the manifold. To obtain a shared manifold for multi-
view classification, in the following we define a discriminative
shared-space prior.

B. Discriminative Shared-space Prior

To define discriminative shared-space prior for multi-view
learning, we generalize the GMRF prior for the single view
given by Eq. (11). To this end, we first construct the view-
specific weight matrices W(v), v = 1, . . . , V . Instead of using
only the class labels, we also use the data-dependent weights.
Specifically, the elements of the weight matrix are obtained
by applying the RBF kernel to the data from each view as

W
(v)
ij =

exp

(
−‖y

(v)
i −y

(v)
j ‖

2

t(v)

)
if i 6= j and ci = cj ,

0 otherwise.
(16)

where y
(v)
i is the i-th sample (row) in Y(v), ci is the class

label, and t(v) is the kernel width which is set to the mean
squared distance between the training inputs as in [41]. Then,
the graph Laplacian for view v is L(v) = D(v)−W(v), where
D(v) is a diagonal matrix with D

(v)
ii =

∑
j W

(v)
ij . Because

the graph Laplacians from different views vary in their scale,
we use the normalized graph Laplacian, defined as

L
(v)
N = (D(v))−1/2L(v)(D(v))−1/2, (17)

Subsequently, we define the (regularized) joint Laplacian as

L̃ = L
(1)
N + L

(2)
N + . . .+ L

(V )
N + ξI =

∑
v

L
(v)
N + ξI, (18)

with I the identity matrix, and ξ a regularization parameter
(typically set to a small value e.g., 10−4), which ensures that
L̃ is positive-definite [42]. This, in turn, allows us to define
the discriminative shared-space prior as

p(X) =

V∏
v=1

p(X|Y(v))
1
V =

1

V · Zq
exp

[
−β
2
tr(XT L̃X)

]
.

(19)
Here, Zq is a normalization constant and β > 0 is a scaling
parameter. The discriminative shared-space prior in (19) aims
at maximizing the class separation in the manifold learned
from data from all the views, and it can be regarded as a
multi-view kernel extension of the parametric LDA/LPP prior
defined for a single view in [17], [36]. Using this prior, the
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negative log-likelihood of the proposed DS-GPLVM model is
given by

Ls(X) =
∑
v

L(v) +
β

2
tr(XT L̃X), (20)

where L(v) is defined by Eq. (15).

C. Back-constraints

In the GPLVM from Sec.III-A, the back-constraints, defined
by the inverse mappings, ensure that topology of the output
space is preserved on the manifold. In DS-GPLVM, this is
achieved by the discriminative shared-space prior since the
weight matrix used to define the prior is built from input
data. However, to perform inference with DS-GPLVM we still
need to learn the inverse mappings that project data from
different views onto the shared manifold. For this, we consider
two scenarios. In the first, we define v sets of constraints
(one for each view), which are enforced by separate inverse
mappings from each view to the shared space. In the second,
we define one set of constraints (for all the views), and which
are enforced by a single inverse mapping from all the views
to the shared space. We refer to the former as independent
back-projections (IBP), and the latter as single back-projection
(SBP). These are given by
• IBP from each view v = 1, . . . , V

X = g(Y(v),A(v)) = K
(v)
bc A(v). (21)

• SBP from V views

X = g(Y,A) =

(
V∑
v=1

wvK
(v)
bc

)
A = K̃A, (22)

where g(·, ·) represents the mapping function(s) learned using
the kernel regression. The elements of K

(v)
bc are given by

Eq. (6) and wv is the (scalar) weight for view v.
Note that for a single view, the model can be re-

parametrized to obtain an unconstrained optimization problem
(see Sec. III-A). Yet, in the case of multiple views, this
is not possible as it would result in different X for each
view. Therefore, we need to solve a constrained optimization
problem, the complexity of which increases with the number
of views. To efficiently solve this, in the following section
we propose an iterative learning algorithm for simultaneous
learning of the shared space and inverse mappings in the
proposed model.

D. DS-GPLVM: Learning and Inference

Learning of the model parameters X, θs and A, consists
of minimizing the negative log-likelihood given by Eq. (20)
subject to either the IBP or SBP constraints. Formally, we aim
to solve the following minimization problem:

argmin
X,θs,A

Ls(X) +R(g) (23)

s.t.

{
IBP (X,A(v)) , X−K

(v)
bc A(v) = 0 , v = 1, . . . , V

SBP (X,A) , X− K̃A = 0 ,
∑V
v=1 wv = 1, wv ≥ 0,

where R(g) is a regularization term. To obtain the function
form for R(g), we first derive the solution of the regularized
kernel regression from the mapping function of the infinite-
dimensional feature space g(xi) = φ(xi)

Tw, as in [43]. The
solution to this problem is of the form of w =

∑N
i=1 aiφ(xi).

Hence, by applying the Representer Theorem [44] on this
space, and by using the Tikhonov regularization for the
parameters w, we arrive at the optimal functional form for
R(g) as{∑

λ(v)

2 r(g(v)), r(g(v)) = tr((A(v))TK
(v)
bc A(v)), for IBP

λ
2 tr(AT K̃A) , for SBP

(24)
IBP: Parameter Optimization. We first present the learning
procedure for the more general case involving the IBP con-
straints, and then provide the solution for the SBP case. From
Eq. (23), we see that the back-mapping from each view is
represented by an independent set of linear constraints. We
exploit this to find the model parameters by iteratively solving
a set of sub-problems. To this end, we first incorporate the
IBP constraints into the regularized log-likelihood in Eq. (23)
by using the Lagrange multipliers. As a result, we obtain the
following augmented Lagrangian function:

LIBP (X, {A(v),Λ(v)}Vv=1) = Ls(X) +R(g) +
V∑
v=1

〈Λ(v), IBP (X,A(v))〉+ µ

2

V∑
v=1

‖IBP (X,A(v))‖2F ,

(25)

where Λ(v) are the Lagrange multipliers for view v, 〈·, ·〉 is the
inner product, and µ > 0 is the penalty parameter. We can see
from Eq. (25) that the linear constraint has been incorporated
into the cost function as a quadratic penalty term without
affecting the solution to the problem. The role of the Lagrange
multipliers (inner product term) is to achieve efficiency in
obtaining the solution without the requirement of sequentially
increasing the penalty parameter to infinity [18]. The standard
approach is to minimize the objective in Eq. (25) w.r.t. all the
model’s parameters simultaneously. Yet, this is impractical,
as the fact that the objective function is separable, is not
exploited to simplify the problem. To remedy this, we employ
the Alternating Direction Method (ADM) [18] to decompose
the minimization into subproblems, each of which can be
solved separately w.r.t. to a subset of the model parameters.
More specifically, we split the learning of the parameters of
the shared space and the back-mappings from each view, by
defining the iterations of ADM as follows. We first solve for
X and θs as

{X, θs}t+1 =argmin
X,θs

Ls(X) +

µt
2

V∑
v=1

‖IBP (X,A(v)
t ) +

Λ
(v)
t

µt
‖2F . (26)

Then, for each view v = 1, ..., V , we solve for A(v) as

A
(v)
t+1 = argmin

A(v)
r(A(v)) +

µt
2
‖IBP (Xt+1,A

(v))+
Λ

(v)
t

µt
‖2F ,
(27)
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and finally update the Lagrangian and the penalty parameter
as

Λ
(v)
t+1 = Λ

(v)
t + µtIBP (Xt+1,A

(v)
t+1) (28)

µt+1 = min(µmax, ρµt), (29)

respectively. Note that in Eq. (29), ρ is kept constant (it is
typically set to ρ = 1.1).

