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Abstract

In this paper we introduce a new distance for robustly
matching vectors of 3D rotations. A special representation
of 3D rotations, which we coin full-angle quaternion (FAQ),
allows us to express this distance as Euclidean. We apply
the distance to the problems of 3D shape recognition from
point clouds and 2D object tracking in color video. For
the former, we introduce a hashing scheme for scale and
translation which outperforms the previous state-of-the-art
approach on a public dataset. For the latter, we incorporate
online subspace learning with the proposed FAQ represen-
tation to highlight the benefits of the new representation.

1. Introduction
Outliers and noisy data are common problems when

matching feature vectors in applications such as image reg-
istration [29], image matching [6], shape matching [8], face
recognition [20], object tracking [18], and feature learn-
ing [23]. Standard distances (e.g. the Euclidean distance be-
tween Euclidean points) can be disadvantageous since cor-
ruptions may bias the results, e.g. [4]. Because identify-
ing outliers may be computationally costly and sometimes
difficult, robust distances between vectors that suppress the
influence of outliers while preserving the inliers’ geometry
have been developed [6, 8, 18, 20].

Most commonly, feature vectors are scalar valued. In
this case existing methods tackle the problem of outliers
mainly by adopting different distances. Early approaches
use variants of the Manhattan distance [5, 13], leading to an
increase in robustness, but at the cost of reduced efficiency.
Recent works [4, 18, 23] achieve both robustness and effi-
ciency by mapping points non-linearly to a space where the
distance involving outliers is nearly uniformly distributed,
thereby allowing for robust subspace learning.
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Non-scalar features have received less attention in the
literature. For example, in [8], the matching of unordered
sets of 2D points is considered. In [29], a robust compar-
ison of 2D rotations adopting the sum of cosines of angle
differences is investigated. The work in [20] extends this
approach to match vectors of 3D surface normals, by pro-
jecting the 3D normals to 2D rotations.

In this paper we address the problem of matching fea-
ture vectors of 3D rotations, introducing a robust and ef-
ficient distance function. We apply our approach to 3D
shape recognition by converting the problem of evaluating
shape poses into the problem of robustly matching vectors
of direct similarities (i.e. transformations with a uniform
scale, rotation, and translation [3]). In particular, we in-
troduce concurrent hashing of scale and translation to pro-
duce vectors of rotations, which we then evaluate using our
distance. We also apply the new FAQ representation to 2D
object tracking, where we formulate the problem of robustly
matching color patches as an online subspace learning task
for vectors of rotations. Our contributions are as follows:
1. We propose a closed-form distance between 3D rota-

tions, which allows for robust matching and subspace
learning with vectors of 3D rotations.

2. We formulate a new 3D rotation representation, called
full-angle quaternion, making our distance Euclidean.

3. We introduce a map such that uniformly distributed di-
latations (i.e. transformations composed of a uniform
scaling and a translation [3]) correspond to uniformly
distributed coordinates in Euclidean space, facilitating
efficient hashing.

4. We evaluate our framework on 3D shape recognition
and 2D tracking, showing superior performance in com-
parison to existing methods.

2. Existing Rotation Distances
We first briefly review existing distances for 2D and 3D

rotations in literature.
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Figure 1: Cosine-based distance function for different angle dif-
ferences. Inliers reside in the highlighted areas.

2.1. Robust Rotation Distance in 2D

In [29], the robust cosine-based distance between gradi-
ent orientations is introduced to match vectors of 2D rota-
tions for face recognition. Consider an image Ii with N
pixels, the direction of the intensity gradient at each pixel
is recorded as rotation angle ri,j , j = 1, . . . , N , i.e. the jth

angle value of the ith image. The squared distance between
two images, Ia and Ib, is provided by:

d(ra, rb)
2 := 1−

N∑
j=1

cos(ra,j − rb,j)

N
, (1)

based on the robust correlation in [6]. We visualize the
distance function and its robust properties in fig. 1. Its
advantages stem from the sum of cosines. In particu-
lar, for an uncorrelated area P , with random angle direc-
tions, the distance values are almost uniformly distributed:∑
j∈P cos(ra,j−rb,j) ≈ 0, and the distance tends to 1. For

highly correlated vectors of rotations, the distance is near 0.
Thus, while inliers achieve the ideal distance of 0, outliers
have less effect and only shift the distance towards the mean
at 1 (and not the maximum value of 2).

