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Recovering Joint and Individual Components in
Facial Data
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Abstract—A set of images depicting faces with different expressions or in various ages consists of components that are shared across
all images (i.e., joint components) imparting to the depicted object the properties of human faces as well as individual components that
are related to different expressions or age groups. Discovering the common (joint) and individual components in facial images is crucial
for applications such as facial expression transfer and age progression. The problem is rather challenging when dealing with images
captured in unconstrained conditions in the presence of sparse non-Gaussian errors of large magnitude (i.e., sparse gross errors or
outliers) and contain missing data. In this paper, we investigate the use of a method recently introduced in statistics, the so-called Joint
and Individual Variance Explained (JIVE) method, for the robust recovery of joint and individual components in visual facial data
consisting of an arbitrary number of views. Since the JIVE is not robust to sparse gross errors, we propose alternatives, which are (1)
robust to sparse gross, non-Gaussian noise, (2) able to automatically find the individual components rank, and (3) can handle missing
data. We demonstrate the effectiveness of the proposed methods to several computer vision applications, namely facial expression
synthesis and 2D and 3D face age progression ‘in-the-wild’.

Index Terms—Low-Rank, Sparsity, Facial Expression Synthesis, Face Age Progression, Joint and Individual Components.
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1 INTRODUCTION

Facial images convey rich information, which can be perceived
as a superposition of components associated with attributes, such
as facial identity, expression, age etc. For instance, a set of images
depicting expressive faces consists of components that are shared
across all images (i.e., joint components) imparting to the depicted
object the properties of human faces. Besides joint components,
an expressive face consists of individual components that are
related to different expressions. Such individual components can
be expression-specific deformation of a face, i.e., deformations
around lips and eyes in case of smiles. Similarly, a set of images
depicting faces in different ages can be seen as a superposition
of joint components that are invariant to the age and age-specific
components that are individual to each age group (e.g., wrinkles).
Consequently, being able to extract such joint and individual
components from facial images is crucial for applications such
as facial expression synthesis and age progression [1], [2], [3],
[4], [5], [6], among other visual data analysis tasks.

Extracting the joint components among data has created a
wealth of research in statistics, signal processing, and computer
vision. Two mathematically similar but conceptually different
models underlie the bulk of the methodologies. In particular,
the Canonical Correlation Analysis (CCA) [7] and its variants
e.g., [8], [9], have been proposed for extracting linear correlated
components among two or more sets of variables. Similarly,
inter-battery factor analysis [10] and its extensions e.g., [11],
determines the common factors among two sets of variables. The
main limitation of the aforementioned methods is that they only
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recover the most correlated linear subspace of the data, ignoring
the individual components among the different views or datasets.

The above mentioned limitation is alleviated by recent
methods such as the Joint and Individual Variation Ex-
plained (JIVE) [12], the Common Orthogonal Basis Extraction
(COBE) [13], and the Robust Correlated and Individual Com-
ponent Analysis (RCICA) [14], which are briefly described in
Section 2.

Besides the rich structure in facial visual data, images are
subject to various types of errors, distortions, and noise. Common
dense distortions such as ambient noise or quantization noise are
of small magnitude and it is natural to assume that they follow a
Gaussian distribution of small variance. Methods such as the CCA
and its variants, JIVE, and COBE are stable in the presence of
Gaussian noise.

Apart from these small but dense noises, there are gross errors
that are sparsely supported but of large or even unbounded magni-
tude, such as the salt-and-pepper noise in imaging devices, occlu-
sions in facial images, registration errors, or errors due incorrect
localization and tracking. These errors rarely follow a Gaussian
distribution and due to their sparse nature (i.e., the number of
errors is bounded below some constant) are collectively referred to
as sparse gross errors or noise. Except for the most recent RCICA,
the COBE and JIVE rely on least squares error minimization and
thus they are prone to gross errors and outliers [15]. That is,
the estimated components can be arbitrarily away from the true
ones. Therefore, the problem of joint and individual components
recovery is rather challenging when dealing with facial images and
in general visual data captured under unconstrained (i.e., ‘in-the-
wild’) conditions.

In this paper, we investigate the problem of recovering the
joint and individual components from facial (and in general visual)
data consisting of an arbitrary number of views, captured in-the-
wild. Such data are therefore contaminated by sparse, gross, non-
Gaussian noise and possibly contain missing values. To this end,
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we propose robust alternatives to the JIVE (coined collectively
as Robust-JIVE, RJIVE), where the components are estimated by
employing the `1-norm. The `1-norm is suitable for robust estima-
tion in the presence of sparse gross errors [15]. The contributions
of the paper are summarized as follows:

• We propose a novel, general framework, the RJIVE in
Section 3, for the robust recovering of joint and individual
components from multi-view data in the presence of sparse
gross errors and possibly missing values. The proposed
RJIVE decomposes the data into three terms: a low-rank
matrix that captures the joint variation across views, low-
rank matrices accounting for structured variation individ-
ual to each view, and a sparse matrix collecting the sparse
gross errors1.

• In particular, the RJIVE consists of 4 different models,
namely `1-RJIVE, NN-`1-RJIVE, SRJIVE, and RJIVE-
M. In the `1-RJIVE, the rank of both joint and individual
components are user-defined, while in the NN-`1-RJIVE
the rank of each one of the individual components is au-
tomatically estimated via nuclear norm minimization. As
opposed to the previous two models, the SRJIVE directly
extracts the orthonormal bases of joint and individual
components and improves their scalability. Finally, the
RJIVE-M extends the SRJIVE in order to handle missing
values.

• Based on the recovered joint and individual components
from training data, two suitable optimization problems that
extract the corresponding modes of variation (i.e., joint
and individual components) of unseen test samples, are
proposed in Section 4.

• To tackle the proposed optimization problems, algorithms
based on the Alternating-Directions Method of Multipliers
(ADMM) [17] are developed in Sections 3, 4, 5, and 6.

• We demonstrate the applicability of the proposed methods
in three challenging computer vision tasks, namely facial
expression synthesis, face age progression in 2D images
and 3D data captured ‘in-the-wild’. Experimental results
corroborate the effectiveness of the proposed approach in
Section 7.

Notation: Throughout the paper, scalars are denoted by lower-
case letters, vectors (matrices) are denoted by lower-case (upper-
case) boldface letters i.e., x, (X). I denotes the identity matrix.
The j-th column of X is denoted by xj . Several norms and
metrics will be used. The `1- and the `2-norms of x are defined
as ‖x‖1 =

∑
i |xi| and ‖x‖2 =

√∑
i x

2
i , respectively. | · |

denotes the absolute value operator. The matrix `1 norm is defined
as ‖X‖1 =

∑
i

∑
j |xij |, the Frobenius norm is defined as

‖X‖F =
√∑

i

∑
j x

2
ij , and the nuclear norm of X (i.e., the

sum of singular values of a matrix) is denoted by ‖X‖∗. The
vector (matrix) `0 -(quasi) norm returns the total number of non-
zero elements in a vector (matrix). The rank function is denoted
by rank(·).

1. A preliminary version of the present work has been proposed in [16],
where the the main model and its algorithmic framework has been introduced.
In this paper, we further investigate RJIVE and propose a unified model that
directly extracts the orthonormal bases of joint and individual components
and improves the scalability of the main model. Besides that we propose an
extension of RJIVE for handling missing data. Moreover, new qualitative and
quantitative experimental results are included in this paper.

The minimization of both the rank function and the `0-
norm are NP-hard problems [18], [19]. Consequently, the rank
function and the `0-norm are typically replaced by their convex
surrogates [20], [21].

Operators: The solution of the several problems appeared in
the paper relies on different (proximal) operators which are defined
next. Let for any matrix X = UΣVT be the Singular Value
Decomposition (SVD).

