
Improve Accurate Pose Alignment and Action Localization by Dense
Pose Estimation

Yuxiang Zhou1, Jiankang Deng1 and Stefanos Zafeiriou1,2

1 Department of Computing, Imperial College London, United Kingdom
2 Centre for Machine Vision and Signal Analysis, University of Oulu, Finland

{yuxiang.zhou10, j.deng16, s.zafeiriou}@imperial.ac.uk

Abstract— In this work we explore the use of shape-based
representations as an auxiliary source of supervision for pose
estimation. We show that shape-based representations can
act as a source of ‘privileged information’ that complements
and extends the pure landmark-level annotations. We explore
2D shape-based supervision signals, such as Support Vector
Shape. Our experiments show that shape-based supervision
signals substantially improve pose alignment accuracy in the
form of a cascade architecture. We outperform state-of-the-
art methods on the MPII and LSP datasets, while using
substantially shallower networks. For action localization in
untrimmed videos, our method introduces additional classifi-
cation signals based on the structured segment networks (SSN)
and further improved the performance. To be specific, dense
human pose and landmarks localization signals are involved
in detection progress. We applied out network to all frames
of videos alongside with output from SSN to further improve
detection accuracy, especially for pose related and sparsely
annotated videos. The method in general achieves state-of-the-
art performance on Activity Detection Task for ActivityNet
Challenge2017 test set and witnesses remarkable improvement
on pose related and sparsely annotated categories e.g. sports.

I. INTRODUCTION

Activity Detection and temporal action localization [25],
[22], [13], [15], [7], [4], [14] has drawn increasing attention
to the research community in past few years. Human activity
understanding in untrimmed and long videos, especially,
are crucial part of real-word applications including video
recommendation, video surveillance, human-machine inter-
action and many others. It is of importance for algorithms
to determining not only actions contained in videos but also
temporal boundaries (activity starting/ending frames).

However, many methods are trained on short video clips
where actions are tightly cropped, while, in practical, videos
tend to be long and untrimmed. Also, spatial attentions for
human poses are often neglected. The current methods of
choice for human pose estimation are Deep Convolutional
Neural Network (DCNNs). The general architecture applied
for the task involves finding the parameters of a DCNN,
which maps the image pixels to the locations of the body-
parts. Recently, in order to incorporate contextual informa-
tion in a better manner, cascade structures are proposed.
In these cascade structures instead of regressing directly to
part locations, fully convolutional networks are trained that
output part detection heatmaps by representing each part
using a circle/disc of a particular radius. Then, regression is

Fig. 1. Frames in target video are extracted and applied human detector
to generate human proposals before applying dense pose estimation to
generate heat maps of landmarks and densely correspondent features. These
additional signals are combined with the pyramid of action frame proposals
from SSN to further improve the performance of determine starting/ending
frames. Regarding timelines, TOP (blue) shows grondtruth action frame;
BOT (green) shows predicted action frame. Figure best viewed by zooming
in.

performed on these heatmaps. The circle/disc representation
could be sub-optimal for describing the parts, as well as the
human body shape.

Driven by ActivityNet [4], a large-scale video bench-
mark for human activity understanding is released to the
research community and consist of 200 activity categories,
in which each contains 100 videos collected “in-the-wild”.
This dataset brought notable challenges to existing state-
of-the-art approaches. In this paper, we integrated spacial
attentions from human detection and dense human poses
to further improve accuracy of both pose alignment and
action localization. The contributions can be summarize as
following:

• We propose a better way to use the contextual, as well
as the body shape information by learning heatmaps
that correspond to the support vector description of
human body. We demonstrate that by using the proposed
representation we train DCNNs that not only achieve
state-of-the-art performance for body-part detection but
also can recover the shape of the body as a whole.

• We migrated additional classification signals from the
dense human poses above with spacial attentions along-
side with the usage of structured segment networks
(SSN) [25] as shown in Figure 1. Specifically, human
body detection, semantic human body segmentation
and pose landmarks localization signals are involved978-1-5386-2335-0/18/$31.00 c©2018 IEEE



in activity detection progress. We apply the additional
signals to all frames of videos to generate dense human
pose features and combined with results from SSN to
further improve accuracy, especially for pose related and
sparsely annotated videos as described in Fig 4. The
method in general achieves state-of-the-art performance
on test set and observed remarkable improvement on
pose related and sparsely annotated categories.

II. DENSE BODY POSE ESTIMATION NETWORKS

Our work in dense body pose estimation networks are
inspired by learning with ‘Privileged Information’ [19], [1],
[5], [26], where it is argued that one can simplify training
through the use of an ‘Intelligent Teacher’ that in a way
explains the supervision signal, rather than simply penalizing
misclassifications. This technique was recently used in deep
learning for the task of image classification [5]. It shows
that shape-based representations provide an excellent source
of privileged information for human pose estimation. This
additional information is only available during training, only
serves as a means of simplifying the training problem,
and only requires landmark-level annotations, as all current
methods do. Another way of stating this is that we use shape-
based representations to construct a set of auxiliary tasks
that accelerate and improve the training of pose estimation
networks. Additional dense supervision signals used in action
detection task are Support Vector Shape (SVS) [18].