Beside 2D face recognition, the cosine-based distance
has been employed in 2D tracking [19] and 3D face recogni-
tion [20]. In [19], gradient orientations in intensity images
are extracted and matched robustly. The work in [20] takes
a very similar approach. First, by using the image and its
depth map, the camera facing 3D surface normals of an ob-
ject are computed. Then, the distance is applied to robustly
match vectors of the surface normals’ azimuth angles.

2.2. Rotation Distances in 3D

Numerous distances for 3D rotations have been proposed
in the literature [7, 10, 11, 22]. Most of these are Eu-
clidean distances (and variants) under different representa-
tions of 3D rotations. The Euler angles distance is the Eu-
clidean distance between Euler angles [11]. The `2-norm
under the half-angle quaternion (HAQ) representation leads
to the vectorial/extrinsic quaternion distance [7, 10, 11] and
the inverse cosine quaternion distance [11]. Analysis of
geodesics on SO(3) leads to intrinsic distances [10, 11, 22],

which are the `2-norm of rotation vectors (RV). The `2-
norm in the embedding space R9 of SO(3) induces the
chordal/extrinsic distance [7, 11, 22] between rotation ma-
trices (RM).

In computer vision arguably the most widely used 3D ro-
tation distances are the extrinsic distances based on HAQ or
RM, due to their closed forms [7, 22], allowing to efficiently
compute rotation means. However, the HAQ representation
is not unique, leading to non-global means. The RM repre-
sentation is unfavorable for general optimization problems
due to the extra constraints it imposes – the RV representa-
tion is more suitable for such tasks.

3. Robust 3D Rotation Distance
Inspired by the cosine-based 2D rotation distance in (1),

we formulate a distance for 3D rotations. This is non-trivial,
as the concept of rotation axes is non-existent in 2D.

3.1. Proposed Distance

In 2D, ri,j is solely defined by an angle αi,j . In 3D,
let us assume our rotations are given as an angle-axis pair
ri,j = (αi,j ,vi,j) ∈ SO(3). We propose the following
distance function for comparing vectors of 3D rotations:

d(ra, rb)
2 := 1−

N∑
j=1

(
1 + vT

a,jvb,j

2

)
cos(αa,j − αb,j)

N

−
N∑
j=1

(
1− vT

a,jvb,j

2

)
cos(αa,j + αb,j)

N
. (2)

Note that
1+vT

a,jvb,j

2 +
1−vT

a,jvb,j

2 = 1, i.e. the terms act
as weights that depend on the angle between the rotations’
unit axes. Fig. 2 visualizes the weights’ properties. Let us
consider two rotations, ra,j and rb,j . If both share the same
axis va,j = vb,j , then vT

a,jvb,j = 1 and our distance turns
into its 2D counterpart in (1). In the case of opposing axes,
va,j = −vb,j , vT

a,jvb,j = −1 and the sign of αb,j is flipped.
Notice that (αb,j ,vb,j) = (−αb,j ,va,j). Hence, again the
problem is reduced to (1). A combination of both parts is
employed in the case of −1 < vT

a,jvb,j < 1.
We compare our 3D cosine distance to the squared Eu-

clidean distance with different 3D rotation representations:
HAQ, RM and RV (fig. 3). When similar rotations are com-
pared (fig. 3(a)), the RV representation is sensitive to ro-
tations with angles close to 180◦, here the normalized dis-
tance may jump from near 0 to near 1. All other meth-
ods identify close rotations successfully. When comparing
random rotations (fig. 3(b)), RM and RV strongly bias the
results either towards small or large distances. The values
under HAQ and our distance are more evenly distributed.
The proposed distance shows similar properties to the dis-
tance under RM when applied to rotations with similar ro-
tation axes (fig. 3(c)). Here HAQ produces overall smaller
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Figure 2: The proposed cosine-based distance for 3D rotations, with varying angles between rotation axes (denoted by ∆γ). Our distance
is expressed as a weighted sum of the 2D cosine-based distance, and its counterpart with flipped angle αb,j .
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(c) Similar Axes, Random Angles
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Figure 3: Histograms of squared distances d(ra,j , rb,j)
2 for (a)

similar and (b) uniformly distributed random rotations, rotations
with (c) similar axes and (d) similar angles, each resulting from
105 3D rotation comparisons. Random rotations are taken from
the left Haar measure on SO(3) [9, 24].

distances. The distance under RV is quite unstable for this
set-up, as no trend is observed. However, when exposed
to similar rotation angles (fig. 3(d)), it behaves similarly
to our proposed distance. RM shows a bias towards large
distances, while HAQ exhibits an even distribution of dis-
tances.