Since there is not a closed-form solution for the problem in
Eq. (26), we use the conjugate gradient algorithm (CG) [37]
to minimize the objective w.r.t. the latent positions X and
the kernel parameters θs1. On the other hand, the problem in
Eq. (27) is similar to that of Kernel Ridge Regression (KRR),
and it has a closed-form solution, which is given by

A(v) = (K
(v)
bc +

λ(v)

µt
I)−1(X +

Λ
(v)
t

µt
) (30)

However, this solution depends on the parameters γ(v) and
λ(v), which need to be tuned through costly cross-validation
procedures. To alleviate this, we reformulate the optimization
problem in Eq. (27). For this, we use the notion of the Leave-
One-Out (LOO) cross-validation procedure for the KRR [45]
to define the learning of the parameters γ(v) and λ(v). Once
estimated, these parameters are used to compute A(v).

The idea of the LOO learning procedure is based on the
fact that given any training set and the corresponding learned
regression model, if we add a sample to the training set with
the target equal to the output predicted by the model, the latter
will not change since the cost function will not increase [45].
Thus, given the training set with the sample y

(v)
i left out, the

predicted outputs X̂(−i) (the superscript denotes that the i-th
sample was left out) will not change if the sample y

(v)
i with

target x̂
(−i)
i is added to the set. Then, the goal of LOO is to

minimize the difference between the predictions x̂
(−i)
i and the

actual outputs xi for all the samples. To compute this, we first
need to define the matrix

M ,

[
mii mT

i

mi Mi

]
= (K

(v)
bc +

λ(v)

µt
I), (31)

where we partitioned the inverse matrix from Eq. (36) so that
the elements corresponding to the i-th sample appear only in
the first row and column of M (the same is done for X and
Λ

(v)
t in order to place the i-th row on the top). Furthermore,

Mi is the kernel matrix formed from the remaining elements
as Mi = (K

(v)
bc\i +

λ(v)

µt
IN−1). Then, using Eq. (36), the

prediction and the actual target for sample i are given by

x̂
(−i)
i = mT

i M−1
i miA

(v)
i + mT

i A
(v)
−i (32)

xi = miiA
(v)
i + mT

i A
(v)
−i −Λ

(v)
i /µt. (33)

We can now define the cost for the LOO procedure, which is

ELOO =
1

2

N∑
i=1

‖xi − x̂
(−i)
i ‖2 =

1

2

N∑
i=1

‖ A
(v)
i

[M−1]ii
− Λ

(v)
i

µt
‖2

(34)

1The derivatives of the objective w.r.t. the model parameters are given in
the appendix

Algorithm 1 DS-GPLVM: Learning and Inference

Learning
Inputs: D = (Y(v), c), v = 1, . . . , V

Initialize µmax >> µ0 > 0, ρ = const., X0, A
(v)
0 , Λ

(v)
0 .

repeat
Step 1: Update (X, θs) by minimizing Eq. (26).
Step 2: Minimize ELOO from Eq. (34) w.r.t
(γ(v),λ(v))v=1,...,V for IBP, and (γ,λ) for SBP.
Step 3: Update (Λ(v), µ, A(v)) for IBP, and (Λ, µ, A)
for SBP, from Eq. (28), (29) and (36).

until convergence of Eq. (25)
Outputs: X, A

Inference
Inputs: y(v)∗ for IBP, and [y(1)∗, ...,y(V )∗] for SBP, k for
classification.
Step 1: Find the projection x∗ to the latent space using
Eq. (21) for IBP, and Eq. (22) for SBP.
Step 2: Apply kNN classifier to the latent space to obtain
the class prediction: c∗ = kNN(x∗,X).
Output: c∗

Minimization of ELOO w.r.t. γ(v) and λ(v) is accomplished
using the CG algorithm again.2 By plugging these parameters
into Eq. (36), we obtain A(v). Note that by adopting the LOO
learning approach, we: (i) avoid the burden of the standard
cross-validation procedures, which are time-consuming, and
(ii) reduce the chances of overfitting the model parameters by
using the additional cost defined in Eq. (34).

At this point, it is important to clarify that under the
proposed ADM-based optimization scheme we are able to
automatically learn the majority of the model’s parameters
(i.e., X θ, µ, λ, γ), avoiding the need of their tuning via
validation procedures. The only parameter learned by means
of cross-validation is the weight of the prior, β, while we
also need to explore the effect of the dimensionality, q, of the
manifold.
SBP: Parameter Optimization. Analogous to the IBP case,
we define the Augmented Lagrangian function for the SBP
case using the regularized negative log-likelihood and the
SBP constraints from Eq. (23). The resulting function has
the form as in Eq. (25), but after dropping the dependencies
on v, and replacing the IBP by SBP constraints. The model
parameters are then found by applying the proposed ADM to
the Augmented Lagrangian function. For this, the objectives
in each iteration of the ADM for the IBP case described above
are adjusted accordingly.

To achieve efficiency, when applying the CG algorithm to
the objective in each iteration of the ADM, with either IBP or
SBP constraints, we stop at the first line search of CG, update
the corresponding parameters, and go to the next iteration. The
ADM cycle is repeated until convergence of the Augmented
Lagrangian function.

Inference in the DS-GPLVM is straightforward. The test

2The exact derivation of Eq. (32)-(33) along with the gradients of Eq. (34)
w.r.t. γ(v) and λ(v) are given in the appendix.
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data y∗ (which for the view-invariant case come from a single
view v, and for the mutli-view case from all available views)
are first projected to the shared space using the back-mappings
defined by Eq. (21) for the IBP, or Eq. (22) for the SBP case. In
the second step, classification of the target facial expression
is accomplished by using a single classifier trained on the
discriminative shared manifold. For this, we use the kNN
classifier3. Alg.1 summarizes the learning and inference of
the proposed DS-GPLVM.