• Shrinkage operator [22]: Sτ [σ] = sgn(σ) max(|σ|−τ, 0).
• Singular Value Thresholding (SVT) operator [23]: Dτ =

USτVT .
• Rank-r SVD operator:
Qr [X] =

[
U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)T

]
.

• Procrustes operator: P [D] = GRT (given the rank-r
SVD of a matrix D = GPRT ).

2 BACKGROUND

To make the paper self-contained, this section includes a brief
review of the JIVE [12], COBE [13], and RCICA [14].

2.1 Joint and Individual Variation Explained (JIVE)
The JIVE recovers the joint and individual components among
M ≥ 2 datasets {X(i) ∈ Rd

(i)×J , i = 1, 2, . . . ,M}, where J is
the number of samples of each dataset. In particular, each matrix
is decomposed into two terms: a low-rank matrix J(i) ∈ Rd

(i)×J

capturing joint structure among dataset and a low-rank matrix
A(i) ∈ Rd

(i)×J capturing individual structure of each dataset.
That is, X(i) = J(i) + A(i), i = 1, 2, . . . ,M. Let X and J be∑M
i=1 d

(i) × J matrices constructed by concatenation of the cor-
responding matrices, i.e., X = [X(1)T ,X(2)T , . . . ,X(M)T ]T ,
J = [J(1)T ,J(2)T , . . . ,J(M)T ]T , JIVE solves the rank-
constrained least-squares problem [12]:

min
J,{A(i)}Mi=1

1

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥2

F

.

s.t. rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1.
(1)

Problem (1) imposes rank constraints on the joint and individual
components and requires the rows of J and {A(i)}Mi=1 to be
orthogonal. The intuition behind the orthogonality constraint
stems for the fact that sample patterns responsible for joint
structure between data types are unrelated to sample patterns
responsible for individual structure [12]. By adopting the least
squares error, the JIVE assumes Gaussian distributions with small
variance [15]. Such an assumption rarely holds in real world
data, where gross, non-Gaussian corruptions are in abundance.
Consequently, the components obtained by employing the JIVE
in the analysis of grossly corrupted data may be arbitrarily away
from the true ones, thus degenerating their performance.

2.2 Common Orthogonal Basis Extraction (COBE)
A closely related method to the JIVE is the COBE which extracts
the common and individual components of M datasets of the
same dimensions by solving a set of least-squares minimization
problems [13]. More specifically, each dataset X(i) ∈ RJ×d

(i)

is factorized as Ξ(i)Λ(i)T , where a column of Ξ(i) signifies a
latent variable to be found and Λ(i) signifies a matrix of weights.
Ξ(i) is assumed to be decomposable in blocks as

[
Ξ̄Ξ̃(i)

]
where
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Ξ̄ ∈ Rn×m, Ξ̃(i) ∈ Rn×(d(i)−m) and m ≤ min{d(i), i =
1, · · · ,M}. In other words, Ξ̄ is assumed to be common in all
factorizations and hence it presents joint structure, while Ξ̃(i) is
assumed to represent individual structure. Similarly, Λ(i) splits
into Λ̄(i) and Λ̃(i). The optimization problem of the COBE takes
the following form:

min
Ξ̄,Ξ̃(i)

M∑
i=1

∥∥∥X(i) − Ξ̄Λ̄(i)T − Ξ̃(i)Λ̃(i)T
∥∥∥2

F
.

s.t. Ξ̄T Ξ̄ = I, {Ξ̃(i)T Ξ̃(i) = I, Ξ̄T Ξ̃(i)T = 0}Mi=1.

(2)

Similarly to the JIVE, the utilization of the least square error
renders the COBE non-robust against sparse, non-Gaussian errors.

2.3 Robust Correlated and Individual Component Anal-
ysis (RCICA)

The goal of the RCICA [14] is to extract both the correlated and
the individual components between two known, high-dimensional
datasets or views, namely {X(i) ∈ Rd

(i)×J}2i=1, in the presence
of sparse noise (or errors). To this end, the RCICA seeks a
decomposition of each data matrix {X(i)} into three terms:
X(i) = C(i) + A(i) + E(i), i = 1, 2. C(i) ∈ Rd

(i)×J

and A(i) ∈ Rd
(i)×J are low-rank matrices, with rank(C(i))

≤ kc and rank(A(i)) ≤ k(i) and mutually independent columns,
capturing the correlated and individual components, respectively
and E(i) ∈ Rd

(i)×J is a sparse matrix accounting for the sparse
noise.

To extract the correlated components C(i) ∈ Rd
(i)×J , the

cost function of the Canonical Correlation Analysis (CCA) [7] is
adopted. That is, by further decomposing the matrix {C(i)}2i=1

as: C(i) = U(i) V(i)T X(i), the maximally correlated
components are derived by minimizing the CCA cost, namely
λc
2 ‖V

(1)TX(1) − V(2)TX(2)‖2F . Here, U(i) are orthonormal
bases, transforming the correlated components back to the ob-
servation space X(i). Since the column space of the individual
components A(i) is desired to be orthogonal to the one of the
correlated components, we have to enforce {Q(i)TU(i)}2i=1 = 0,
where Q(i) are column orthonormal bases spanning the column
space of the individual components A(i). That is, A(i) =
Q(i) H(i).

Consequently, a natural estimator accounting for the upper-
bounded rank of the correlated and independent components and
the sparsity of {E(i)}2i=1 is to minimize the objective function
of CCA, i.e., 1

2‖V
(1)TX(1) −V(2)TX(2)‖2F as well as the rank

of {C(i) = U(i) V(i)T X(i),A(i) = Q(i) H(i)}2i=1 and the
number of non-zero entries of {E(i)}2i=1 measured by the `0-
(quasi) norm, e.g., [22]. To avoid the NP-hardness of rank and
`0-norm minimization, the nuclear- and the `1-norms are typically
adopted as surrogates to rank and `0-norm, respectively [20], [21].
By employing the unitary invariance of the nuclear norm i.e.,
‖Q(i)V(i)T ‖∗ = ‖V(i)T ‖∗, the optimization problem of RCICA

is formulated as the following constrained non-linear one:

min
V

2∑
i=1

[
‖V(i)T ‖∗ + λ(i)

∗ ‖H(i)‖∗ + λ
(i)
1 ‖E(i)‖1

]
+
λc
2
‖V(1)TX(1) −V(2)TX(2)‖2F ,

s.t. (i) X(i) = U(i)V(i)TX(i) + Q(i)H(i) + E(i),

(ii) V(i)TX(i)X(i)TV(i) = I,

(iii) U(i)TU(i) = I, Q(i)TQ(i) = I,

(iv) Q(i)TU(i) = 0, i = 1, 2,

(3)

where the positive parameters λc, λ
(1)
∗ , λ(2)

∗ , λ(1)
1 and λ

(2)
1

control the correlation, rank and sparsity of the derived spaces and
V = {U(i),V(i),Q(i),H(i),E(i)}2i=1 collects the optimization
variables. Constraints (ii) in (3) have been adopted from the
CCA [7], while the constraints (iii) and (iv) ensure that both
the recovered correlated and individual components are linearly
independent.

Although the RCICA is robust to sparse, non-Gaussian error,
its extension to more than two datasets is not trivial due to the
orthogonality among the correlated and individual components
and column orthonormality of the basis matrices U(i) and Q(i),
i = 1, 2, . . .M , with M being the number of different views.
This makes the resulting optimization problem highly-nonlinear
and hence difficult to solve.

