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Abstract
Deep generative models have significantly advanced image generation, enabling generation of visually pleasing images with
realistic texture. Apart from the texture, it is the shape geometry of objects that strongly dictates their appearance. However,
currently available generative models do not incorporate geometric information into the image generation process. This often
yields visual objects of degenerated quality. In this work, we propose a regularized Geometry-Aware Generative Adversarial
Network (GAGAN) which disentangles appearance and shape in the latent space. This regularized GAGAN enables the
generation of images with both realistic texture and shape. Specifically, we condition the generator on a statistical shape
prior. The prior is enforced through mapping the generated images onto a canonical coordinate frame using a differentiable
geometric transformation. In addition to incorporating geometric information, this constrains the search space and increases
the model’s robustness. We show that our approach is versatile, able to generalise across domains (faces, sketches, hands
and cats) and sample sizes (from as little as ∼ 200−30,000 to more than 200,000). We demonstrate superior performance
through extensive quantitative and qualitative experiments in a variety of tasks and settings. Finally, we leverage our model
to automatically and accurately detect errors or drifting in facial landmarks detection and tracking in-the-wild.

Keywords Generative adversarial network · Image generation · Active shape model · Disentanglement · Representation
learning · Face analysis · Deep learning · Generative models · GAN

1 Introduction

The generation of realistic images is a longstanding problem
in computer vision and graphics with numerous applica-
tions, includingphoto-editing, computer-aided design, image
stylisation (Johnson et al. 2016; Zhu et al. 2017) as well
as image de-noising (Vincent et al. 2008; Jain and Seung
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2009), in-painting (Pathak et al. 2016; Xie et al. 2012), and
super-resolution (Tipping andBishop 2003; Yang et al. 2010;
Ledig et al. 2016), to mention but a few examples. While
a surge of computational, data-driven methods that rely on
variational inference (Kingma and Welling 2014; Rezende
et al. 2014) and autoregressive modelling (van den Oord
et al. 2016; Salimans et al. 2017) have recently proposed
for image generation, it is the introduction of Generative
Adversarial Networks (GANs) (Goodfellow et al. 2014) that
significantly advanced image generation enabling creation of
imagery with realistic visual texture.

Despite their merit, GANs and their variants (Radford
et al. 2015; Odena et al. 2016; Mirza and Osindero 2014)
cannot adequately model sets of images with large visual
variability in a fine-grained manner. Consequently, the qual-
ity of the generated images is severely affected in terms
of shape and appearance. Specific to faces, visual texture
(e.g., skin texture of faces, lighting) as well as pose and
deformations (e.g., facial expressions, view angle) affect the
appearance of a visual object. The interactions of these tex-
ture and geometric factors emulate the entangled variability,
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Fig. 1 Samples of faces generated by differentGANarchitectures. Ran-
dom samples were extracted from the CelebA (training) dataset (row 1),
the original paper of the popular GAN architectures DCGAN (Radford
et al. 2015) (row 2) and our implementation from WGAN (Arjovsky
et al. 2017) (row 3). The last row shows images generated by the pro-
posed GAGAN architecture

giving rise to the rich structure of visual object appear-
ance. The vast majority of deep generative models, including
GANs, do not allow to incorporate geometric information
into the image generation process without explicit labels. As
a result, the shape of the generated visual object cannot be
controlled explicitly and the visual quality of the produced
images degenerates significantly as for instance, depicted
in Fig. 1. In particular, while GAN-based models (Radford
et al. 2015; Arjovsky et al. 2017; Goodfellow et al. 2014)
(cf. Sect. 2.1 for a brief overview) generate realistic visual
texture, e.g., facial texture in this example, geometry is not
precisely followed.

In this paper, we address the challenge of incorporat-
ing geometric information about the shape of visual objects
into deep generative models. In particular, we introduce
Geometry-Aware GAN (GAGAN) which disentangles the
latent space corresponding to shape and texture by employ-
ing a statistical shape model. The statistical shape model is
built based on a thewealth of existing annotations for fiducial
points, and takes advantage of robust and reliable estimation
for facial points detection (Bulat and Tzimiropoulos 2017).
By mapping the output of the generator to the coordinate
frame of a canonical shape through a differentiable geomet-
ric transformation, we strongly enforce the geometry of the
objects. A visual overview of GAGAN is shown in Fig. 2.