V. EXPERIMENTS

A. Datasets and Experimental Procedure

We evaluate the performance of the proposed DS-GPLVM
on expressive face images from three publicly available
datasets: MultiPIE [46], Labeled Face Parts in the Wild
(LFPW) [47] and Static Facial Expressions in the Wild
(SFEW) [48]. Fig. 2 shows sample images from these datasets.
From the MultiPIE dataset we used images of 270 subjects
depicting acted facial expressions of Neutral (NE), Disgust
(DI), Surprise (SU), Smile (SM), Scream (SC) and Squint
(SQ), captured at pan angles −30◦, −15◦, 0◦, 15◦ and 30◦,
resulting in 1531 images per pose. For all images, we selected
the flash from the view of the corresponding camera in order
to have the same illumination conditions. The LFPW dataset
contains images downloaded from google.com, flickr.com, and
yahoo.com, depicting spontaneous facial expressions (mainly
smiles), in large variation of poses, illumination and occlusion.
We used 200 images of NE and SM expressions from the
test set provided by [47]. We manually annotated the images
in terms of the poses used in MultiPIE. Lastly, the SFEW
dataset consists of 700 images of 95 subjects, extracted from
movies containing facial expressions with various head poses,
occlusions and illumination conditions. The images have been
labeled in terms of six basic emotion expressions, i.e., Anger
(AN), Disgust (DI), Fear (FE), Happiness (HA), Sadness (SA),
Surprise (SU) and Neutral (NE).

The images from both MultiPIE and LFPW were cropped so
as to have equal size (140×150 pixels), and annotations of the
locations of 68 facial landmark points were provided by [49],
which were used to align the facial images in each pose using
an affine transform. Similarly, the images from SFEW were
cropped (112×164 pixels) and aligned using 5 facial landmark
points (center of the eyes, tip of the nose, and corners of the
mouth) provided by [48]. For the experiments on MultiPIE, we
used three sets of features: (I) facial points, (II) LBPs [20],
and (III) DCT [25]. More specifically, from each aligned facial
image we extracted LBPs and DCT features from local patches

3In the model as defined, the resulting posterior is the manifold and not the
class information, so it cannot be used for the classification. For this reason,
we need to apply a classifier to the inputs projected onto this manifold during
inference. A reasonable choice would be to opt for the GP classifier, however,
in our case this would be impractical for two reasons: (i) in the case of more
than two classes, the computation complexity of GPC increases significantly
since we have to learn a different kernel for each class, making it less
applicable to the large number of classes/views. (ii) More importantly, since
we are not interested in the classification uncertainty, the GPC is expected to
perform similarly to the standard kernel regression, as noted in [37]. Thus,
we opt for the deterministic kNN classifier which is the commonly employed
classifier in the GPLVM discriminative models (e.g., see GPLRF [36]).

Fig. 2. Example images from MultiPIE (top), LFPW (middle) and SFEW
(bottom) datasets with the facial point annotations for the first two.

of size 15×15 around the facial landmarks. For LBPs, we used
8 neighbors with radius 2, and in the case of DCT we kept
the first 15 coefficients (zig-zag method) of each patch. We
then concatenated the results from all the patches, to form the
feature vectors. Note that LBP and DCT are complementary
features, since the former captures local information between
neighborhood of pixels, while the latter preserves the spatial
correlation of the pixels inside the neighborhood. Finally, we
applied PCA on the three feature sets, keeping 95% of the total
energy, to remove unwanted noise and artifacts and reduce the
dimensionality of the original feature vectors (especially the
appearance based). The resulting dimensionality of each set
varies among the views. The point features have around 20
dimensions, while both the appearance features have around
100 dimensions. In the experiments conducted on LFPW, we
used only feature set (I), while for SFEW we extracted the
same local texture descriptors as in [48], i.e., Local Phase
Quantization (LPQ) [50] and Pyramid of HOG (PHOG) [51].
To reduce the dimensionality, we applied again PCA by
keeping the same amount of energy, i.e., 95%. This results
in 47- and 220-dimensional feature vectors respectively.

The conducted experiments are organized as follows. In
Sec.V-B, we perform a qualitative analysis of the DS-GPLVM
using the MultiPIE dataset. In Sec.V-C, we evaluate the
effectiveness of the proposed DS-GPLVM in the task of
multi-view FER on MultiPIE. Specifically, we consider two
settings: the standard multi-view setting, where images from
all the views are available during training/inference, and view-
invariant setting, where images from all the views are available
during training but only a single view is available during
inference. Furthermore, we also evaluate the model on the
feature fusion task, where different types of features extracted
within the same view are used. In addition, we challenge the
robustness of the model under different illumination, where
we evaluate the performance of the model on images with
different lighting conditions within the same view. In Sec.V-E,
we test the ability of the DS-GPLVM to generalize to sponta-
neously displayed facial expressions. For this, we perform the
cross-dataset evaluation of the model, where images of SM
and NE class from MultiPIE are used for training, and images
of the corresponding classes from LFPW for testing. Finally,
in Sec.V-F, we evaluate DS-GPLVM on the feature fusion task
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using real-world images from the SFEW dataset.
In the experiments mentioned above, we compare the DS-

GPLVM to the state-of-the-art view-invariant and multi-view
learning methods. As the baseline method, we use the 1-
nearest neighbor (1-NN) classifier trained/tested in the original
feature space. Similarly, we apply 1-NN classifier to the sub-
space obtained by LDA [33], supervised LPP [52], and their
kernel counterparts, the D-GPLVM [17] with the LDA-based
prior, and the GPLRF [36]. These are well-known methods
for supervised dimensionality reduction, and we show their
performance in the view-invariant version of the experiments.
We also compare to our previous work in [19], where the latent
space and the back-mappings are learned independently. We
denote this model as DS-GPLVM (ind.) to distinguish it from
the model proposed here. In the experiments conducted in the
multi-view/feature fusion settings, we compare DS-GPLVM to
the baseline methods: CCA [28] and KCCA [29]. Since they
are designed to deal with only two modalities (feature sets),
we follow the pair-wise (PW) evaluation approach, as in [14],
i.e., the methods were trained on all combinations of view
pairs, and their results were averaged. We also compared DS-
GPLVM to the state-of-the-art methods for multi-view learn-
ing, namely, the MvDA [14], and the multi-view extensions
of LDA (GMLDA), and LPP (GMLPP), proposed in [13].

In all our experiments we performed 5-fold subject inde-
pendent cross-validation. We used a separate validation set to
tune the parameters of each model. More specifically, for all
the GPLVM-based methods (i.e., DS-GPLVM, GPLRF and D-
GPLVM) the optimal weight for the prior β was set using a
grid search. For the GPLRF and D-GPLVM we performed
additionally an extra grid search to tune the parameter of the
kernel of the back-mapping (RBF kerenel was used) as in [17].
For the GMA-based methods (i.e., GMLDA and GMLPP)
we tuned the parameter that controls the alignment of the
subspaces as suggested in [13]. Finally, in KCCA the width
of the employed RBF kernel was cross-validated, while LPP,
LDA and MvDA had no parameters to tune. To report the
accuracy of FER, we use the classification rate, where the
classification was performed on the test set using the 1-NN
classifier in all the subspace-based models.