3 ROBUST JIVE
Consider data consisting of M views, namely {X(i) ∈
Rd

(i)×J}Mi=1, with x
(i)
j ∈ Rd

(i)

, j = 1, . . . , J being a vectorized
(visual) data sample, possibly contaminated by gross, sparse
errors. The goal of the RJIVE is to robustly recover the joint
components which are shared across all views as well as the
components which are deemed individual for each view. That is:

X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E, (4)

where X =
[
X(1)T , · · · ,X(M)T

]T
∈ Rq×J , J =[

J(1)T , · · · ,J(M)T
]T
∈ Rq×J , {A(i) ∈ Rd

(i)×J}Mi=1, q =

d(1) + · · · + d(M), are low-rank matrices capturing the joint and
individual variations, respectively and E ∈ Rq×J denotes the
error matrix accounting for the gross, but sparse non-Gaussian
noise. In order to ensure the identifiability of (4), the joint
and common components should be mutually incoherent, i.e.,
{JA(i)T = 0}Mi=1. Assuming that the number of errors is
bounded below some constant, the number of errors in the es-
timated components is similarly bounded and hence, a natural
estimator accounting for the sparsity of the error matrix E is
to minimize the number of the non-zero entries of E measured
by the `0-quasi norm [22]. However, as in case of the RCICA,
to make the problem computationally tractable the `0-norm is
replaced by its convex surrogate, namely the `1-norm. Therefore,
the joint and individual components as well as the sparse error
are recovered by solving the following constrained, non-linear
optimization problem:

min
J,{A(i)}Mi=1

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

.

s.t. rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1

(5)
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Algorithm 1: ADMM solver for (7) (`1-RJIVE).

Input : Data {X(i) ∈ Rd
(i)×J}Mi=1. Rank of joint

component r. Ranks of individual components
{r(i)}Mi=1. Parameter ρ.

Output : Joint component J, individual components
{A(i)}Mi=1

Initialize: Set J0, {A(i)
0 }Mi=1, E0, L0 to zero matrices, t = 0,

µ0 > 0, X =
[
X(1)T , · · · ,X(M)T

]T
.

1 while not converged do

2 M = X−
[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et + µ−1

t Lt;
3 Jt+1 = Qr [M], [U,Σ,V] = svd(M);
4 P = I−V(:, 1 : r)V(:, 1 : r)T ;
5 for i = 1 :M do
6 A

(i)
t+1 =

Qr(i)
[(

X(i) − J
(i)
t+1 −E

(i)
t + µ−1

t L
(i)
t

)
P
]
;

7 end
8 E =

S 1
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
− µ−1

t L

]
;

9 Lt+1 =

Lt+µt

(
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

)
;

10 µt+1 = min(ρ · µt, 107); t = t+ 1;
11 end

Clearly, (5) is a robust extension to JIVE [12], and requires an
estimation for the rank of both joint and individual components.
However, in practice those (M + 1) values are unknown and dif-
ficult to estimate since an extensive tuning procedure is required.
To alleviate this issue, we propose a variant of (5), which is able to
determine the optimal ranks of individual components directly. By
assuming that the actual ranks of individual components are upper
bounded, i.e., {rank(A(i)) ≤ K(i)}Mi=1, problem (5) is relaxed
to the following one:

min
J,{A(i)}Mi=1

λ

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

+

M∑
i=1

∥∥∥A(i)
∥∥∥
∗
, s.t. rank(J) = r, {JA(i)T = 0}Mi=1,

(6)

where the rank function is replaced by its convex envelope,
namely the nuclear norm and λ > 0 is a regularizer.

3.1 Optimization Algorithms
In this section, algorithms for solving (5) and (6) are developed.

To solve (5), the Alternating-Direction Method of Multipliers
(ADMM) [17] is employed. To this end, problem (5) is reformu-
lated to the following separable one:

min
J,{A(i)}Mi=1,E

‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1,

(7)

where E is an auxiliary variable. To solve (7), the corresponding
augmented Lagrangian function is given by:

L(J, {A(i)}Mi=1,E,L) = ‖E‖1 −
1

2µ
‖L‖2F

+
µ

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T
−E +

L

µ

∥∥∥∥2

F

,

(8)

Algorithm 2: ADMM solver of (9) (NN-`1-RJIVE).

Input : Data {X(i) ∈ Rd
(i)×J}Mi=1. Rank of joint

component r. Parameter ρ.
Output : Joint component J, individual components

{A(i)}Mi=1

Initialize: Set J0, {A(i)
0 ,R

(i)
0 ,Y

(i)
0 }Mi=1, E0, F0 to zero

matrices, t = 0, µ0 > 0,

X =
[
X(1)T , · · · ,X(M)T

]T
.

1 while not converged do

2 Jt+1 = Qr

[
X−

[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et +

Ft
µt

]
;

3 for i = 1 :M do

4 A
(i)
t+1 =

(
X(i)−J

(i)
t+1−E

(i)
t +F(i)

µt
+R

(i)
t +

Y
(i)
t
µt

)
P

2
;

5 R
(i)
t+1 = D1/µt

[
A

(i)
t+1 −

Y
(i)
t
µt

]
;

6 Y
(i)
t+1 = Y

(i)
t + µt(R

(i)
t+1 −A

(i)
t+1);

7 end
8 Et+1 =

S λ
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
+ Ft

µt

]
;

9 Ft+1 = Ft + µt(X− Jt+1 −
[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−

Et+1); t = t+ 1;
10 end

where L is the Lagrange multipliers matrix related to the
equality constraint in (7), and µ is a positive parameter. Sub-
sequently, by employing the ADMM, (8) is minimized with
respect to each variable in an alternating fashion and finally
the Lagrange multipliers L are updated. The ADMM solver
of (7) is outlined in Algorithm 1. Algorithm 1 terminates when

‖X− Jt+1 − [A
(1)T

t+1 , · · · ,A
(M)T

t+1 ]T −Et+1‖
2

F
/‖X‖2F is less

than a predefined threshold ε or the number of iterations reach
a maximum value.

To solve problem (6) via the ADMM, we firstly reformulate it
as:

min
J,{A(i),R(i)}Mi=1,E

M∑
i=1

∥∥∥R(i)
∥∥∥
∗

+ λ ‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {R(i) = A(i),JA(i)T = 0}Mi=1

(9)

where {R(i) ∈ Rd
(i)×J}Mi=1, {R(i) = A(i)}Mi=1 are auxiliary

variables and the corresponding constraints, respectively. The
ADMM solver of (9) is wrapped up in Algorithm 2 where
F, {Y(i)}Mi=1 are the Lagrange multipliers related to the equality
constraints in (9), and µ is a positive parameter. A convergence
criterion similar to Algorithm 1 is employed. The augmented
Lagrangian function of (9) as well as the derivation of the
proposed Algorithm can be found in the supplementary material.

4 RJIVE-BASED RECONSTRUCTION

Having recovered the individual and common components of the
M views or different datasets during training, we can exploit them
in order to extract the joint and individual modes of variations of
a test sample. For instance, the components recovered by applying
the RJIVE on a set of facial images of M different expressions
can be utilized in order to reconstruct M expressive images
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Algorithm 3: ADMM-based solver of (10).
Input : Input sample t. Orthonormal bases

B(i) ∈ Rd
(i)×W (i)

J ,D(i) ∈ Rd
(i)×W (i)

A . Parameters
λ, ρ.

Output : Clean reconstructed image y.
Initialize: Set {v(n)

0 , c
(n)
0 }2n=1, {h(n)

0 }4n=1, y0, and e0 to zero
vectors, t = 0, µ0 > 0.