A preliminary version of the proposed model appeared
in the 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (Kossaifi et al. 2017). Here, we
build on that model and significantly extend it, theoretically,
methodologically and empirically. Specifically, we augment
our preliminary model as follows:

– We propose a novel method to address the issue of
dataset shift, specifically label shift and covariate shift
(Quionero-Candela et al. 2009).

– We extend the model to automatically detect poor track-
ing and landmarks detection results.

– We extend GAGAN to generate entire images, including
the actual visual object and the background.

– We demonstrate the versatility of our model in a variety
of settings and demonstrate superior performance across
domains, sample sizes, image sizes, and GAN network
architectures.

– We demonstrate power of ourmodel in terms of represen-
tation and generalisation by performing cross-database
experiments.

In summary, the contributions of the paper are as follows:

– By encoding prior knowledge and forcing the gener-
ated images to follow a specified statistical shape prior,
GAGAN generates morphological credible images.

– By leveraging domain specific information such as sym-
metries and local geometric invariances, GAGAN is able
to disentangle the shape from the appearance of the
objects.

– By employing a flexible differentiable transformation,
GAGAN can be seen as a meta-algorithm and used to
augment any existing GAN architecture.

– By constraining the search space using a shape model
built in a strongly supervised way, GAGAN works well
on very small datasets unlike existing approaches.

We describe related work and background in Sect. 2.
GAGAN is introduced in Sect. 3, along with the mecha-
nisms used for augmentation via perturbations and (α, β)

regularisation. The performance of GAGAN is assessed in
Sect. 4 by conducting extensive experiments on (i) human
face generation, (ii) generation of sketches of human faces,
(iii) generation of hands in various poses and (iv) gener-
ation of faces of cats. The experimental results indicate
that GAGAN produces superior results with respect to the
visual quality of the images produced by existing state
of the art GAN-based methods as well respecting a given
geometrical prior. In addition, by sampling from the sta-
tistical shape model we can generate faces with arbitrary
facial attributes such as facial expression, pose and morphol-
ogy.

2 Background and RelatedWork

In this section, we review related work and background in
image generation with generative models in Sect. 2.1 and
statistical models of shape and their use in Sect. 2.2.
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Fig. 2 Illustration of the proposed GAGAN method

2.1 Generative Models for Image Generation

Current methods for realistic image generation mainly rely
on the three types of deep generative models, namely Vari-
ational Autoencoders (VAEs), autoregressive models, and
Generative Adversarial Networks (GANs). Albeit different,
the abovementioneddeepgenerativemodels share a common
setup. Let x1, x2, . . . , xN denote a set of N real images drawn
from a true data distribution Pdata(x). Deep generative mod-
els, implicitly or explicitly, estimate a distribution PG(x, θ)

by learning a non-linear mapping G(z) parametrised with θ

and z ∼ N (0, I). The generated samples are compared to the
true data distribution through a probability distance metric,
e.g., Kullback–Leibler divergence or Jenson–Shannon diver-
gence. New images are then generated by sampling from
PG(z).

Variational Autoencoders VAEs approximate the probability
distribution of the training data with a known distribution.
Inference is performed by finding the parameters of the
model that maximise a lower bound on the log-likelihood
of the marginal distribution (Kingma and Welling 2014;
Reed et al. 2016). Typically, VAEs jointly train a top-down
decoder with a bottom-up encoder for inference. For images,
VAE decoders model the output pixels as conditionally

independent given the latent variables. This makes them
straightforward to train, but results in a restrictive approx-
imate posterior distribution (Rezende and Mohamed 2015;
Kingma et al. 2016). In particular, they do not model any
spatial structure in the images and fail to capture small-scale
features such as texture and sharp edges, which significantly
hurts both log-likelihood and quality of generated samples
compared to othermodels (Larsen et al. 2016). Invertible den-
sity estimators were introduced by Rezende and Mohamed
(2015), Kingma et al. (2016) and Dinh et al. (2017) to trans-
form latent variables, which allows for exact log-likelihood
computation and exact inference. However, the invertibility
constraint is restrictive as the actual calculation of the inverse
needs to be done in a computationally efficient manner.