The five folds with the corresponding train, validation and
test sets have been generated once and kept fixed during all
the experiments for all the methods, in order to achieve a fair
comparison. For the experiments on MultiPIE the size of the
train, validation and test set was 600, 600, and 300 images per
view respectively. For the cross dataset experiment, since we
used only images with SM and NE expressions from MultiPIE
to train the models, the resulting train and validation sets were
slightly smaller, and in particular, 500 and 100 images per pose
respectively. The test set was the 200 images from LFPW and
it varied depending the pose from 30 − 65 images. Finally,
for the experiments on SFEW we adopted the configuration
proposed by the creators of the dataset in [48]. The data were
already split into two folds, for training and testing. Each
time the training fold was further split in 5 folds, to tune
the parameters of the models with 5-fold subject independent
cross-validation. The size of the resulting sets was 280, 70 and
350 images respectively. For this experiment, due to the small

size of the dataset, after tuning the parameters with the cross
validation, each model was re-trained on the whole train and
validation set (the one of the two original folds of the dataset)
with the optimal parameters, before reporting the results on
the test set.

B. DS-GPLVM: Qualitative Analysis

In this section, we evaluate the performance of the proposed
DS-GPLVM w.r.t. the various parameter values. For this, we
use the feature set (I), i.e., the facial points, extracted from
the MultiPIE dataset. Fig. 3 shows average classification rate
(across the views) of the DS-GPLVM for different number of
training samples per view, the size of the shared-space, and
parameter β = {1, 3, 10, 30, 100, 300, 1000, 10000}. Fig. 3(a)
shows performance of SBP and IBP versions of DS-GPLVM,
the parameters of which are learned using a varying number of
training data, while the manifold size is fixed to 5. We see that
the SBP versions of DS-GPLVM (multi-view setting) achieves
a high classification rate (∼ 87%) when using a relatively
small number of training data (i.e., 100 images per view). On
the other hand, the IBP version of DS-GPLVM (view-invariant
setting) requires more training data (∼ 500 images per view)
to achieve a similar performance. This is a consequence of not
using the images from all available views during the inference
step. However, with the increased number of training data,
the model effectively learns the correlations among the views,
rendering the information from some views redundant during
the inference. From Fig. 3(b), we see how the size of the
shared space affects the accuracy of the learned model. It is
clear that both SBP and IBP variants of the model find the
5-dimensional shared-space optimal for classification. Lower
dimensional manifolds fail to explain the correlations among
the views, while manifolds with more than 5 dimensions do
not include any additional discriminative information. Fig. 3(c)
illustrates the influence of the shared-space discriminative
prior on the classification task. In the case of both SBP and
IBP, β = 300 results in the best performance of the model,
while its further increase leads to a drop in the performance.
This is expected, as for high values of β the likelihood term in
the DS-GPLVM is fully ignored, resembling LPP. Evidently,
such model is prone to overfitting mainly because of the strong
influence of the labels during training. On the other hand, for
small values of β the shared-space is not sufficiently informed
about the class labels, resulting again in a lower performance.
In what follows, we set for both the SBP and IBP variants of
the model the number of training examples to 500, size of the
shared space to 5, and β = 300.

Fig. 3(d)-(f) illustrate the convergence properties of the DS-
GPLVM. We see from Fig. 3(d) that the regularized negative
log-likelihood of the model reaches a local minimum in less
than 25 cycles of the ADM. Fig. 3(e) shows the Frobenius
norm [33] of the constraints for the SBP and IBP variants, the
difference between the estimated shared space and the back-
mappings. Note that the DS-GPLVM is always initialized in
the −15◦ view (it is found to be the most informative view).
Hence, we can see that the norm of this view (black curve)
starts from a low value when IBP is used. However, with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2375634

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10 JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012

0 100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

Number of training samples per pose

M
e
a
n

 C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

DS−GPLVM (IBP)
DS−GPLVM (SBP)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Number of dimensions of the shared space

M
e
a
n

 C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

DS−GPLVM (IBP)
DS−GPLVM (SBP)

0 1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

log(β)

M
e
a
n

 C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

DS−GPLVM (IBP)
DS−GPLVM (SBP)

(a) (b) (c)

0 5 10 15 20 25 30
2.5

3

3.5

4

4.5

5
x 10

5

Number of ADM cycle

N
e
g

a
ti

v
e
 L

o
g

−
L

ik
e
li
h

o
o

d

 

 

DS−GPLVM (SBP)
DS−GPLVM (IBP)

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

Number of ADM cycle

N
o

rm
 o

f 
B

a
c
k
−

p
ro

je
c
ti

o
n

s

 

 

IBP −15°

IBP −30°

IBP 0°

SBP 

0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

Number of ADM cycle

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

IBP −15°

IBP −30°

IBP 0°

SBP

(d) (e) (f)
Fig. 3. DS-GPLVM. Upper row shows mean classification rate across all 5 poses from the MultiPIE dataset using feature-set (I) as a function of: (a) the number
of training data per pose, (b) the dimensionality of the latent space, and (c) the prior scale parameter β. Lower row depicts: (d) the negative Log-Likelihood,
(e) the norms of the constraints in the DS-GPLVM, and (f) the mean classification rate, as a function of the number of the ADM cycles.

more cycles of the ADM, the DS-GPLVM learns the shared
manifold by taking into account all views, and thus, the error
of back projections from the remaining views to the shared
subspace decreases, while the one from the initialized view,
i.e., the −15◦, increases slightly – the consequence of the
model trying to align the manifolds of different views. The
red curve represents the error between the learned subspace
and the back projections in the case of SBP. It is clear that
the SBP variant outperforms the IBP variant of the model,
since the former achieves a closer back-projection to the shared
discriminative manifold, resulting in a better classification per-
formance. This comes with a larger number of the ADM cycles
during learning of the DS-GPLVM with SBP since it uses
all views simultaneously to learn the back-mapping. Finally,
from Figs. 3(e)-(f), we observe strong correlation between the
norms of the model variants and the classification rate. In
all cases, the increased classification performance is achieved
by decreasing the gap between the shared-space and back-
mappings, with both measures converging synchronously.