Our distance and HAQ are least biased for random sam-
ples: The maximum count of a single bin is less than 20%,
and the mean of outliers, i.e. random samples, is near 0.5.
The distance for inliers is close to 0. This corresponds to
the robust properties of the cosine distance in 2D [29]. Our
method differs mainly in its preference when compared to
HAQ; both favor similar axes, but HAQ does so more sig-
nificantly. Our proposed distance rates the strength of rota-
tions more highly, i.e. the rotation angle or the amount of
displacement when applied to a scene.

3.2. Full-Angle Quaternion

The proposed distance in (2) leads to a new representa-
tion for 3D rotations, which allows for efficient comparison.
We coin it the full-angle quaternion (FAQ) representation.

Let us rewrite the squared distance as follows:

d(ra, rb)
2 = 1−

N∑
j=1

cosαa,j cosαb,j
N

−
N∑
j=1

(vT
a,jvb,j) sinαa,j sinαb,j

N
(3)

=

N∑
j=1

(cosαa,j − cosαb,j)
2

2N

+

N∑
j=1

‖va,j sinαa,j − vb,j sinαb,j‖2

2N
(4)

=
1

2N

N∑
j=1

‖qa,j − qb,j‖2, (5)

where qi,j is a unit quaternion given by:

qi,j := cosαi,j+(ivi,j,1 + jvi,j,2 + kvi,j,3) sinαi,j . (6)

Eq. (6) defines our FAQ representation. The key dif-
ference to the HAQ representation is that the trigonomet-
ric functions cos(·) and sin(·) are applied to the full angle
αi,j instead of the half angle αi,j

2 . Hence, it avoids the dou-
ble covering issue of HAQ, as each 3D rotation corresponds
to exactly one unit quaternion under FAQ. In addition, (5)
reveals that the proposed distance is equivalent to the Eu-
clidean distance under our FAQ representation.

In contrast to HAQ, which returns non-global means [7],
the mean of 3D rotations under FAQ is global and easy to
compute as the normalized sum of FAQs.

The FAQ representation comes with a degenerate case:
Every 3D rotation by 180◦ maps to the same unit quater-
nion, q = −1. This, however, does not effect the computa-
tion of our distance nor its proposed applications as we do
not require an inverse mapping.



4. Matching Ball Features for 3D Recognition
In this section, we apply our distance to the task of 3D

recognition from unstructured point clouds. Local features
are commonly used for this task [2, 14, 25, 28, 31]. In par-
ticular, features in the form of 3D oriented balls together
with their descriptions are localized in the input scene using
standard multi-scale keypoint detectors like SURF-3D [14]
or ISS [32]. At test time, the extracted scene features are
matched with features from training data by comparing their
descriptions [2, 14, 28], generating an initial set of votes.
These votes are hypotheses of the object’s identity and pose,
consisting of a position and an orientation [14, 28], and ad-
ditionally a scale if the scale is unknown [25, 31]. The best
vote is then selected as an estimate of pose and identity.

Real objects often have repetitive parts which map to
the same descriptor, thus generating many votes. To se-
lect the best vote, existing methods either (1) group votes
according to object identity and find the pose with most
neighbors in each group [14, 25, 28, 31], or (2) evaluate
the votes by aligning the predicted objects’ surface to the
scene [2, 12, 21]. While the former approaches are fast,
they often fail if the ground truth pose has too few neigh-
bors. The latter frameworks are more robust, but finding
the corresponding scene surface for each predicted object
surface is computationally costly.

We propose an alternative method for evaluating votes.
Instead of aligning surfaces between the scene and the pre-
dicted objects, we align feature locations. If a predicted
object pose is close to its true pose, the scene feature loca-
tions and orientations match those of the predicted object’s
training data when back-projected into the scene.