1 while not converged do
2 for n=1:2 do

3 v
(n)
t+1 = S 1

µt

[
c
(n)
t − h

(n)
t
µt

]
;

4 end
5 t̃1 = t−D(i)c

(2)
t − et + h

(3)
t µ−1

t ;
6 t̃2 = y −D(i)c

(2)
t + h

(4)
t µ−1

t ;

7 c
(1)
t+1 =

B(i)T
(
t̃1+t̃2

)
+v

(1)
t+1+h

(1)
t µ−1

t

3
;

8 t̃1 = t−B(i)c
(1)
t+1 − et + h

(3)
t µ−1

t ;
9 t̃2 = y −B(i)c

(1)
t+1 + h

(4)
t µ−1

t ;

10 c
(2)
t+1 =

D(i)T
(
t̃1+t̃2

)
+v

(2)
t+1+h

(2)
t µ−1

t

3
;

11 yt+1 = max
(
B(i)c

(1)
t+1 + D(i)c

(2)
t+1 − h

(4)
t /µt, 0

)
;

12 et+1 = S λ
µt

[
t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 + h

(3)
t µ−1

t

]
;

13 h
(1)
t+1 = h

(1)
t + µt(v

(1)
t+1 − c

(1)
t+1);

14 h
(2)
t+1 = h

(2)
t + µt(v

(2)
t+1 − c

(2)
t+1);

15 h
(3)
t+1 = h

(3)
t + µt(t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 − et+1);

16 h
(4)
t+1 = h

(4)
t + µt(y −B(i)c

(1)
t+1 −D(i)c

(2)
t+1);

17 µt+1 = min(µtρ, 10
7);

18 end

{y(i)}Mi=1 of an input face t. The key motivation here is that
the expression-related patterns of the image t in the expression
(i) lie in a linear subspace spanned by D(i) ∈ Rd

(i)×W (i)
A , where

D(i) has been obtained by applying the SVD onto the extracted
A(i) components. Therefore, the expression-related (individual)
part of the test image t in expression (i) can be represented as a
linear combination of the orthonormal bases D(i), i.e., y(i)

individual ≈
D(i)c(2) with c(2) ∈ RW

(i)
A ×1 being a sparse coefficient vector.

Similarly, the joint part y
(i)
joint is expressed as a linear combination

of the orthonormal bases B(i) ∈ Rd
(i)×W (i)

J , extracted from
the corresponding joint component J(i) i.e., y

(i)
joint ≈ B(i)c(1),

c(1) ∈ RW
(i)
J ×1. Thus, the expressive image y(i) of the unseen

input face t is reconstructed by solving the following constrained
optimization problem:

min
{c(n),v(n)}2n=1,y≥0

2∑
n=1

∥∥∥v(n)
∥∥∥

1
+ λ ‖e‖1 ,

s.t. {v(n) = c(n)}2n=1

t = B(i)c(1) + D(i)c(2) + e, y = B(i)c(1) + D(i)c(2)

(10)

where λ is a positive parameter that balances the norms, v(1)

and v(2) are auxiliary variables which are employed in order to
make the problem separable, y corresponds to the non-negative
clean reconstruction, and e is an error term accounting for the
gross, non-Gaussian sparse noise. Equation (10) resembles the
dense error correction model proposed in [24], which is suitable
for guaranteed recovery of sparse representations from high-
dimensional measurements, such as images of high resolution
(e.g., 22000 pixels in this paper) in the presence of noise. The
ADMM solver of (10) is outlined in Algorithm 3. Algorithm 3

terminates when ‖t−B(i)c
(1)
t+1 −D(i)c

(2)
t+1 − et+1‖

2

2
/‖t‖22 is

less than a predefined threshold ε or the number of iterations
reached. The augmented Lagrangian function of (10) can be found
in the supplementary material.

5 SCALABLE RJIVE
The computational complexity of the vanilla JIVE as
well as the `1-RJIVE and NN-`1-RJIVE at each itera-
tion is O(max(q2J, qJ2)) +

∑M
i=1O(max(d(i)2J, d(i)J2)) =

O(max(q2J, qJ2)) due to SVD. Clearly, this is computationally
prohibitive when dimensionality of images {d(i)}Mi=1 becomes
very large, e.g., 22500 in our case. To alleviate the aforemen-
tioned computational complexity issue and at the same time
learn the orthonormal bases that are used for reconstruction,
we propose to factorize matrices J, {A(i)}Mi=1 as products of
orthonormal bases matrices B ∈ R(d(1)+···d(M))×WJ ,BTB = I,
{D(i) ∈ Rd

(i)×W (i)
A D(i)TD(i) = I}Mi=1 and low-rank coeffi-

cients matrices G ∈ RWJ×J , {C(i) ∈ RW
(i)
A ×J}Mi=1 such that

J = BG and {A(i) = D(i)C(i)}Mi=1. It can be easily shown that
the constraints are now written as {JA(i)T }Mi=1 = GC(i)T = 0
and rank(J) = rank(BG) = rank(G) = r. In addition, due
to the unitary invariance property of the nuclear norm we have
‖A(i)‖∗ = ‖D(i)C(i)‖∗ = ‖C(i)‖∗. Therefore, by incorpo-
rating the factorizations of joint and individual components, the
optimization problem (9) now reformulates as follows:

min
B,G,{D(i),C(i),∆(i)}Mi=1,E

M∑
i=1

∥∥∥∆(i)
∥∥∥
∗

+ λ ‖E‖1 ,

s.t. X = BG +

[(
D(1)C(1)

)T
· · · ,

(
D(M)C(M)

)T ]T
+ E,

rank(G) = r,BTB = I,

{∆(i) = C(i),GC(i)T = 0,D(i)TD(i) = I}Mi=1,
(11)

where {∆(i) ∈ RW
(i)
A ×J}Mi=1 and {∆(i) = C(i)}Mi=1, are

auxiliary variables and the corresponding constraints, respectively.
The ADMM solver of the proposed SRJIVE method is out-

lined in Algorithm 4, where Γ and {Z(i)}Mi=1 are the Lagrangian
multipliers related to the equality constraints of (11) (the Lagrange
function corresponding to problem (11) can be found in the
supplementary material).

The computational complexity of Algorithm 4 is domi-
nated by the cost of the SVD involved in the computation
of SVT and Procrustes operators in Steps 4 and 5, respec-
tively. Therefore, the computational complexity of each iteration
is O(max(W 2

JJ,WJJ
2)) and O(max(q2WJ, qW

2
J )), respec-

tively. Given that WJ � q = d(1) + · · · d(M) (in this paper
q = 225000 and WJ ≤ 600), which implies WJJ+qWJ � qJ ,
the proposed scalable version of RJIVE, i.e., the SRJIVE, has a
significantly reduced computational cost compared to that of JIVE
and RJIVE.

Regarding the convergence of the presented Algorithms 2, 1, 4,
there is currently no theoretical proof known for the ADMM
in problems with more than two blocks of variables. However,
ADMM has been applied successfully in non-linear optimization
problems in practice [14], [25], [26], [27], [28]. In addition,
the thorough experimental evaluation of the proposed methods
presented in Section 7, indicates that the obtained solutions are
good for the data upon which RJIVE was tested.
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Algorithm 4: ADMM solver of (11) (Scalable NN-`1-RJIVE, SRJIVE).

Input : Data {X(i) ∈ Rd
(i)×J}Mi=1. Rank of joint component r. Number of bases to be extracted from the Joint and Individual

components WJ and W (i)
A , respectively. Parameter ρ.

Output : Orthonormal Joint and Individual bases matrices B, {D(i)}Mi=1. Coefficient matrices G, {C(i)}Mi=1.

Initialize: Set G0, B0, {∆(i)
0 ,D

(i)
0 ,C

(i)
0 ,Z

(i)
0 }Mi=1, E0, Γ0 to zero matrices, t = 0, µ0 > 0, X =

[
X(1)T , · · · ,X(M)T

]T
.