C. Comparisons with other Multi-view Learning Methods

1) Same Facial Features in Multiple Views: We evaluate
the proposed DS-GPLVM model across views in both view-
invariant and multi-view setting. The former refers to the
scenario where data from all views are used for training, while
testing is performed using data from each view separately, and
the latent space is back-constrained using the IBP. The latter
refers to the scenario where data from all views are used during
training and testing, and the latent space back-constrained
using the SBP. The same strategy was used for evaluation of
other multi-view techniques i.e., GMLDA and GMLPP. Table I
summarizes the results for the three sets of features, averaged
across the five views from MultiPIE. We see that the facial

points (feature set (I)) result in a more discriminative descrip-
tor for all methods, although we end up with higher standard
deviation compared to the appearance features (feature sets
(II) and (III)). Evidently, DS-GPLVM outperforms the other
view-invariant and multi-view models on all three feature sets,
showing that it can successfully unravel the discriminative
shared-space that is better suited for FER. Interestingly, in
this experiment LDA- and LPP-based linear methods achieve
high accuracy, which is comparable to that of D-GPLVM and
GPLRF. Moreover, GMLDA and GMLPP perform similarly
to their single view trained counterparts, indicating that they
were not able to fully benefit from the presence of additional
views. We also observe a similar performance of the MvDA
and the standard LDA. Note that, the accuracy of DS-GPLVM
is higher by 3% than that of GPLRF, which is a special case of
DS-GPLVM. We attribute this to the ability of the DS-GPVLM
to integrate the discriminative information from multiple views
into the shared space. We draw similar conclusions from
the comparison between DS-GPLVM and DS-GPLVM (ind.),
where the latter fails to impose the view constraints on the
shared manifold.

Table II shows the performance of the models tested across
all views, when feature set (I) (the best for all the models from
Table I) is used. It is evident that the proposed DS-GPLVM
performs consistently better than the compared models across
all views. Note that all models achieve the lowest classification
rate in the frontal view. However, the DS-GPLVM significantly
improves the performance attained by the other models in this
view. We attribute this to the fact that DS-GPLVM performs
the classification in the shared space, where the classification
of the expressions from the frontal view is facilitated due to
the discriminative information learned from the other views.
Furthermore, it is worth noting that the models’ accuracy
on the negative pan angles (the left side of the face) is
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TABLE I
AVERAGE CLASSIFICATION RATE ACROSS FIVE VIEWS FROM THE
MULTIPIE DATASET FOR THREE FEATURE SETS. IBP VERSION OF

DS-GPLVM WAS TRAINED USING ALL AVAILABLE VIEWS, AND TESTED
PER VIEW. THE REPORTED STANDARD DEVIATION IS ACROSS FIVE VIEWS.

Methods Features
I II III

kNN 76.15 ± 5.42 81.71 ± 2.86 71.80 ± 2.23
LDA 87.72 ± 6.67 86.24 ± 2.31 87.02 ± 2.59
LPP 87.81 ± 6.65 86.16 ± 2.16 86.82 ± 2.60

D-GPLVM 87.17 ± 5.80 85.92 ± 2.95 86.87 ± 3.15
GPLRF 86.93 ± 6.30 85.58 ± 2.66 86.88 ± 2.91

GMLDA 86.72 ± 6.57 85.18 ± 2.94 86.40 ± 3.40
GMLPP 87.74 ± 6.12 86.10 ± 2.13 86.21 ± 2.06
MvDA 87.84 ± 6.51 86.66 ± 2.84 86.79 ± 2.86

DS-GPLVM (ind.) 88.64 ± 5.60 87.13 ± 2.73 87.34 ± 2.91
DS-GPLVM 90.60 ± 5.40 88.44 ± 2.84 89.18 ± 2.83

higher than on the corresponding positive pan angles (the right
side of the face). Since MultiPIE contains more examples of
negative emotion expressions, this confirms recent findings
in [53] showing that the left hemisphere of the face is more
informative when it comes to expressing negative emotions
(e.g., Disgust). The right hemisphere is more informative for
positive emotions (e.g., Happiness). In other words, due to
the imbalance of the emotion categories in the used dataset,
the learned classifiers were biased toward negative emotion
expressions, and, hence, to the negative pan angles.

Table III compares the performance of the SBP variant of
DS-GPLVM with other multi-view learning methods on three
feature sets. The poor performance of KCCA can be attributed
to its inherent propensity to overfitting training data, as also
observed in, e.g., [29]. In addition, both CCA and KCCA
do not use any supervisory information during the subspace
learning, which further explains their low performance. By
comparing GPLRF (with concatenated features from different
views) and DS-GPLVM, we see that the former, although
not a multi-view method, performs comparably to our DS-
GPLVM in the case of feature set (I). We attribute this to
the fact that GPLRF can effectively explain variation in facial
points from multiple views using a single GP. Yet, because
of the large variation in the appearance of facial expressions
from different views, the same is not the case when feature
sets (II) and (III) are used. When compared to the state-of-
the-art methods for multi-view learning (GMA and MvDA),
DS-GPLVM performs similarly or better on all three feature
sets. Furthermore, the SBP version of DS-GPLVM during
inference succeeds to model complementary information from
all available views, resulting in a higher accuracy compared
to the best performing view, i.e., −15◦, of the IBP variant of
DS-GPLVM (see Table II).

2) Feature Fusion: We next evaluate DS-GPLVM in the
feature fusion task, where the goal is to augment view-
invariant facial expression classification by fusing different
feature sets. Specifically, we trained the SBP version of DS-
GPLVM using the three feature sets extracted from the frontal
view only. This choice has been made because the frontal
view is not the most informative one (−15◦ is), and hence,
there is a lot of space for improvement. From Table IV,

TABLE III
CLASSIFICATION RATE FOR THE MULTI-VIEW TESTING SCENARIO USING

THE SBP VERSION OF DS-GPLVM. THE REPORTED STANDARD
DEVIATION IS ACROSS THE 5 FOLDS.

Methods Features
I II III

PW-CCA 72.42 ± 0.020 73.56 ± 0.025 56.07 ± 0.028
PW-KCCA 52.92 ± 0.039 69.15 ± 0.017 42.42 ± 0.026

GPLRF (conc.) 97.37 ± 0.014 89.42 ± 0.012 89.94 ± 0.012
GMLDA 96.33 ± 0.015 93.04 ± 0.011 92.15 ± 0.013
GMLPP 96.20 ± 0.014 91.37 ± 0.019 90.83 ± 0.017
MvDA 97.12 ± 0.017 93.56 ± 0.011 92.81 ± 0.015

DS-GPLVM 97.98 ± 0.008 93.96 ± 0.015 93.29 ± 0.010

TABLE IV
ACCURACY OF THE AUGMENTED CLASSIFICATION IN THE FRONTAL POSE.
FEATURE FUSION IS ATTAINED WITH THE SBP VERSION OF DS-GPLVM.

Methods
GPLRF (conc.) GMLDA GMLPP MvDA DS-GPLVM
83.16 ± 0.021 78.94 ± 0.018 85.95 ± 0.019 86.19 ± 0.014 87.13 ± 0.019

we see that the accuracy of DS-GPLVM in the frontal view
outperforms that achieved by the GPLRF by more than 3%,
where the features are simply concatenated and used as input.
This is because GPLRF cannot fully account for variation
in all three feature sets using a single GP. By contrast, DS-
GPLVM learns separate GPs for each feature set, resulting in
improved classification performance in the frontal view. It is
also important to mention that by training GPLRF using each
feature set separately, we obtained the following classification
rates: 77.6%, 81.3% and 82.1%, for feature sets (I), (II), and
(III), respectively. Compared to the accuracy of DS-GPLVM
in Table IV (87.1%), the proposed feature fusion significantly
outperforms each of the feature sets used independently. This
is expected since the appearance features (LBPs and DCT),
extracted from local patches, do not encode global information
about face geometry, which is efficiently encoded by facial
points. On the other hand, facial points are not informative
about transient changes in facial appearance (e.g., wrinkles
and bulges) which are successfully captured by the appearance
features. Thus, the combination of these features within the
proposed framework turn out to be highly effective. The rest
of multi-view methods also achieve significant increase in their
performance (apart from GMLDA). However, DS-GPLVM
outperforms (although marginally in some cases) all these
state-of-the-art models.