For notational convenience, we denote by Xs, XR and
Xt the scale, rotation and translation part respectively of a
direct similarity X. Our method consists of two phases:

In the offline phase (alg. 1), for each object we collect
all feature locations that occur in the training data, and nor-
malize these via left-multiplication with their correspond-
ing object pose’s inverse. In alg. 1, F and C are multi-index
lists such that Fi,j,k denotes the ith object’s jth training in-
stance’s kth feature location, and Ci,j denotes the the ith

object’s jth training instance’s pose. All normalized loca-
tions of object i are then stored in a single hash table Hi in
which hash keys are computed based on the scale and trans-
lation components. The design of function h(·) is detailed
in §4.1. The value of a hash entry is the set of rotations of
all normalized locations hashed to it.

In the online phase (alg. 2), we first restrict the search
space to the 3D ball features observed in the scene and pro-
duce a vector of 3D rotations. For each vote, we then left-
multiply all the scene feature locations, denoted by S, with
the inverse of the vote’s predicted pose. Finally, we look
into the hash entry (via Hi - the hash table of the predicted
object) of each transformed feature location and find the

Algorithm 1 Offline phase: creating hash tables
Input: training feature locations F and poses C

1: for all object i:
2: Create hash tableHi.
3: for all training instance j of the object:
4: for all feature k of the training instance:
5: X← C−1

i,j Fi,j,k.
6: Find/insert hash entry V ← Hi(h(X)).
7: V ← V ∪ {XR}.
8: ReturnH.

Algorithm 2 Online phase: vote evaluation
Parameters: hash tablesH and scene feature locations S
Input: vote = (object identity i, pose Y)

1: w ← 0.
2: for all scene feature j:
3: X← Y−1Sj .
4: Find hash entry V ← Hi(h(X)).
5: if found:
6: w ← w + 4−minR∈V d(R,XR)2.
7: Return w.

nearest rotation. Thus, we compare the vector of scene fea-
tures, in particular their rotations, to the training data. Note
that our method does not involve any feature descriptions,
as only pose is required. Therefore, it exploits the geometry
of an object as a whole, not the geometry of local features.
Section §4.2 raises further points regarding the comparison.

4.1. Hashing Dilatations

The hash keys are computed as follows. The scale and
translation parts of a direct similarity form a transformation
called (direct) dilatation [3] in the space

DT (3) :=
{[

sI t
0 1

]
, s ∈ R+, t ∈ R3

}
, (7)

where I is the 3×3 identity matrix. Given a direct similarity

X, we first map its dilatation part, XD :=

[
XsI Xt

0 1

]
,

to a 4D point via φ : DT (3)→ R4:

φ(XD) := (lnXs,X
T
t /Xs)

T. (8)

We quantize the 4D point to a 4D integer vector, i.e. a hash
key, via a quantizer η : R4 → Z4:

η(x) :=

(⌊
x1

σs

⌋
,

⌊
x2

σt

⌋
,

⌊
x3

σt

⌋
,

⌊
x4

σt

⌋)T

, (9)

where σs and σt are parameters that enable making trade-
offs between scale and translation, and operator b·c finds
the integer value of a real number. Thus, the function h(·)
in alg. 1 and alg. 2 is defined as h(X) := η ◦ φ(XD).

An efficient hash table should ensure that every hash en-
try is accessed with similar probability so that collisions are
minimized. To achieve this, we have designed φ(·) so that
the following lemma holds.



Lemma 1. The Euclidean volume element of R4 is pulled
back via φ(·) to a left-invariant 4-form on DT (3).

Proof. Denote by D(x) := dx1dx2dx3dx4 the Euclidean
volume element at X := φ−1(x). To prove the lemma, it is
sufficient to show that for all Y ∈ DT (3) and x ∈ R4:

D(x) = D(φ(Yφ−1(x))). (10)
Let y := φ(Y). Substituting (8) to (10) yields:
φ(Yφ−1(x)) (11)

= φ

([
ey1+x1 ey1+x1x2:4 + ey1y2:4

0 1

])
(12)

= (y1 + x1,x
T
2:4 + e−x1yT

2:4)
T. (13)

It can be seen from (13) that the Jacobian determinant
of (11) is equal to 1. Therefore, D(φ(Yφ−1(x))) =
|1|dx1dx2dx3dx4 = D(x).