A. Support Vector Shapes (SVS)

A Support Vector Shape (SVS) is a decision function
trained on binary shapes using Support Vector Machines
(SVMs) with Radial Basis Function (RBF) kernels [10] - a
shape is represented in terms of the classifier’s response on
the plane. This representation can be applied to both sparse
landmark points and curves, fuses inconsistent landmarks
into consistent and directly comparable decision functions,
and is robust against noise, missing data, self-occlusions and
outliers.

The annotations for all training images are densely sam-
pled to yield a set of landmarks per image. SVM training
proceeds by assigning landmarks to the ‘positive’ class
and randomly sampled points around them are assigned as
belonging to the ‘negative’ class. SVMs with RBF kernel
functions can map any number of data points onto an infinite-
dimensional space where positive and negative points are
linearly separable, hence the classification boundary on the

Fig. 2. Multichannel Support Vector Shape representations using different
granularity. From left to right we show the SVS for C = [3, 6, 12, 24]
respectively, where C is the scaling of the underlying SVM data term.

2D space represents the actual shape of the object. As
in [10] we use class-specific losses to accommodate the
positive/negative class imbalance problem. We extend the
SVS representation to support also the case where multiple
parts are annotated. It can provide further guidance on the
estimation of dense shape correspondences for various object
classes. In the case of human poses, 7-channel SVS are
defined as in Figure 2.

B. Network Architecture

This section provides some details regarding our network
architecture used to perform prediction of body poses and
landmarks. In particular, we built our architecture based on
the stacked hourglass networks, which is originally proposed
in [9]. It consists of a series of convolutions and down
sampling, followed by a series of convolutions and up
sampling, interleaved with skip connections that add back
features from high resolutions. The symmetric shape of the
network resembles a hourglass, hence the name.

In the stacked hourglass paper the best body pose es-
timation results have been achieved by using 8 hourglass
networks. In our architecture, instead of 8, only 2 hourglasses
are stacked. The first hourglass is used to regress to dense
shape information while the second one takes as input
the image and the privileged information and regresses to
landmark locations. Regarding loss function, we used pixel-
wise `1 smooth loss for regressing to SVS signals that has
continuous values.

III. ACTIVITY DETECTION

The task for activity detection is to localize the temporal
boundary of an activity. There are two types of action
annotations as shown in Fig 4, a) action duration is long
and almost one action per video in the category e.g. Zumba;
b) action duration is short and one video contains multiple
actions e.g. Long Jump. Most algorithms tackles the former
situation well as these actions are covering majority part of
the videos and their activity boundaries are very close to
the starting/ending of videos. However, it is challenging to
get sufficient accuracy for the second situation where most
modern methods failed to provide accurate proposal.

Our methods are focused on determine accurate short
activity boundary by incorporating attentions from human
detector, poses landmark localization and pose segmentation
with activity and completeness classifiers from SSN.

A. Structured Segment Networks (SSN)

The SSN network [25] relies on a proposal method (de-
scribed in section III) to produce a set of temporal proposals
of varying duration, where each proposal comes with a
starting and an ending time. Given an input video, a temporal
pyramid will be constructed upon each temporal proposals.
One proposal is divided into three stages namely starting,
course, and ending. In additional to the course stage, another
level of pyramid with two sub-parts is constructed. To form
the global region representations, features from DCNNs are
pooled within these five parts and concatenated together. The



Fig. 3. TOP:Exemplar joints localization on MPII and LSP test set. BOT: Exemplar predictions of estimated dense whole body joints correspondence.
Figure best viewed by zooming in.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC
Newell et al., ECCV’16 [9] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9
Bulat&Tzimiropoulos, ECCV’16 [3] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 59.6
Wei et al., CVPR’16 [21] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4
Pishchulin et al., CVPR’16 [12] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5
Our Model 98.4 96.4 92.0 87.9 89.5 88.4 85.1 91.4 62.7

TABLE I
JOINTS LOCALISATION ACCURACY ON MPII DATASET.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC
Pishchulin et., ICCV2013 [11] 87.2 56.7 46.7 38.0 61.0 57.5 52.7 57.1 35.8
Wei et al., CVPR2016 [21] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 65.4
Bulat&Tzimiropoulos, ECCV2016 [3] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7 63.4
Insafutdinov et al., ECCV16 [6] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 66.1
Our Model 95.8 95.8 94.9 92.3 95.2 96.6 95.7 95.2 69.6

TABLE II
JOINTS LOCALISATION ACCURACY ON LSP DATASET.

(a) Zumba

(b) Long Jump

Fig. 4. Action annotations of two particular classes on the validation set.
Each segment indicates the action duration, which is normalized by the
whole video. Detection of the first action (Zumba) is much easier than the
second action (Long Jump).

activity classifier and the completeness classifier operate on
the the region representations to produce activity probability
and class conditional completeness probability. The final
probability of the proposal being positive instance is decided

by the joint probability from these two classifiers.