3) Same Facial Features in Different Illumination: Herein,
we evaluate the proposed DS-GPLVM under different illumi-
nation on MultiPIE, where the goal is to learn an illumination-
free manifold for FER. For the purposes of this experiment,
we used only images from the frontal view with two different
lighting conditions: (i) no lighting source (dark view), and (ii)
lighting from the flash of the corresponding camera (bright
view). Each lighting condition has been considered as a sepa-
rate view to train the IBP variant of DS-GPVLM with feature
set III. DCT features were selected, since they are less robust
to illumination variations than LBPs, and thus a difference in
the performance between the two illumination conditions is
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TABLE II
VIEW-INVARIANT CLASSIFICATION RATE ON MULTIPIE DATASET FOR THE BEST FEATURE SET (i.e., FACIAL POINTS (I)). IBP VERSION OF DS-GPLVM

IS TRAINED USING ALL AVAILABLE VIEWS, AND TESTED PER VIEW. THE REPORTED STANDARD DEVIATION IS ACROSS 5 FOLDS.

Methods Poses
−30◦ −15◦ 0◦ 15◦ 30◦

kNN 80.88 ± 0.007 81.74 ± 0.014 68.36 ± 0.054 75.03 ± 0.024 74.78 ± 0.012
LDA 92.52 ± 0.015 94.37 ± 0.013 77.21 ± 0.014 87.07 ± 0.040 87.47 ± 0.007
LPP 92.42 ± 0.017 94.56 ± 0.011 77.33 ± 0.021 87.06 ± 0.045 87.68 ± 0.011

D-GPLVM 91.65 ± 0.017 93.51 ± 0.009 78.70 ± 0.021 85.96 ± 0.040 86.04 ± 0.010
GPLRF 91.65 ± 0.017 93.77 ± 0.007 77.59 ± 0.021 85.66 ± 0.026 86.01 ± 0.008

GMLDA 90.47 ± 0.012 94.18 ± 0.007 76.60 ± 0.029 86.64 ± 0.032 85.72 ± 0.015
GMLPP 91.86 ± 0.013 94.13 ± 0.002 78.16 ± 0.013 87.22 ± 0.023 87.36 ± 0.008
MvDA 92.49 ± 0.011 94.22 ± 0.014 77.51 ± 0.022 87.10 ± 0.031 87.89 ± 0.010

DS-GPLVM (ind.) 92.25 ± 0.013 94.83 ± 0.014 80.18 ± 0.025 87.63 ± 0.017 88.32 ± 0.023
DS-GPLVM 93.55 ± 0.019 96.96 ± 0.012 82.42 ± 0.018 89.97 ± 0.023 90.11 ± 0.028

TABLE V
CLASSIFICATION RATE ON THE FRONTAL VIEW UNDER DIFFERENT

ILLUMINATION FOR FEATURE SET (III). THE IBP VARIANT OF
DS-GPLVM WAS USED. THE REPORTED STANDARD DEVIATION IS

ACROSS THE 5 FOLDS.

Methods
Illumination

Frontal flash No flash

GPLRF 82.09 ± 0.015 77.00 ± 0.025
GMLDA 82.76 ± 0.017 84.01 ± 0.029
GMLPP 82.10 ± 0.029 84.75 ± 0.030
MvDA 83.80 ± 0.015 84.20 ± 0.019

DS-GPLVM 85.51 ± 0.032 85.68 ± 0.021

expected. From Table V we see that this difference is present
in the results of the single-view method, i.e., the GPLRF.
The latter was trained separately for each lighting condition,
and hence, the two learned manifolds falsely encoded the
illumination as important information, resulting in a consid-
erable gap between the performance of the bright and the
dark view. Contrary to that, the compared multi-view methods,
i.e., GMLDA, GMLPP and MvDA, managed to remove, to
some extent, the lighting condition of the views under the
common space. This is evidenced by the improvement on the
performance of the dark view, although a notable difference
between the performance of the two views still exists. On the
other hand, the proposed DS-GPLVM, not only achieved better
results under both illumination conditions, but it also managed
to align them by discarding the illumination under the shared
space. Note that the DS-GPLVM reports similar classification
rate, regardless the original lighting condition of the view.

D. Comparisons with other Multi-view Methods

We compare DS-GPLVM (with the IBP variant using feature
set (III)) to the state-of-the-art methods for view-invariant
FER. The results for the LGBP-based method, where the
LBP features are extracted from Gabor images, are obtained
from [6]. For the method in [12], we extracted the Sparse
SIFT (SSIFT) features from the same images we used from
MultiPIE. In both of the aforementioned methods, the target
features (LGBP and SSIFT) are extracted per-view, and then
fed into the view-specific SVM classifiers. We also compared

our model to the Coupled GP (CGP) model [9], where first
view-normalization is performed by projecting a set of facial
points (feature set (I)) from non-frontal views to the canonical
view. In our experiments with CGP, we set the canonical view
to the most discriminative view among the positive pan angles
(i.e., 15◦). This was followed by classification using the SVM
learned in this view. Table VI shows comparative results.
We observe first that all methods (except [12]) achieve the
best results for the 15◦ view, indicating that regardless of the
method/features employed, this view is more discriminative
(among the positive pan angles) for the target task. We also
note that DS-GPLVM outperforms on average the other two
methods, which are based on the appearance features. This
difference is in part due to the features used and in part due
to the fact that the methods in [6] and [12] both fail to model
correlations between different views. By contrast, the CGP
method accounts for the relations between the views in a pair-
wise manner, while DS-GPLVM and DS-GPLVM (ind.) do so
for all the views simultaneously. However, the proposed DS-
GPLVM shows superior performance to that of DS-GPLVM
(ind.), which in turn, outperforms CGP. This is because CGP
performs view alignment (i) directly in the observation space,
and (ii) without using any discriminative criterion during this
process. Thus, the effects of high-dimensional noise and the
errors of view-normalization adversely affect its performance
in the classification task. On the other hand, DS-GPLVM
(ind.) aligns the views directly in the shared space optimized
for expression classification, while the proposed DS-GPLVM
imposes further constraints on the shared manifold, resulting
in a better performance on the target task. This is also reflected
in the confusion matrices in Fig. 4. Note that the main source
of confusion are the facial expressions of Disgust and Squint.
This is because they are characterized by similar facial changes
in the region of the eyes. However, the proposed DS-GPLVM
improves significantly the accuracy on Squint, compared to the
other models.