Lemma 1 implies that if the dilatations are uniformly
distributed in DT (3), i.e. distributed by a (left-)Haar mea-
sure [9, 24], their coordinates via φ(·) are uniformly dis-
tributed in R4, and vice versa. Combining this fact with the
fact that the quantizer η partitions R4 into cells with equal
volumes, we conclude that if the dilatations are uniformly
distributed, their hash keys are uniformly distributed.

4.2. Comparing 3D Rotations

Unlike the general case of robustly matching rotations
where both inputs can be noisy, we argue that the rotation
of a training feature is usually an inlier since the training
data is often clean, e.g. when generated from a 3D object
model. Thus, our method mostly compares rotations from
the scene with inliers. To exploit this fact, apart from us-
ing (2), we propose to use its left-invariant version, given
by (see e.g. [24]):

d′(R,XR)2 := d(I,R−1XR)2, (14)
where R is the rotation of a training feature and XR is a
rotation from the scene.

Interestingly, the distance is equivalent to the Euclidean
distance under RM, since:
1

2
‖R−XR‖2F = (1− cosα)2 + (sinα)2 (15)

= (1− cosα)2 + ‖0− v sinα‖2 (16)

=
∥∥faq(I)− faq(R−1XR)

∥∥2 = d′(R,XR)2, (17)
where α and v are respectively the angle and axis of
R−1XR, (15) is taken from [10], and faq(·) denotes the
FAQ representation of a rotation matrix.

5. Object Tracking in Color Video
In this section we apply the FAQ representation to the

task of object tracking. In the following, we discuss our fea-
ture representation, the appearance model acquisition and
our tracking framework.

5.1. 3D Rotation Features for 2D Color Values

With robustness in mind we design a lighting-invariant
color representation for an image region. Due to their sim-
plicity quaternions have been employed to represent RGB
vectors. For example, in [16] a pure quaternion is used:

qRGB := ir + jg + kb, (18)

where r, g and b are color values respectively. Alternatively,
a normalized quaternion can be adopted:

qNRGB :=
ir + jg + kb√
r2 + g2 + b2

. (19)

Normalization introduces some robustness towards lighting
and cast shadows [30], and is particularly suitable for hu-
man skin color under changing illumination [27].

While color presents valuable cues, image gradient ori-
entations were found to be particularly useful in the litera-
ture [19, 29]. Thus, we formulate the 3D rotation features of
color images as the angle of the gradient orientations around
the unit axis, given by the normalized RGB color values. In
particular, a feature at a pixel location is given as

qFAQ := cosα+
ir + jg + kb√
r2 + g2 + b2

sinα (20)

with gradient orientation α ∈ (−π, π).

5.2. Tracking with an Adaptive Appearance Model

The acquisition of online-learned appearance models in
contrast to a priori learned models is considered advanta-
geous for robust tracking in unknown scenes [19, 26]. The
direct FAQ representation allows us to adopt an incremental
PCA strategy for online learning while utilizing our robust
distance for matching 3D rotations. In particular, we re-
place the scalar values with quaternions and formulate the
update of the appearance model using the tools of quater-
nion PCA [15] and incremental PCA [17, 26].

Finally, we combine the incremental PCA of quaternions
with a particle filter to calculates the posterior of the sys-
tem’s state based on a transition model and an observation
model. This framework is commonly applied, and we base
our work on [26] and [19]. In short, our transition model is
described as a Gaussian mixture model around an approx-
imation of the state posterior distribution of the previous
time-step. Given an independent covariance matrix, which
represents the variance in horizontal and vertical displace-
ment, rotation, scale, ratio and skew, we extract a certain
number of particles, i.e. image patches, and find their fea-
ture vectors of rotations, given by (20). We then apply our
observation model to the extracted image features to find
the best match, and to initialize the next Gaussian mixture
model for the next frame of the video sequence. Our ob-
servation model computes the probability of a sample be-
ing generated by the learned eigenspace in the appearance



Method name Weight
Hashing-CNT 1
Hashing-HAQ 4−minR∈V ‖haq(R)− haq(XR)‖2
Hashing-RV 4π2 −minR∈V ‖rv(R)− rv(XR)‖2
Hashing-LI-RV π2 −minR∈V ‖rv(R−1XR)‖2
Hashing-FAQ 4−minR∈V ‖faq(R)− faq(XR)‖2
Hashing-LI-FAQ 4−minR∈V ‖faq(I)− faq(R−1XR)‖2