B. Temporal Region Proposal

An input video is divided to 20 snippets and temporal
region are generated based on sliding windows [14], [23]. A
sliding window of size 3 are selected so 18 region proposals
are generated. As we incorporated human detector [24],
dense pose estimation and alignment as additional feature,
existing proposed regions will be duplicated if the human
pose detector returns multiple entries. For each proposed
region, K-level temporal pyramid where each level dividing
the region into smaller parts.

C. Temporal Region Classifiers

Structured temporal pyramid pooling [25] is performed
to extract global features in which our detection, pose
estimation and segmentation are involved. The training and
testing of the classifiers are following the SSN network in
similar manner.

Two types of linear classifiers (activity classifier and
completeness classifier) are implemented on top of high-level
features. Given a proposal, the activity classifier will produce
a vector of normalized responses via a softmax layer which
represents conditional distribution P (ci|pi) where ci is class
label and pi represents given proposal. The completeness



Fig. 5. PCKh plot of landmark predictions accuracy on MPII (TOP) test
set and on LSP (BOT) test set. Out model using SVS signal is reported
and compared to current state-of-the-art methods.

classifier Ck are trained for every activity class k. It can be
expressed as P (bi|ci, pi) where bi is binary indicator of the
completeness of given region pi. Outputs of both formed a
joint distribution so the loss function is defined as:

Loss = −logP (ci|pi)− 1(ci>1)P (bi|ci, pi)

where completeness term is active only when class label is
not background.

IV. EXPERIMENTS

A. Joints Localization on MPII & LSP

Databases The experiments outlined in this section are
performed on two well known body pose databases: MPII
Human Pose [2] and Leeds Sport Poses (LSP) + extended
training set [8]. There are around 18k training images and
7k testing images involved in MPII. In section II-A, we split
training set randomly to make a 3k size validation set while
the rest are used for training. In section IV-B, the same 15k
training set are used for training and reporting results of
MPII. Results on LSP are reported by fine tuning the same
model with the 11k extended LSP training set.
Evaluation Metrics The accuracy reported follow the Per-
centage Correct Keypoints (PCK) measurement on LSP
dataset. Normalized PCK measurement by the scale of head
(PCKh) is used for MPII on both validation and test set.
Note that the performance gap between validation and test
set is due to the use of invisible parts in measuring the
performance. That is, in the validation set we measured the
performance making use of the invisible parts, while the test
set protocol of MPII does not use the invisible parts when
computing the evaluation metrics.

Model Training Our model is implemented using Tensor-
Flow 1. 15k images from the training set mentioned above are
used with augmentations. Each pose instance in the image
was cropped to size 384 × 384. Cropped images are then
randomly flipped, rotated by ±30◦

and rescaled by 0.75 to
1.25 before cropping to size 256×256. The model are trained
with initial learning rate 1 × 10−3 with exponential decay
factor of 0.97 at every 2 epochs. The models were trained
for 100 epochs before testing.

Results reported on MPII are obtained by using SVS su-
pervision signal. Figure 5 plot the cumulative error distribu-
tion on MPII test set and Table I summarize the quantitative
results. Comparison with the state-of-the-art on LSP dataset
is shown in Figure 5 and Table II.

Some qualitative results are collected in Fig 3 for the test
sets of MPII and LSP. Top three rows show joint localization
in challenging poses e.g. extreme viewing angles, challeng-
ing poses, occlusions, self occlusions and ambiguities. Bot-
tom row demonstrates dense shape correspondence estimated
on test images using SVS signal.

B. Action Localization

The results of our methods on ActivityNet 2017 (test set)
are shown in Table III. Highest ranked results submitted to
previous ActivityNet 2016 Challenge and current ActivityNet
2017 Challenge are involved in the table.

ActivityNet 2017 (Test Set)
Method Avg. mAP
Wang, R. and Tao, D. [20] 14.62
Singh, B. and Marks, T. et. al. [16] 16.68
Singh, G. and Cuzzolin, F. [17] 17.83
Zhao, Y. and Xiong, Y. et. al. [25] 28.28
Xiong, Y. et. al. [ActivityNet 2017] 31.863
Lin, T. et. al. [ActivityNet 2017] 33.406
Our Method 31.826

TABLE III
ACTION DETECTION RESULTS ON ACTIVITYNET 2017. EVALUATED BY

MEAN AVERAGE PRECISION (MAP).

V. CONCLUSION

In this work, we have shown that shape-based repre-
sentations can largely help CNN training for human pose
estimation through the construction of auxiliary tasks that
largely complement the landmark-level annotations. Our re-
sults indicate that we thereby accelerate training, improve
accuracy, and outperform state-of-the-art deeper architectures
on challenging benchmarks, while at the same time obtaining
a network that not only provides landmarks but also delivers
dense body joints. In future work we intend to further explore
the use of shape-based representations for general object
recognition.
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