1 while not converged do

2 M = BT
t

(
X−

[(
D

(1)
t C

(1)
t

)T
· · · ,

(
D

(M)
t C

(M)
t

)T ]T
−Et + µ−1

t Γt

)
; [U,Σ,V] = svd(M);

3 Gt+1 = Qr [M];

4 Bt+1 = P

[(
X−

[(
D

(1)
t C

(1)
t

)T
· · · ,

(
D

(M)
t C

(M)
t

)T ]T
−Et + µ−1

t Γt

)
GT
t+1

]
;

5 M = X−Bt+1Gt+1 −Et + µ−1
t Γt;

6 for n=1:M do
7 D

(i)
t+1 = P

[
M(i)C

(i)T

t

]
;C

(i)
t+1 = 0.5

(
D

(i)T

t+1 M(i) + ∆
(i)
t + µ−1

t Z
(i)
t

) (
I−VVT

)
;

8 ∆
(i)
t+1 = D 1

µt

[
C

(i)
t+1 − µ−1Z

(i)
t

]
;

9 Z
(i)
t+1 = Z

(i)
t+1 + µt

(
∆

(i)
t+1 −C

(i)
t+1

)
;

10 end

11 E = S λ
µt

[
X−Bt+1Gt+1 −

[(
D

(1)
t+1C

(1)
t+1

)T
· · · ,

(
D

(M)
t+1 C

(M)
t+1

)T ]T
+ µ−1

t Γt

]
;

12 Γt+1 = Γt + µt

(
X−Bt+1Gt+1 −

[(
D

(1)
t+1C

(1)
t+1

)T
· · · ,

(
D

(M)
t+1 C

(M)
t+1

)T ]T
−Et+1

)
;

13 µt+1 = min(ρ · µt, 107); t = t+ 1;
14 end

6 RJIVE WITH MISSING VALUES AND APPLICA-
TION TO FACE AGING USING 3D MORPHABLE MOD-
ELS

3D Morphable Models (3DMMs) are statistical deformable mod-
els of the 3D shape and appearance of the human face [29]. Typi-
cally, a 3DMM consists of PCA models for shape and appearance,
as well as a camera projection model. More specifically, the shape
model describes facial meshes that consist of L vertexes and is
built by applying dense registration on a set of training meshes
followed by PCA [29]. An instance of the shape model can be
expressed as the linear combination of a mean shape s̄ and the sub-
space Us with parameters p as s = s̄+Usp. Similarly, the texture
model is a linear PCA model that describes the texture associated
with the shape model and can be constructed from captured 3D
texture as in [29], or from single 2D images as in [30]. Moreover,
the camera model maps a 3D mesh on the image plane, utilizing
an orthographic or a perspective transformation W (p, c), where
c are the camera parameters. Fitting a 3DMM into a new image is
an iterative process, where the model parameters (regarding shape,
texture, and camera) are updated at each iteration. Typically, the
fitting procedure is formulated as a Gauss-Newton optimization
problem, where the main task is the minimization of the error
between the input and the reconstructed image [30].

The extraction of 3D texture from single images commences
with fitting a 3DMM on them. Then a UV texture map is
calculated by projecting the reconstructed 3D shape on the image
plane and subsequently sampling the image at the locations of the
shape’s vertexes. However, extracting the 3D texture from a 2D
image in this way leads to incomplete 3D texture representations,
mainly due to the presence of self-occlusions, especially when the
person depicted in the image is not in a frontal pose. Therefore,
data collected with the aforementioned technique include missing

values. In order to specify the location (i.e., image coordinates) of
the missing values in a UV texture image, a self-occlusion mask
for each image is calculated by casting a ray from the camera
to each vertex of the reconstructed shape. Each element of the
extracted mask denotes whether a value of the UV texture map
is missing or not (please see the first column of Figure 11 for a
visualization of the extracted UV space).

Even though RJIVE can robustly recover joint and individual
components in the presence of sparse non-Gaussian errors of
large magnitude, it is not able to handle data with missing
values. To overcome this limitation of the RJIVE, we propose
the RJIVE-Missing (RJIVE-M). Consider M datasets of different
ages {X(i) ∈ Rd

(i)×J}Mi=1, with x
(i)
j ∈ Rd

(i)

, being a vectorized
form of the j-th gross corrupted and incomplete UV texture,
j = 1, . . . , J , that displays a face within the i-th age group,
i = 1, . . .M . The goal of the RJIVE-M is not only to recover the
joint and individual components but also to perform completion
on the UV textures with missing values. To this end, problem (11)
is reformulated to the following one:

min
B,G,{D(i),C(i),∆(i)}Mi=1,E

M∑
i=1

∥∥∥∆(i)
∥∥∥
∗

+ λ ‖W ◦E‖1 ,

s.t. X = BG +

[(
D(1)C(1)

)T
· · · ,

(
D(M)C(M)

)T ]T
+ E,

rank(G) = r,BTB = I,

{∆(i) = C(i),GC(i)T = 0,D(i)TD(i) = I}Mi=1,
(12)

where ◦ denotes the Hadamard (element-wise) product and

W =
[
W(1)T , · · · ,W(M)T

]T
∈ Rq×J , W(i) =

[w
(i)
1 ,w

(i)
2 , · · · ,w(i)

J ] ∈ {0, 1}q×J , with w
(i)
j being a vectorized

form of the self-occlusion mask that corresponds to the j-th UV
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texture of the i-th dataset. The Algorithm for solving the proposed
RJIVE-M problem is similar to the SRJIVE one and has the same
complexity and convergence criterion. The only difference is in
the updating step of the error matrix E. More specifically, the
following additional step is performed after executing the step
13 of Algorithm 4: E = W ◦ E + W ◦ [X − Bt+1Gt+1 −
[(D

(1)
t+1C

(1)
t+1)T · · · , (D(M)

t+1 C
(M)
t+1 )T ]T + µ−1

t Γt].
Similarly, the presented RJIVE-based reconstruction method

can be also extended to handle missing values in a test image. To
this end, given a test sample with missing values (e.g., facial UV
texture) and the vectorized form of the corresponding occlusion
mask w, problem (10) is extended to the following one:

min
{c(n),v(n)}2n=1,y≥0

2∑
n=1

∥∥∥v(n)
∥∥∥

1
+ λ ‖w ◦ e‖1 .

s.t. {v(n) = c(n)}2n=1

t = B(i)c(1) + D(i)c(2) + e, y = B(i)c(1) + D(i)c(2)

(13)

An ADMM-based solver similar to the Algorithm 3 is em-
ployed in order to solve problem (13). More specifically, the
update step of the error vector performed in step 12 of
the Algorithm 3 is followed by et+1 = w ◦ e + w ◦[
t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 + h

(3)
t µ−1

t

]
.

7 EXPERIMENTAL EVALUATION

The performance of the proposed RJIVE method is assessed
on synthetic data corrupted by both Gaussian and sparse, non-
Gaussian noise (Section 7.1), as well as on data captured under
constrained and ‘in-the-wild’ conditions with applications to (a)
facial expression synthesis, (b) 2D and (c) 3D face age progres-
sion.

TABLE 1: Parameters used in the conducted experiments.

Section r λ W
(i)
J W

(i)
A λ ε

7.2.1 20
1√

max(q,J)

70 70
0.03 10−57.2.2 150 300 300

7.3 300 600 600

7.1 Synthetic

In this section, the ability of RJIVE to robustly recover the
common and individual components of synthetic data corrupted
by sparse non-Gaussian noise, is tested. To this end, sets of
matrices {X(i) = J

(i)
∗ + A

(i)
∗ + E

(i)
∗ ∈ Rd

(i)×J}2i=1 of varying
dimensions were generated. In more detail, a rank-r joint compo-
nent J∗ ∈ R(q=d(1)+d(2))×J was created from a random matrix
X = [X(1)T ,X(2)T ]T ∈ Rq×J . Next, the orthogonal to J rank-
r(1), r(2) common components A

(1)
∗ and A

(2)
∗ were computed

by [A
(1)T

∗ ,A
(2)T

∗ ]T = (X − J∗)(I − VVT ), where V was
formed from the first r columns of the row space of X. E

(i)
∗ is

a sparse error matrix with 20% non-zero entries being sampled
independently from N (0, 1).