E. Cross Dataset Experiments on MultiPIE and LFPW
In this section, we test the ability of DS-GPLVM (the IBP

variant) to generalize to unseen real-world spontaneous data.
To this end, we evaluate different models on the smile detec-
tion task, where the feature set (I) extracted from images from
MultiPIE is used for training. Images from LFPW are used
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Fig. 4. Comparative confusion matrices for FER over all angles of view for the (a) DS-GPLVM, (b) CGP, (c) SSIFT and (d) LGBP.

TABLE VI
COMPARISON OF TESTED METHODS ON THE MULTIPIE DATABASE. THE
IBP VERSION OF DS-GPLVM WITH FEATURE SET (III), OUTPERFORMS

THE STATE-OF-THE-ART METHODS FOR VIEW-INVARIANT FER. THE
REPORTED STANDARD DEVIATION IS ACROSS 5 FOLDS.

Methods Poses
0◦ 15◦ 30◦

LGBP [6] 82.1 87.3 75.6
SSIFT [12] 81.14 ± 0.009 79.25 ± 0.016 77.14 ± 0.019

CGP [9] 80.44 ± 0.017 86.41 ± 0.013 83.73 ± 0.019
DS-GPLVM (ind.) 83.73 ± 0.029 88.41 ± 0.014 87.69 ± 0.022

DS-GPLVM 84.31 ± 0.025 89.21 ± 0.015 90.26 ± 0.025

for testing. This is a rather challenging task mainly because
the test images are captured in an uncontrolled environment,
which is characterized by large variation in head-poses and
illumination, and occlusions of parts of the face. Also, the
models are trained using data of posed (deliberately displayed
as opposed to spontaneous and “in the wild”) expressions,
which can differ considerably in subtlety compared to the
spontaneous expressions used for testing. The difficulty of
the task is evidenced by the results in Table VII, where
we observe a significant drop in accuracy of all methods.
Furthermore, we observe that the most informative views for
smile detection are the ones with positive degrees (the right
side of the face). This, again, is for the reasons explained in
Sec. V-C1. However, all methods attain the higher accuracy in
the frontal pose. We attribute this to the fact that the faces with
non-frontal poses do not exactly belong to the discrete set of
poses, but rather a continuous range from 0◦ to ±30◦. Thus,
the accuracy of the pose registration significantly affects the
performance of the models. Nevertheless, the proposed DS-
GPLVM outperforms the other models by a large margin in
all poses except −30◦. To explain this, we checked the number
of test examples of smiles in this pose, and found that only
few were available (contrary to other poses, which contained
far more examples). Therefore, the misclassification of some
resulted in a significant drop in the performance of both DS-
GPLVM and DS-GPLVM (ind.).

F. Expression Recognition on Real World Images from SFEW

Finally, we evaluate the models on the feature fusion task,
where the features are extracted from images of spontaneously
displayed facial expressions in real-world environment. Specif-
ically, we used LPQ [50] and PHOG [51] features from
expressive images from the SFEW dataset. Contrary to the

TABLE VII
SMILE DETECTION IN IMAGES FROM LFPW DATASET. THE METHODS
WERE TRAINED ON MULTIPIE DATASET USING FEATURE SET (I). WE

USED THE IBP VERSION OF DS-GPLVM FOR THE VIEW-INVARIANT FER.

Method Poses
−30◦ −15◦ 0◦ 15◦ 30◦

GMLDA 69.00 43.00 80.94 55.76 76.00
GMLPP 70.00 47.50 81.25 57.58 79.66
MvDA 70.00 50.00 81.25 51.52 80.00

DS-GPLVM (ind.) 57.20 52.50 84.00 69.38 80.00
DS-GPLVM 55.33 58.00 90.00 74.55 80.00

cross-dataset evaluation from the previous section, here both
training and testing are performed using real-world sponta-
neous expression data. Note that LPQ is a texture descriptor
that captures local information over a neighborhood of pixels,
resulting in its being robust to illumination changes. On the
other hand, PHOG is a local descriptor which is capable of
preserving the spatial layout of the local shapes in an image.
Thus, we expect the fusion of these two to achieve improved
performance on the target task. The provided images of SFEW
were originally divided into two subject independent folds, and
we report the average results over the folds.

Table VIII shows the results obtained for different methods.
We used the SBP variant of the DS-GPLVM. As the baseline
we use the results obtained by the database creators [48]. The
authors used non-linear SVM classifier on the concatenation
of the features to report the classification rate on the feature
fusion task. We see that all employed multi-view learning
methods outperform the baseline on average. This is due to
their ability to effectively exploit the discriminative infor-
mation embedded in both feature spaces. However, in most
cases, the linear multi-view learning methods are outperformed
by the proposed DS-GPLVM. We attribute this to the fact
that the linear models are unable to fully unravel the non-
linear discriminative manifold of the used feature spaces. By
contrast, this is handled better by the non-linear mappings in
the DS-GPLVM, resulting in its average performance being the
best among the tested models. Note, however, that in the case
of Surprise, Fear and Neutral, its performance is lower than
that of the linear models. By inspecting the back-projected test
examples of these two expressions on the shared manifold,
we observed that Neutral was spread around other emotion
categories. This is because the varying level of expressiveness
of different subjects, resulting in examples of Neutral being
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TABLE VIII
CLASSIFICATION RATES PER EXPRESSION CATEGORY OBTAINED BY DIFFERENT MODELS TRAINED/TESTED USING THE SFEW DATASET.

Anger Disgust Fear Happiness Neutral Sadness Surprise Average
Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90
GMLDA 23.21 17.65 29.29 21.93 25.00 11.11 10.99 19.90
GMLPP 16.07 21.18 27.27 39.47 20.00 19.19 16.48 22.80
MvDA 23.21 17.65 27.27 40.35 27.00 10.10 13.19 22.70

DS-GPLVM 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70

categorized as other expressions with low-intensity levels.
As for the Surprise and Fear, the learned shared manifold
indicated overfitting of these expressions. This is mainly due
to subject differences, which adversely affected the ability of
the back-mappings to correctly map these expressions onto
the shared manifold. Nevertheless, DS-GPLVM outperformed
the rest of the models on the remaining expressions, with a
considerable improvement on Disgust, Happiness and Sadness.

VI. CONCLUSION

In this paper, we proposed the DS-GPLVM model for learn-
ing a discriminative shared manifold of facial expressions from
multiple views, that is optimized for the expression classifica-
tion. This model is a generalization of latent variable models
for learning a discriminative subspace of a single observation
space. As such, it presents a complete non-parametric multi-
view learning framework that can instantiate the rest of the
compared non-linear single-view methods (i.e. D-GPLVM[17]
and GPLRF [36]). As evidenced by our results on posed and
spontaneously displayed facial expressions, when compared
to the state-of-the-art methods for supervised multi-view
learning and facial expression recognition, modeling of the
manifold shared across different views and/or features using
the proposed framework considerably improves both multi-
and per- view/feature classification of facial expressions.