Autoregressive Models Unlike VAEs, autoregressive mod-
els, most notably PixelCNN (van den Oord et al. 2016) and
PixelCNN++ (Salimans et al. 2017), directly model the con-
ditional probability distribution over pixels. These models
are capable of capturing fine details in images and thus gen-
erate outstanding samples, but at the cost of slow sampling
speed. As opposed to conventional convolutional architec-
tures, autoregressive models do not apply down-sampling
between layers, and in order capture dependencies between
distant pixels, the depth of a PixelCNN grows linearly with
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the size of the images. PixelCNNs also do not explicitly learn
a latent representation of the data, and therefore do not allow
control over the image generation.

Generative Adversarial Networks GANs (Goodfellow et al.
2014) are deep generative models that learn a distribution
PG(x) that approximates the real data distribution Pdata(x)
by solving a minimax optimisation problem. GANs involve
two networks, namely a generator G, and a discriminator
D. Instead of explicitly assigning a probability to each data
point in the distribution, the generator G learns a non-linear
function G(z; θ) from a prior noise distribution pz(z) to the
data space. This is achieved during training, where the gen-
erator is “playing” a zero-sum game against the adversarial
discriminator network D that aims to distinguish between
fake samples from the generator’s distribution PG(x) and
real samples from the true data distribution Pdata(x). There-
fore, for a given generator, the optimal discriminator is
D(x) = Pdata(x)

Pdata(x)+PG (x) . More formally, the following min-
imax optimisation problem is solved:

min
G

max
D

V (D, G) = Ex∼Pdata

[
log D(x)

]

+ Ez∼noise

[
log

(
1 − D(G(z))

)]
.

(1)

GANs have been extremely successful in image gener-
ation (Radford et al. 2015; Odena et al. 2016; Mirza and
Osindero 2014; Salimans et al. 2016) due to their ability to
learn extremely flexible generator functions, without explic-
itly computing (often intractable) likelihoods or performing
inference. The flexibility of GANs has also enabled vari-
ous extensions, for instance to support structured prediction
(Odena et al. 2016;Mirza andOsindero 2014), to train energy
basedmodels (Zhao et al. 2016) and combine adversarial loss
with an information loss (Chen et al. 2016). One common
limitation of the available GAN-based architectures is the
usage of a simple input noise vector zwithout any restrictions
on themanner inwhich the generatormay use this noise. As a
consequence, it is impossible for the latter to disentangle the
noise and z does not correspond to any semantic features of
the data. However, many domains naturally decompose into
a set of semantically meaningful latent representation. For
instance, when generating faces it would be ideal if themodel
automatically chose to allocate continuous random variables
to represent different factors, e.g., head pose, expression and
texture. This limitation is partially addressed by recent meth-
ods (Chen et al. 2016; Mathieu et al. 2016; Wang et al.
2017; Tran et al. 2017) that are able to learn meaningful
latent spaces explaining generative factors of variation in the
data. However, to the best of our knowledge, there has been
no work explicitly disentangling the latent space for object
geometry of GANs.