The Relative Reconstruction Error (RRE) of the joint and
individual components achieved by both `1-RJIVE and Nuclear-
Norm regularized (NN-`1-RJIVE) for a varying number of di-
mensions, joint and individual ranks, are reported in Table 2. The
corresponding RRE obtained by JIVE [12], [31], COBE [13], and
RCICA [14] are also presented. As it can be seen, the proposed

methods accurately recovered both the joint and individual compo-
nents. It is worth mentioning that the NN-`1-RJIVE successfully
recovered all components by utilizing only the true rank of the
joint component. In the other hand, all the other methods require
knowledge regarding the true rank for both joint and individual
components. Furthermore, the SRJIVE achieved same results to
the NN-`1-RJIVE by reducing the computation time more than
five times. Based on the performance of SRJIVE on the synthetic
data, we decided to utilize it in the experiments described bellow
and refer it as RJIVE hereafter.

Furthermore, we tested the RJIVE on synthetic data contam-
inated by Gaussian error. The RJIVE can implicitly handle data
contaminated by Gaussian noise by vanishing the error term. That
is we set the regularizer λ in problems (7), (9), (11) λ→∞
i.e. E = 0. In such case, the Frobenius norm corresponding to
the equality constraints X = J + [A(1)T , · · · ,A(M)T ]T + E,
X = BG + [(D(1)C(1))T , · · · ,A(M)T ]T + E appearing in
the corresponding augmented Lagrangian functions are deemed as
the appropriate regularizer for handling Gaussian noise. The RRE
of all compared methods are reported in Table 2. As it can be
seen, the proposed methods accurately recovered both the joint
and individual components.

+
Sparse

Error
+ =

(a) (b) (c)

Fig. 1: Procedure followed to generate data contaminated by
sparse, non-Gaussian noise.

The efficiency of the JIVE and RJIVE methods was qualita-
tively evaluated on real data contaminated by sparse, non-Gaussian
noise. In order to generate the corrupted data, we firstly superim-
posed the paintings of Figure 1(a) with the painting appeared in
Figure 1(b) and subsequently a sparse error matrix was added.
In each image the error matrix has 20% non-zero entries being
sampled independently from N (0, 1). Then, the concatenation of
the generated paintings (Figure 1(c)) was given as input to the
JIVE and RJIVE. The joint and individual components as well
as the corresponding error matrices obtained from the compared
methods are depicted in Figure 22. As it can be observed, the

Input JIVE RJIVE

Fig. 2: Joint, individual components, and error matrices produced
by the compared JIVE and RJIVE methods.

RJIVE accurately recovered both the joint and individual com-
ponents. On the other hand, the joint components extracted from
JIVE are not accurate, while the corresponding individual ones are
contaminated by the sparse error. This is due to the fact that the
JIVE is not robust to sparse, non-Gaussian noise.

2. Additional results can be found in the supplementary material.
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TABLE 2: Quantitative recovering results produced by JIVE [12], COBE [13], RCICA [14], `1-RJIVE (7), and NN-`1-RJIVE (9)
under Gaussian and gross non-Gaussian noise. Each compared method was applied on the same data generated by utilizing each set
of parameters. The average recovery accuracy and computation time (in CPU seconds) were computed by repeating the experiment 10
times.

(
d(1), d(2), J, r, r(1), r(2)

)
Method

{∥∥∥J(i)
∗ − J(i)

∥∥∥2

F

/ ∥∥∥J(i)
∗

∥∥∥2

F

}2

i=1

{∥∥∥A(i)
∗ −A(i)

∥∥∥2

F

/ ∥∥∥A(i)
∗

∥∥∥2

F

}2

i=1

Time (in CPU seconds)

non-Gaussian Gaussian non-Gaussian Gaussian non-Gaussian Gaussian

(500, 500, 500, 5, 10, 10)

COBE 3.6403 1.0927 1.0975 1.0002 0.06 0.07
JIVE 0.5424 1.3558e− 04 0.9349 2.0782e− 04 4.62 1.22
RCICA − − 7.1379e− 07 5.6337e− 03 1.14 1.36
`1-RJIVE 5.5628e− 08 1.3558e− 04 3.5073e− 08 2.0782e− 04 3.11 4.78
NN-`1-RJIVE 5.1515e− 08 1.4720e− 04 4.3416e− 08 3.3904e− 04 4.06 5.06
SRJIVE 2.7770e− 08 1.6564e− 04 3.8706e− 08 2.0012e− 04 0.91 1.97

(1000, 1000, 1000, 10, 20, 20)

COBE 4.9982 1.08555 1.1890 0.9982 0.122 0.11
JIVE 0.8398 1.8880e− 04 1.4810 2.9261e− 04 14.69 4.45
RCICA − − 6.7260e− 07 9.6371e− 04 6.36 5.84
`1-RJIVE 8.5033e− 08 1.8879e− 04 5.5423e− 08 2.9260e− 04 8.23 18.01
NN-`1-RJIVE 9.3804e− 08 2.0738e− 04 7.6262e− 08 1.1801e− 04 17.34 23.11
SRJIVE 6.8905e− 08 2.3406e− 04 6.0017e− 08 1.2041e− 04 3.99 9.05

(2000, 2000, 2000, 20, 40, 40)

COBE 6.9981 1.088417 1.3469 0.9976 0.83 0.69
JIVE 1.3961 2.6525e− 04 2.1977 4.1133e− 04 203.25 49.06
RCICA − − 5.9359e− 05 7.6497e− 03 48.51 49.86
`1-RJIVE 1.2305e− 07 2.6525e− 04 1.0512e− 07 4.1133e− 04 142.44 160.21
NN-`1-RJIVE 8.8570e− 08 2.9010e− 04 9.1058e− 08 5.6000e− 04 110.36 120.01
SRJIVE 9.7434e− 08 2.7074e− 04 1.0117e− 07 5.1173e− 04 18.96 43.07

7.2 Facial Expression Synthesis

In this section, we investigate the ability of the RJIVE to synthe-
size a set of different expressions of a given facial image. Consider
M datasets, where each one contains images of different subjects
that depict a specific expression. In order to effectively recover the
joint and common components, the faces of each dataset should be
put in correspondence. Therefore, their N = 68 facial landmark
points are localized using the detector [32], [33] and subsequently
employed to compute a mean reference shape. Then, the faces of
each dataset are warped into a corresponding reference shape by
using the piecewise affine warp functionW(·) [34]. After applying
the RJIVE on the warped datasets, the recovered components
can be used to synthesize M different expressions of an unseen
subject. To do that, the new (unseen) facial image is warped to the
reference frame that corresponds to the expression that we want to
synthesize and subsequently is given as input to solve (10).

The performance of RJIVE in FES task is assessed by con-
ducting inner- and cross-databases experiments on MPIE [35],
CK+ [36], and ‘in-the-wild’ facial images collected from the in-
ternet (ITW). The synthesized expressions obtained by RJIVE are
compared to those obtained by the state-of-the-art BKRRR [37]
method. In particular, the BKRRR is a regression-based method
that learns a mapping from the ‘Neutral’ expression to the target
ones. Then, given the ‘Neutral’ face of an unseen subject, new ex-
pressions are synthesized by employing the corresponding learned
regression functions. The performance of the compared methods
is measured by computing the correlation between the vectorized
forms of true images and the reconstructed ones.

7.2.1 Controlled Conditions

In the first experiment, 534 frontal images of MPIE database that
depict 89 subjects under six expressions (i.e., ‘Neutral’, ‘Scream’,
‘Squint’, ‘Surprise’, ‘Smile’, ‘Disgust’) were employed to train
both RJIVE and BKRRR. Then, all expressions of 58 unseen
subjects from the same database were synthesized by using their
images corresponding to ‘Neutral’ expressions. In Figure 3(a), the
average correlations obtained by the compared methods for the
different expressions are visualized. As it can be seen the proposed
RJIVE method achieves the same accuracy to BKRRR without

learning any kind of mappings between the different expressions
of the same subject. Specifically, the RJIVE extracts only the
individual components of each expression and the common one.