Table 1: Weighting strategies for different methods. Functions
haq(·), rv(·), faq(·) are representations of a 3D rotation matrix.

model, which we assume to be proportional to

e−γ‖qi−UtU
H
t qi‖2

F , (21)

where qi is the FAQ representation vector of the tested par-
ticle, U t is the current subspace, (·)H computes the Hermi-
tian transpose, and γ is a parameter that controls the spread.
We update the appearance model with the best matching
particle. We refer to [19, 26] for details of this approach.

6. Experiments
Our representation of 3D rotations is evaluated on 3D

recognition and object tracking in color video.

6.1. 3D Recognition

We evaluate our hash map with FAQs from §4 using the
public Toshiba CAD model point clouds dataset [25]. The
dataset consists of 1000 test sets of votes, each computed
from a point cloud containing a single rigid object – one of
10 test objects. Training and test features are provided.

We compare the proposed method and five variants.
These methods differ in line 6 of alg. 2, where different
weighting strategies corresponding to different distances are
adopted (see tab. 1). We use hashing-CNT as the base-
line method for finding σs and σt, as this variant is purely
based on the count of matching dilatations.

To find the best values for σs and σt, we adopt a
grid search using leave-one-out cross validation, similar
to [25, 31]. We maximize the recognition rate, followed
by the registration rate – each registration is evaluated as a
binary score on the displacement error (see [25] for details).
The best result for hashing-CNT is found at (σs, σt) =
(0.111, 0.92) where the recognition rate is 100% and the
registration rate is 86.7% (tab. 2, row 2). This method alone
outperforms the best-performing method on this dataset, the
minimum-entropy Hough transform [31] (tab. 2, row 1). It
also produces a perfect recognition rate, leaving little room
for improvement of the registration score.

We perform cross validation over the other five variants
using the same values for (σs, σt), so that their results are
comparable (see tab. 2). Generally, it is difficult to im-
prove significantly upon the performance of the proposed
hashing-CNT. We obtain a 100% recognition rate and a
slightly higher registration rate than that of hashing-CNT
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Figure 4: Example frames from the tracked video sequences with
results of the proposed FAQ tracking overlayed.

in all cases. Hashing-LI-FAQ gives the best registration
rate, followed by hashing-HAQ, hashing-LI-RV, and
hashing-FAQ, and hashing-RV. The left-invariant dis-
tances of RV and FAQ outperform their non-invariant coun-
terparts respectively.

Unlike existing vote-evaluation methods [2, 12, 21], the
evaluation time per test set (10,000 votes on average) of our
methods (last column of tab. 2) are even faster than the fast
minimum entropy Hough transform approach [31]. Among
them, distances based on FAQ have a slight advantage.

6.2. Object Tracking in Color Video

We now evaluate our 3D rotation representation in the
set-up of §5 on data with outliers caused by varying lighting,
occlusions and appearance changes. Our system (FAQ) with
quaternions as in (20) is compared to the competitive tracker
of Euler-PCA [18], and the original 2D distance [29]
(Gradients), both with gray scale images. We also
include the results of the RGB quaternion (RGB-Quat)
in (18) and its normalized version (N-RGB-Quat) in (19).
Finally, we replace our FAQ with the same rotation, but rep-
resented by HAQ and RM (tab. 3). Tests are performed on
four color videos, Vid1 to Vid4, taken from [1] and [26]
(fig. 4), which gray scale versions are commonly used in
tracking [18, 26]. In our particle filter, we fix the covari-
ance as follows: translation x = 0.11, y = 0.09, scale = 1.4,
rotation = 0.02, ratio = 0.002 and skew = 0.001. Online
learning is performed with optimal component numbers for
each set-up (see tab. 3). Analogously to [18], we extract
800 particles at each frame and update with a batch of 5



Method name Registration rate per object (%) Registration Recognition Time
Bearing Block Bracket Car Cog Flange Knob Pipe Piston1 Piston2 rate (%) rate (%) (s)