2.2 Statistical ShapeModels

Statistical shapemodels were first introduced byCootes et al.
(1995). By exploiting a statistical model of the shape sta-
tistical shape models are able to accurately represent the
object’s deformations based on training data. Improved sta-
tistical shape models include Active Appearance Models
(AAMs), where both the shape and texture is modelled
(Edwards et al. 1998; Cootes et al. 2001). In AAMs, a sta-
tistical model of shape is built first and then the texture is
described by employing a linear model of appearance in
a shape variation-free canonical coordinate frame. Fitting
the AAM to a new instance is then done by deforming the
target image (forward framework) or the template (inverse
framework) (Matthews and Baker 2004), or both simulta-
neously (bidirectional framework) (Kossaifi et al. 2015).
The resulting problem can be solved analytically and effec-
tively usingGauss–Newton optimisation (Tzimiropoulos and
Pantic 2016) or second-order methods based on Newton
optimisation (Kossaifi et al. 2014). However, using pixel
intensities for building the appearance model does not yield
satisfactory results due to their variability in the presence
of illumination, pose and occlusion variations. To remedy
this issue, several robust image descriptors (or features) have
been proposed, including Histograms of Oriented Gradients
(HOG) (Dalal and Triggs 2005), Image Gradient Orienta-
tion kernel (IGO) (Tzimiropoulos et al. 2012), Local Binary
Patterns (LBP) (Ojala et al. 2002) or SIFT features (Lowe
2004). The latter are considered the most robust for fitting
AAMs (Antonakos et al. 2015). Using these features, AAMs
have been shown to give state-of-the-art results in facial land-
marks localisation, even for in-the-wild data (Tzimiropoulos
and Pantic 2016, 2014a;Antonakos et al. 2015;Kossaifi et al.
2017; Tzimiropoulos and Pantic 2017).

AAMs naturally belong to the class of generative mod-
els. As such they are more interpretable and typically require
less data than their discriminative counterparts, such as deep
learning-based approaches (Kossaifi et al. 2017; Tzimiropou-
los and Pantic 2017; Sagonas et al. 2013a). Lately, thanks
to the democratisation of large corpora of annotated data,
deep methods tend to outperform traditional approaches for
areas such as facial landmarks localisation, includingAAMs,
and allow learning features end-to-end rather than relying
on hand-crafted ones. However, the statistical shape model
employed by AAMs has several advantages. In particular,
by constraining the search space, it allows methods that can
be trained on smaller datasets. Thanks to their generative
nature, AAMs can also be used to sample new instances,
unseen during training, that respect the morphology of the
training shapes.

In this work, we depart from the existing approaches and
propose a new method, detailed in the next section, that
retains the advantages of a GAN while constraining its out-
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put on statistical shape models, built in a strongly supervised
way, akin to that of Active ShapeModels (Cootes et al. 1995)
and AAMs. To this end, we impose a shape prior on the out-
put of the generator, hence explicitly controlling the shape
of the generated object.

3 Geometry-Aware GAN

In GAGAN, we disentangle the input random noise vector
z to enforce a geometric prior and learn a meaningful latent
representation.We do this by separating the shape p ∈ R

N×n

of objects from their appearance c ∈ R
N×k . Their concate-

nation z = [p, c] is used as input to the model.
We first model the geometry of N imagesX = {X(1), . . . ,

X(N )} ∈ R
N×h×w using a collection of fiducial points

s = {s(1), . . . , s(N )} ∈ N
N×m×2, where h and w represent

height and width of a given image and m denotes the number
of fiducial points. The set of all fiducial points of a sample
composes its shape. Using a statistical shape model, we can
compactly represent any shape s as a set of normal distributed
variables p (cf. Sect. 3.1).We enforce the geometry by condi-
tioning the output of the generator. The discriminator, instead
of being fed the output of the generator, sees the images
mapped onto the canonical coordinate frame by a differen-
tiable geometric transformation (motion model, explained in
Sect. 3.2). By assuming a factorised distribution for the latent
variables, we propose GAGAN, a conditional GAN to dis-
entangle the latent space (cf. Sect. 3.4). We further extend
GAGAN by perturbation-motivated data augmentation (cf.
Sect. 3.5) and α, β regularisation (cf. Sect. 3.6).