APPENDIX A
DERIVATIVES

During the optimization, we need to update X and θs by
solving the problem in Eq. (26). The latter is a sum of two
terms, the negative log-likelihood given by Eq. (20), and the
norm term which, for convenience, we denote as

C =
µt
2

V∑
v=1

‖IBP (X,A(v)
t ) +

Λ
(v)
t

µt
‖2F (35)

Because of the likelihood term, the defined problem does
not have an exact solution, and thus, we need to apply the
CG algorithm. Hence, we have to compute the gradients of
Eq. (20),(35) w.r.t. the latent positions X and the kernel
parameters θs
• ∂Ls

∂X =
∑
v
∂L(v)

∂X + βL̃X

• ∂Ls

∂θs
=
[
∂L(1)

∂θ(1)
· · · ∂L(V )

∂θ(V )

]T
• ∂C

∂X =
∑
v µt(X−A

(v)
t ) + Λ

(v)
t

• ∂C
∂θs

= 0.

The likelihood term L(v) is a function of the kernel K(v), thus,
we need to apply the chain rule in order to find the derivatives
w.r.t X and θ(v)

• ∂L(v)

∂xij
= tr

[
( ∂L

(v)

∂K(v) )
T ∂K(v)

∂xij

]
• ∂L(v)

∂θ
(v)
i
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[
( ∂L
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]
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∂Kv
= D
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2 (K
(v))−1YvY

T
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Finally, the derivatives of the selected kernel are

•
∂k(v)(xi,xj)

∂θ
(v)
1

= exp(− θ22 ‖xi − xj‖2)

•
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2
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•
∂k(v)(xi,xj)

∂θ
(v)
3

= 1

•
∂k(v)(xi,xj)

∂θ
(v)
4

= − 1

(θ
(v)
4 )2

δi,j

and

∂k(v)(xi)

∂xij
=

 −θ2(xij − x1j) k
(v)(xi,x1)

...
−θ2(xij − xNj) k(v)(xi,xN )


APPENDIX B

LOO SOLUTION OF THE REGRESSION STEP IN ADM

Herein, we derive the solution for the more general form of
the IBP case. The same steps can be followed to arrive at the
solution of the SBP case. The optimal values of parameters
A(v) are given by the solution of the linear equation:

(K
(v)
bc +

λ(v)

µt
I)A(v) = (X +

Λ
(v)
t

µt
). (36)

The system of linear equations defined by Eq. (36) is insen-
sitive to permutations of the ordering of the equations and
the variables. Thus, at each iteration of the LOO, the i-th left
out sample and the corresponding equation can be placed on
top, without affecting the result. This enables us to define the
matrix M as in Eq. (31). By placing M back in Eq. (36), we
end up with the following linear system of equations:[

mii mT
i

mi Mi

]
A(v) =

[
xi + Λ

(v)
i /µt

X(−i) + Λ
(v)
−i /µt

]
(37)

Now, the solution of the parameters of the regression with the
i-th sample excluded is

A
(v)
−i = M−1

i (X(−i) +
Λ

(v)
−i
µt

),
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and the LOO prediction of the i-th sample is given by

x̂
(−i)
i = mT

i A
(v)
−i = mT

i M−1
i (X(−i) +

Λ
(v)
−i
µt

)

= mT
i M−1

i

[
mi Mi

]
A(v)

= mT
i M−1

i

[
mi Mi

] [A(v)
i

A
(v)
−i

]
= mT

i M−1
i miA

(v)
i + mT

i A
(v)
−i .

From Eq. (37) we have

xi +
Λ

(v)
i

µt
=
[
mii mT

i

] [A(v)
i

A
(v)
−i

]
= miiA

(v)
i + mT

i A
(v)
−i

(38)
and thus, the error between the prediction x̂

(−i)
i and the actual

output xi is

xi − x̂
(−i)
i = (mii −mT

i M−1
i mi)A

(v)
i −Λ

(v)
i /µt

=
A

(v)
i

[M−1]ii
− Λ

(v)
i

µt
,

where on the last equation we used the Shur complement from
the block matrix inversion lemma, and Mii denotes the i-th
diagonal element of the matrix M. Finally, we end up with
the cost of the LOO for all samples, ELOO, as defined in
Eq. (34). For the SBP case we follow exact the same steps,
with the difference that we drop from all the equations the
dependencies on the view v and we replace the K

(v)
bc with

K̃ =

V∑
v=1

wvK
(v)
bc .

Our final goal is to find the optimal parameters γ(v) and λ(v)

that minimize the error of the LOO cross validation, defined
by Eq. (34). For this, we need to calculate the derivatives of
ELOO w.r.t. γ(v) and λ(v). We first define the diagonal matrix

D =


1

[M−1]11

. . .
1

[M−1]NN


that allows us to reformulate Eq. (34) into

ELOO =
1

2
‖DA(v) − Λ(v)

µt
‖2. (39)

Using the chain rule, the derivatives of Eq. (39) are given by

∂ELOO
∂λ(v)

= tr

[(
∂ELOO
∂A(v)

)T
∂A(v)

∂λ(v)
+

(
∂ELOO
∂D

)T
∂D

∂λ(v)

]
and

∂ELOO
∂γ(v)

= tr

[(
∂ELOO
∂A(v)

)T
∂A(v)

∂γ(v)
+

(
∂ELOO
∂D

)T
∂D

∂γ(v)

]
,

while the detailed derivatives inside the trace terms are
• ∂ELOO

∂A(v) = DT (DA(v) − Λ(v)

µt
)

• ∂ELOO

∂D =
[
DA(v)(A(v))T − 1

µt
Λ(v)(A(v))T

]
� I

• ∂A(v)

∂λ(v) = −M−1 ∂M
∂λ(v) M

−1(X +
Λ

(v)
t

µt
) = − 1

µt
M−1A(v)

• ∂A(v)

∂γ(v) = −M−1 ∂M
∂γ(v) M

−1(X +
Λ

(v)
t

µt
) =

−M−1 ∂K
(v)
bc

∂γ(v) A(v)

• ∂D
∂λ(v) = −(D�D)� ∂M−1

∂λ(v) = (D�D)� (M−1M−1)

• ∂D
∂γ(v) = −(D � D) � ∂M−1

∂γ(v) = (D � D) �

(M−1 ∂K
(v)
bc

∂γ(v) M−1)

where the value of ∂K
(v)
bc

∂γ(v) for each element of the kernel is
given in Appendix A and � denotes the Hadamard product of
two matrices. Once we have obtained the optimal parameters
γ(v) and λ(v), we can compute A(v) from Eq. (36).
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