Min-entropy [31] 83 20 98 91 100 86 91 89 54 84 79.6 98.5 0.214
Hashing-CNT 85 31 100 97 100 95 99 92 71 97 86.7 100 0.092
Hashing-HAQ 91 29 100 95 100 94 99 90 83 96 87.7 100 0.103
Hashing-RV 92 23 100 94 100 89 100 89 81 94 87.3 100 0.117
Hashing-LI-RV 92 28 100 95 100 94 99 90 83 96 87.7 100 0.106
Hashing-FAQ 93 27 100 95 100 92 99 89 84 98 87.7 100 0.097
Hashing-LI-FAQ 94 26 100 95 100 97 99 90 82 96 87.9 100 0.095

Table 2: Qualitative results for all methods. Bold values indicate the best achieved results across all methods.

Method name Feature representation Components
Euler-PCA cos(1.9πi) + i sin(1.9πi) 15
Gradient cos(α) + i sin(α) 35
RGB-Quat ir + ig + ib 20
N-RGB-Quat ir+ig+ib√

r2+g2+b2
10

RM vectorised rotation matrix 40
HAQ cos α

2
+ ir+ig+ib√

r2+g2+b2
sin α

2
20

FAQ cosα+ ir+ig+ib√
r2+g2+b2

sinα 40

Table 3: The different tracking set-ups. The image intensity is
given by i, color is given as r, g, b. The gradient angle is α.

samples. We evaluate the tracking performance based on
accuracy (fig. 5), i.e. root mean square (RMS) error between
predicted and true landmarks, and precision (fig. 6).

Gradient, RM, HAQ and FAQ track the target in Vid1
successfully, while all other set-ups, which build upon color
and intensity alone, fail to track the video due to cast shad-
ows and large pose variations. In Vid2, the 3D rotation
feature-based frameworks (RM, HAQ and FAQ) again outper-
form the other systems. N-RGB-Quat is able to track most
of the sequence, but fails during the appearance change in
frame 390. All other systems struggle during the motion
blur and large pose variation around frame 159. The penul-
timate video Vid3 is a night-time recoding of a rigid ob-
ject in low light intensity. Such scene is considered easy
to track, and all systems succeed. The low light however
slightly reduces the performance of RM, HAQ and FAQ, as
the color values for the rotation axes are less reliable. The
most challenging video is Vid4, in which the target per-
forms two 360◦ turns. The FAQ method is the only system
among the ones compared to succeed in tracking these ap-
pearance changes. The combination of robustness to vary-
ing appearance and the color and gradient cues make the
tracking for FAQ possible.

With regards to precision, the group of gradient-based
methods (Gradient, RM, HAQ, FAQ) performs generally
well, while non-gradient-based methods (Euler-PCA,
RGB-Quat, N-RGB-Quat) are less precise. Furthermore,
systems with color and gradient outperform other methods
for most videos – Vid3 is an exception, as the target is less
difficult to track and the low lighting causes reduced perfor-
mance with 3D rotation features.
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Figure 5: RMS error of each frame for Vid1, Vid2, Vid3 and Vid4
(top to bottom). Gaps indicate occlusions or tracking failures in
cases were the tracked object is empty.

In general, FAQ largely improves upon its 2D version,
i.e. Gradient, and is among the best methods for Vid1,
Vid2 and especially Vid4. In comparison to other 3D rota-
tion features, only RM performs similarly well in Vid1 and
Vid3 – note however, RM is slower as the dimensionality is
increased by a factor of 9. Finally, we emphasize that FAQ’s
unique representation of rotations is advantageous to HAQ’s
dual mapping, as FAQ achieves higher precision. We con-
clude that the FAQ representation can be employed for fast
and robust online subspace learning for object tracking.
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Figure 6: Object tracking results. Precision is shown for Vid1,
Vid2, Vid3 and Vid4 (left to right, top to bottom). Plots show the
percentage of frames which have smaller errors than the given
RMS error.

7. Conclusion
We have introduced a new distance for robustly matching

vectors of 3D rotations and have shown that this distance
leads to an efficient representation in which any 3D rota-
tion maps uniquely to a unit quaternion. We have applied
the distance to 3D shape recognition where we introduced
efficient hashing of dilatations and obtained state-of-the-art
recognition and registration results on a public dataset. In
the application to 2D object tracking we have combined on-
line subspace learning with our proposed FAQ representa-
tion to facilitate fast and robust updates.
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