3.1 Building the ShapeModel

Each shape, composed of m fiducial points, is repre-
sented by a vector of size 2m of their 2D coordinates
x1, y1, x2, y2, . . . , xm, ym . First, similarities—translation,
rotation and scaling—are removed using Generalised Pro-
crustes Analysis (Cootes et al. 1995). Principal Component
Analysis is then applied to the similarity-free shapes to obtain
the mean shape s0 and a set of eigenvectors (the principal
components) and their corresponding eigenvalues. The first
n − 4 eigenvectors associated with the largest eigenvalues
λ1, . . . , λn are kept and compose the shape space. However,
since this model was obtained on similarity free-shapes, it is
unable to model translation, rotation and scaling. We there-
fore mathematically build 4 additional components to model
these similarities and append these to the model before re-
orthonormalising the whole set of vectors (Matthews and
Baker 2004). By stacking the set of all n components as the
columns of a matrix S of size (2m, n), we obtain the shape
model.

Fig. 3 Illustration of the statistical model of shape. An arbitrary shape
can be expressed as a canonical shape plus a linear combination of shape
eigenvectors. These components can be further interpreted asmodelling
pose (components 1 and 2) and smile/expression (component 3)

Given a shape s, we can express it as:

s = s0 + Sp. (2)

We define Φ the mapping from the shape space to the
parameter space:

Φ : R2m → R
n

s �→ S�(s − s0) = p.

This transformation is invertible, and its inverse Φ−1 is
given by Φ−1 : p �→ s0 + SS�(s − s0). We visualise this
transformation in Fig. 3.

We can interpret our model from a probabilistic stand-
point, where the shape parameters p1, . . . ,pn are inde-
pendent Gaussian variables with zero mean and variance
λ1, . . . , λn (Davies et al. 2008). By using the normalised
shape parameters p1√

λ1
, . . . ,

pn√
λn
, we enforce them to be inde-

pendent and normal distributed, suitable as input to our
generator. This also gives us a criterion to assess how realis-
tic a shape is by using the sum of its normalised parameters∑n

k=1
pk√
λk

∼ χ2, which follows a Chi squared distribution
(Davies et al. 2008).

3.2 Enforcing the Geometric Prior

To constrain the output of the generator to correctly respect
the geometric prior, we propose to use a differentiable geo-
metric function. Specifically, the discriminator never directly
sees the output of the generator. Instead,we leverage amotion
model that, given an image and a corresponding set of land-
marks, maps the image onto the canonical coordinate frame.
If the motion model is constrained to be differentiable, we
can backpropagate from the discriminator through that trans-
formation to the generator.

In this work, we use a piecewise affine warping as the
motion model. The piecewise affine warping maps the pixels
of a source shape onto a target shape. In this work, we employ
the canonical shape. This is done by first triangulating both
shapes, typically done as a Delaunay triangulation. An affine
transformation is then used to map the points inside each
simplex of the source shape to the corresponding triangle in
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Fig. 4 Illustration of the piecewise affine warping from an arbitrary
shape (left) onto the canonical shape (right). After the shapes have been
triangulated, the points inside each of the simplices of the source shape
are mapped to the corresponding simplex in the target shape. Specifi-
cally, a point x is expressed in barycentric coordinates as a function of
the vertices of the simplex it lays in. Using these barycentric coordi-
nates, it is mapped onto x ′ in the target simplex

the target shape, using their barycentric coordinates in terms
of the vertices of that simplex. The corresponding value is
decided using the nearest neighbour or interpolation. This
process is illustrated in Fig. 4.

3.3 Local Appearance Preservation

The statistical shape model provides rich information about
the images being generated. In particular, it is desirable for
the appearance of a face to be dependent on the set of fiducial
points that compose it, i.e., a baby’s face has a different shape
and appearance from that of a woman or a man. However,
we also know that certain transformations should preserve
appearance and identity. For instance, differences in head
pose should ideally not affect appearance.

Rather than feeding directly the training shapes, we create
several appearance-preserving variations of each shape, feed
them to the generator, and ensure that the resulting samples
have similar appearance. Consequently, for each sample we
generate several variants bymirroring it, projecting it into the
normalised shape space, adding random normal distributed
noise sampled, and then use these perturbed shape as input.
As the outputs will have different shapes and thus should
look different, we cannot directly compare them. However,
the geometric transformation projects these onto a canonical
coordinate frame where they can be compared, allowing us
to add a loss to account for local appearance preservations.