Furthermore, the performance of both methods is compared
by performing a cross-database experiment on the CK+ database.
More specifically, we employed the ‘Neutral’, ‘Smile’, and ‘Sur-
prise’ images of MPIE for training purposes while images of 69
subjects (three images per subject) of CK+ were used as test ones.
In Figure 3(b) we can see that RJIVE outperforms BKRRR by a
large margin. This is due to the fact that the BKRRR performs
the regression based on how close is the unseen ‘Neutral’ face to
the training ones. Therefore, in cases where the unseen subjects
(e.g., subjects of CK+) present enough differences compared to the
training ones (e.g., subjects of MPIE), the synthesized expressions
are characterized as non-accurate. The synthesized expressions of
subjects ‘014’ and ‘015’ from MPIE produced by the BKRRR and
RJIVE are visualized in Figure 4. Clearly, the proposed method
produces expressed images of higher quality compared to the
BKRRR.

Finally, the recovering accuracy of JIVE and RJIVE in FES
was also qualitatively assessed. To this end, the images used in the
previous experiments were contaminated by sparse error were sub-
sequently provided to the compared methods. Figure 52 displays
the obtained components and the corresponding error matrices.
Clearly, the proposed RJIVE method successfully recovered all
the components. It is worth mentioning that the RJIVE removed
the added sparse noise as well as the occlusions produced by
eyeglasses and paintings (please see red dotted boxes). Instead,
the JIVE was not able to remove neither the added noise nor the
occlusions.

7.2.2 ‘In-The-Wild’ Conditions
As an additional experiment, we collected from the internet
180 images depicting 60 subjects with ‘Surprise’, ‘Smile’, and
‘Neutral’ expressions (three images for each subject). Then, all
the expressions were generated by employing the ‘Neutral’ images
and the BKRRR and RJIVE methods trained on MPIE. Figure 3(c)
depicts the obtained correlations for each subject. Clearly, the
RJIVE outperforms the BKRRR. Compared to the previous ex-
periments, there is a drop in the performance for both methods.
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(a) (b) (c)

Fig. 3: Mean average correlation achieved by JIVE and BKRRR methods on (a) MPIE, (b) CK+, and (c) ITW databases.

Input

BKRRR

RJIVE

GT

(a)

Input

BKRRR

RJIVE

GT

(b)

Fig. 4: Synthesized expressions of MPIE’s subject (a) ‘014’ and
(b) ‘015’ produced by the BKRRR and RJIVE methods.

JIVE JIVE JIVERJIVE RJIVE RJIVE

Fig. 5: Joint, individual components and error matrices produced
by the compared JIVE and RJIVE methods.

This is attributed to the fact that the methods were trained by
employing only images captured under controlled conditions.
Thus, synthesizing expressions of ‘in-the-wild’ images is a very
difficult task. In order to alleviate this problem we can augment
the training set with ‘in-the-wild’ images. Although the RJIVE
can be trained on ‘in-the-wild’ images of different subjects, this

is not the case of BKRRR, which requires the correspondence of
expressions across the training subjects. Collecting ‘in-the-wild’
images of same subjects under different expressions is a very
tedious task. In order to improve the performance of RJIVE, we
augmented the training set with another 1200 images from the
WWB database [38] (400 images for each expression). As it can
be observed in Figure 3(c), the ‘in-the-wild’ train set improved
the accuracy of RJIVE in both CK+ and ITW datasets. Figure 6
depicts examples synthesized ‘in-the-wild’ expressions produced
by the RJIVE. The images from the ‘Input’ column were given as
input to the RJIVE and subsequently, the synthesized expressions
were warped and fused with the actual images [39]. Clearly, the
produced expressions are characterized by high quality of both
expression and identity information. It is worth mentioning that
RJIVE synthesizes almost perfectly the input images without using
any kind of information about the depicted subject.

7.3 Face Age Progression ‘In-The-Wild’

7.3.1 2D age progression of an unseen subject
Face age progression consists in synthesizing plausible faces of
subjects at different ages. It is considered as a very challenging
task due to the fact that the face is a highly deformable object
and its appearance drastically changes under different illumination
conditions, expressions, and poses. Various databases that contain
faces at different ages have been collected in the last couple of
years [40], [41]. Although these databases contain huge number
of images, they have some limitations including limited images
for each subject that cover a narrow range of ages and noisy
age labels, since most of them have been collected by employing
automatic procedures (crawlers). A new database that overcomes
the aforementioned problems was recently proposed in [42]. The
AgeDB was manually collected and annotated. It consists of
16.488 images that depict 568 subjects from 0 to 101 years old.
Annotations in terms of age and identity of the depicted subjects
are provided. On average, there are 29 images that span 50.3 years
for each subject.

In order to train the RJIVE, the AgeDB was divided into
M = 10 age groups: ‘0-3’, ‘4-7’, ‘8-15’, ‘16-20’, ‘21-30’, ‘31-
40’, ‘41-50’, ‘51-60’, ‘61-70’, and ‘71-100’. Then, following
the same procedure as in the FES task, RJIVE was employed
to extract the joint and common components from the warped
images. The performance of RJIVE in face age progression ‘in-
the-wild’ is qualitatively assessed conducting experiments on
images from the FG-NET database [43]. To this end, we compare
the performance of RJIVE with the Illumination Aware Age
Progression (IAAP) method [1], Coupled Dictionary Learning
(CDL) method [2], Deep Ageing with Restricted Boltzmann
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Input RJIVE GT RJIVE

Input RJIVE GT RJIVE

Fig. 6: Synthesized ‘in-the-wild’ expressions produced by the
RJIVE method.

Machines (DARB) method [3], Craniofacial Growth (CG) [4]
model, Exemplar-based Age Progression (EAP) [5] method, Face
Transformer (FT Demo) [44], and Recurrent Face Aging (RFA)
method [6]. In Figures 7, 8, progressed images produced by
the compared methods are depicted. Note that all the progressed
faces have been warped back and fused with the actual ones.
Figure 92 depicts faces synthesized by the DARB, IAAP, and
RJIVE methods. By observing the results, it can be clearly seen
that the identity information is not preserved in the case of DARB.
In particular, the progressed faces of all subjects for a specific
age group are very similar among them. It looks like all of them
were created by transferring the skin colour from the input image
to the same mean appearance. On the other hand, the identity
information in the faces produced by the proposed RJIVE method
remains. Finally, progressed examples faces in all of the age-
groups produced by the RJIVE are visualized in Figure 10.

7.3.2 3D age progression of an unseen subject

Here the ability of the proposed RJIVE-M method to perform 3D
face age progression is demonstrated. Similarly to the 2D face
age progression experiments presented previously, the AgeDB
database was divided into M = 6 age groups (‘21-30’, ‘31-40’,
‘41-50’, ‘51-60’, ‘61-70’, ‘71+’) and used to train the RJIVE-
M. In order to acquire the 3D training data for this task the
3DMM-ITW [30] was employed. The optimal shape and camera
parameters were extracted by fitting the model to each one of the
images of all age groups. In order to recover 3D shapes of high

Input IAAP DARB RJIVE GT

11

8

9

10

15

23

20

20

10

8

11

7

Input CG DARB RJIVE GTEAP

18

16

18

16

Fig. 7: Progressed faces produced by the compared methods on
the FG-NET database.

quality, we used the age and gender specific version of the LSFM
shape model introduced in [45] in order to describe identity and
the blendshapes of [46] in order to describe facial expressions.
Having recovered the 3D shape of each face, we computed
the self-occlusion mask by using ray-tracing (see first row of
Figure 11). Then the completed joint and individual components of
the grossly corrupted and incomplete UV textures were obtained
by employing the RJIVE-M. The joint components obtained by
applying a variant of JIVE with missing values, i.e., JIVE-M
and the RJIVE-M on UV textures are displayed in Figure 112.
By observing the results, we can clearly see that the RJIVE
successfully removed the occlusions produced by eyeglasses and
fingers in all images. This is attributed to the fact that the matrix
`1-norm loss adopted in RJIVE, which effectively handles sparse
noise of possibly large magnitude.

Similarly, in the 2D face aging experiments we can apply the
RJIVE-M to the recovered UV maps to learn components that
can be used to age the UV texture of a test subject. Since, the
3D shapes are produced by the LSFM model they neither have
missing values nor are contaminated by noise. Therefore, to find
aging components for the 3D shape we used the standard JIVE.

In the test phase, the 3D shape of the test face is obtained
by using the 3DMM-ITW algorithm [30]. Then the UV texture
and the corresponding self-occlusion mask are computed by em-
ploying the recovered 3D shape. The progression of the texture of
the test subject in an age group is obtained by solving the problem
(13) (for the shape we use the problem in (10)). Progressed unseen
subjects in all age groups, projected back in the image plane,
are visualized in Figure 122. Having calculated a progressed 3D
texture image and a 3D shape, the resulting is projected back in
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Fig. 8: Progressed faces produced by the compared methods on
the FG-NET database.
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Fig. 9: Comparisons between the IAAP, DARB, and RJIVE
methods.

the image plane using the camera parameters initially acquired by
fitting the 3DMM-ITW in the test image.

Figure 132 presents additional results that demonstrate the
ability of the RJIVE-M to perform not only age progression but
also completion. For visualization purposes the completed and
age-progressed 3D faces produced by the RJIVE-M were mapped
on the progressed 3D shape. For each subject, the original and two
side poses are depicted. The extracted by the 3DMM-ITW 3D face

0-3

4-7

16-20

41-50

61-70

51-60

31-40

8-15

21-30

71-100

354844404871

Input

Fig. 10: Progressed faces produced by the proposed RJIVE
method.

Input JIVE-M RJIVE-M

Fig. 11: Input images and corresponding joint components pro-
duced by the compared JIVE-M and RJIVE-M methods. As it can
be observed the proposed method is able to remove occlusions
produced by fingers and glasses.

model of the input image is displayed in the first row. By observing
the results it becomes apparent that due to self-occlusions, the
instance of the 3D model with pose different to the input one,
contains huge areas of missing values (black color). This is not
the case for the progressed and completed results produced by the
RJIVE-M (second row). As it can be seen, the completion of the
regions with missing data is accurate and proves the significant
representational power of the bases extracted by RJIVE-M.
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Fig. 12: Progressed faces produced by the proposed RJIVE-M,
projected back in the image plane using mean 3D face shapes and
camera parameters acquired by fitting the 3DMM-ITW.

52

71+
RJIVE-
M

65

41-50
RJIVE-
M

Fig. 13: Progressed and completed 3D texture images, produced
by the proposed RJIVE-M method, mapped on mean 3D face
shapes. The 3D face models are visualized in the original and two
side poses, in order to make the differences between the completed
and missing data visible.

7.3.3 Age-invariant face verification ‘in-the-wild’

The performance of the RJIVE is also quantitatively assessed
by conducting age-invariant face verification experiments. Fol-
lowing the successfully used verification protocol of the LFW
database [47], we propose four new age-invariant face verification
protocols based on the AgeDB database. Each one of the protocols
was created by splitting the AgeDB database into 10 folds, with
each fold consisting of 300 intra-class and 300 inter-class pairs.
The essential difference between these protocols is that in each
protocol the age difference of each pair’s faces is equal to a

predefined value i.e., {5 years, 10 years, 20 years, 30 years}.

(‘Protocol 5 years’) (‘Protocol 10 years’)

(‘Protocol 20 years’) (‘Protocol 30 years’)

Fig. 14: ROC curves of RJIVE on the proposed protocols. ‘Origi-
nal images’ corresponds to the results obtained by employing the
actual images.

In order to assess the performance of RJIVE, the following
procedure was performed. For each fold of a specific protocol
the training images were split into M = 10 age-groups and
subsequently the RJIVE was applied on their warped version in
order to extract the joint and individual components. All images
of each training pair were then progressed into M = 10 age
groups resulting into 10 new pairs. The progressed images of six
subjects are depicted in Figure 10. As we wanted to represent
each pair by using a single feature, gradient orientations were
extracted from the corresponding images and subsequently the
mean value of their cosine difference was employed as the pair’s
feature.M different Support Vector Machines (SVM) were trained
by utilizing the extracted features. Finally, the scores produced by
all the SVMs were lately fused via an SVM.

In Figure 14, Receiver Operating Characteristic (ROC) curves
computed based on the 10 folds of each one of the proposed
protocols are depicted. The corresponding mean classification
accuracy and Area Under Curve (AUC) are reported in Table 3.
In order to assess the effect of progression, the results obtained

TABLE 3: Mean AUC and Accuracy on the proposed protocols.

5 years 10 years 20 years 30 years

RJIVE AUC 0.686 0.654 0.633 0.584
Accuracy 0.637 0.621 0.598 0.552

Original Images AUC 0.646 0.624 0.585 0.484
Accuracy 0.609 0.591 0.552 0.495

by utilizing only the original images are also provided. Some
interesting observations are drawn from the results. Firstly, the
improvement in accuracy validates that the identity information of
the face remains after the RJIVE-based progression. Furthermore,
the improvement in accuracy is higher when the age difference of
images of each pair is large enough. For instance, the improvement
in accuracy in ‘Protocol 30 years’ is higher than the corresponding
in ‘Protocol 5 years’. Finally, the produced results justify that the
problem of age-invariant face verification becomes more difficult
when the age 5 difference is very large (e.g., 30 years).
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Fig. 15: ROC curve of the RJIVE and IAAP on FG-NET database.

The performance of RJIVE in age-invariant face verification
is also compared against the IAAP [1] by conducting experiments
on the FG-NET database. The experimental protocol employed is
the following. By selecting images where the depicted subjects
are older than the age of 18 years, we created a subset of
the FG-NET database consists of 518 images. Then, based on
the selected images we created 1250 intra-class pairs, i.e., the
images of each pair depict the same subject under different ages,
and another 1250 inter-class pairs. The experiment protocol was
finally created by dividing the pairs on 5 folds with each fold
containing 250 intra-class and 250 inter-class pairs. All images
were then progressed by employing the RJIVE and IAAP methods.
A similar to the previous experiment procedure was followed in
order to perform the age-invariant verification. The produced ROC
curves are displayed in Figure 15. As it can be observed, the
proposed RJIVE method outperforms the IAAP by a large margin,
indicating that the RJIVE produces progressed images of high
quality without removing the identity information.

8 CONCLUSIONS

A general framework for robust recovering of joint and individual
variance among several datasets possibly contaminated by gross,
non-Gaussian errors and missing values has been proposed in this
paper. Four different models namely `1-RJIVE, NN-`1-RJIVE,
SRJIVE, and RJIVE-M have been proposed. Furthermore, based
on the recovered components from the training data, two novel
optimization problems that extract the joint and individual com-
ponents of an unseen test sample, are introduced. The effectiveness
of the RJIVE was first tested by conducting experiments on
synthetic data. Moreover, extensive experiments were conducted
on facial expression synthesis and 2D and 3D face age progression
by utilizing five datasets captured under both controlled and
‘in-the-wild’ conditions. The experimental results validate the
effectiveness of the proposed RJIVE framework over the state-
of-the-art.
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