3.4 GAGAN

Weassumeour input can be described as pairs (X(i), s(i))ofN
images X with their associated shapes s. The corresponding
shape parameters are given by p(i) = Φ(s(i)) ∈ R

n , i =
1, . . . , N . We model p(i)

j ∼ N (0, I) as a set of p structured
independent latent variables which represents the geometric

shape of the output objects. For simplicity, we may assume
a factored distribution, given by

P(p(i)
1 , . . . , p(i)

n ) =
∏

j

P(p(i)
j ), i = 1, . . . , N , j = 1, . . . , n.

(3)

We propose a method for discovering these latent vari-
ables in a supervised way: the generator network G uses
both noise c(i) and the latent code p(i), thus the form of the
generator becomesG(c(i),p(i)). However, in standardGANs
when given a large latent space, the generator is able to ignore
the additional latent code p(i) by finding a solution satisfy-
ing PG(X(i)|p(i)) = PG(X(i)). To cope with the problem
of trivial latent representation, we employ a differentiable
geometric transformation that maps the appearance from a
generated image to a canonical reference frame. We denote
this function W . This constraints PG(X(i)|p(i)) to

PG(X(i)|p(i)) = PG(W(X(i), Φ−1(p(i)))|X(i),p(i)). (4)

In this work, we employ a piecewise affine warping which
maps s onto the mean shape s0. The discriminator only sees
fake and real samples after they have been mapped onto the
mean shape. Discriminating between real and fake is then
equivalent to jointly assessing the quality of the appearance
produced as well as the accuracy of the shape parameters
on the generated geometric object. The usage of a piecewise
affine warping has an intuitive interpretation: The better the
generator follows the given geometric shape, the better the
presentation when warping to the mean shape. For ease of
notation, we will use latent variable z(i) to concatenate vari-
ables p(i) and c(i), i.e., z(i) = (p(i), c(i)).

Therefore, we propose to solve the following affine-
warping-regularised value function:

VGAGAN(D, G) = EX,s

[
log D

(
W(X, s)

)]

+ Ez

[
log

(
1 − D(W(G(z), s))

)] (5)

Additionally to Eq. 5, we add a regularisation term to pre-
serve appearance locally. While comparing the appearance
of the faces from two different images is a hard problem,
our geometric transformation allows us to do so easily, by
warping them onto a common canonical shape where they
can directly compared, e.g. , using an �1 or �2 norm. In prac-
tice, we define X(i)

M , i = 1, . . . , N as the mirrored image of
X(i). The corresponding mirrored shape and shape parame-
ter are denoted by s(i)M and p(i)

M . The mirrored shapes sM and
the corresponding pM are used to build the entire latent space
zM ∼ N (0, I). Finally, we definem(·) as mirroring function,
meaning it flips every image and shape horizontally. The local
appearance preservation (LAP) regularisation term is defined
as follows:
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LAP = �1

[
W

(
G(z), s

)
,W

(
m(G(z′)), m(s′)

)]

+ �1

[
W

(
G(m(z), s′

)
,W

(
G(z′), s′

)]
.

(6)

We can similarly maintain appearance for local (minimal)
shape variations.Adding the local appearance preservation to
the minimax optimisation value function, we end up with the
following objective for the GAGAN min–max value func-
tion:

VGAGAN(D, G) = EX,s

[
log D

(
W(X, s)

)]

+ Ez

[
log

(
1 − D(W(G(z), s))

)]

+ λ · LAP
(7)

A visual overview of the method is shown in Fig. 2.

3.5 Data Augmentation with Perturbations

In order to provide more variety in shapes and avoid the gen-
erator learning to produce only faces for shape priors it has
seen, we augment the set of training shapes by adding large
amount of random small perturbations to these. These are
sampled fromaGaussian distribution in the normalised shape
space, and projected back onto the original space, therefore
enforcing their correctness according to the statistical shape
model.

Specifically, we generate L perturbed versions of s(i),
namely s̃( j), j = 1, . . . , L . Each perturbed shape s̃( j) is
obtained by first projecting s(i) onto the normalised shape
space, before adding random noise sampled from a Normal
distribution to them and finally projecting back:

s̃( j) = Φ−1
(
Φ(s(i)) + ε

)
, ε ∼ N (0, γ I) (8)

γ = 0.01 was determined experimentally. We denote
p̃( j), j = 1, . . . , L as their projection onto the normalised
shape space, obtained by p̃( j) = Φ(s̃( j)), j = 1, . . . , L . We
proceed with the perturbations as input shapes instead of s
for Eq. 7.

3.6 (˛,ˇ) Regularisation

We aim at using the representational power of the discrim-
inator to precisely evaluate the quality of facial landmark
estimation. This requires training on certain datasets and their
underlying probability distribution, and testing/evaluating on
on different distributions. Due to the in-the-wild nature of the
images, this can lead to covariate shift.

In addition, the annotations for the various datasets were
obtained differently for the various datasets with sometimes

large variations. For instance, most of the data used for our
small set of human faces was annotated in a semi-automatic
way, while for CelebA, we used a state-of-the-art facial land-
marks detector. This difference in labelling leads to label shift
which needs to be tackled during training.

In other words, the discriminator needs to accept a certain
amount of variability coming from the difference in labelling,
while retaining the ability to generalise well on new datasets.
For this purpose,we introduce s+ as slightly perturbed shapes
which should still be accepted and s− as largely perturbed
shape that should be recognised as fakes:

s+ = Φ−1(p + ε+), ε+ ∼ N (0, αIII) (9)

s− = Φ−1(p + ε−), ε− ∼ N (0, βIII) (10)

Given that X and s− are badly aligned for a large enough
value of β, andX and s+ are still well aligned a small enough
value of α (we use α 	 1 and β 
 1), we can let GAGAN
explicitly learn how to rank image and shape pairs by how
well they match, as measured by the point-to-point error. To
do so, we augment the objective function with two regular-
isation terms, with coefficients α and β, respectively. The
final objective function for GAGAN is then:

V(α,β)(D, G) = VGAGAN(D, G)

+ EX,s

[
log

(
1 − D(W (X, s−))

)]

+ EX,s

[
log

(
D(W (X, s+))

)]
.

(11)

We evaluate the effect of the parameters α and β on the
discriminator and compare GAGAN with existing models in
Sect. 4.

4 Experimental Evaluation

In this section, we investigate the performance of GAGAN.
In particular, we have four primary goals for our evalua-
tion. The first goal is to show the generality of our model in
terms of image domains, image sizes and GAN architecture.
In Sect. 4.2, we will show that regularised GAGAN can be
applied to different domain, not just faces, different image
sizes and different GAN architectures. Further, we will also
discuss limitations of GAGAN. Following this Subsection,
we will compare regularised GAGAN against GAGAN in
Sect. 4.5, specifically addressing imagequality and the ability
to detect badly aligned image-shapepairs. Thequalitative and
quantitative assessment of regularisedGAGANagainst state-
of-the-art conditional GAN (CGAN)models are presented in
Sects. 4.3 and 4.4. This includes investigating the ability to
disentangle the latent space and thus generate images with
control over shape and appearance. Furthermore, we quanti-
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Fig. 5 Canonical shape obtained after building the shape model on the
cats dataset

tatively assess how precise the generator can generate images
with given shapes and how accurately the discriminator can
discriminate when given shape and image are not aligned. In
particular, we verify that, given an image and a correspond-
ing shape, the discriminator accurately assesses howwell the
two corresponds. In all experiments, we compare our model
with existing conditional GAN variations and GAGANwith-
out regularisation. Finally, we show in an extensive ablation
study the influence of the regularisation in Sect. 4.6.

4.1 Experimental Setting

Human Faces Datasets For human face generation, we used
widely established databases for facial landmarks estimation,
namelyHelen (Zhou and Lin 2013), LFPW (Belhumeur et al.
2011), AFW (Zhu and Ramanan 2012) and iBUG (Sago-
nas et al. 2013a). In all cases we used 68 landmarks, in the
Multi-Pie configuration (Gross et al. 2010) as annotated for
the 300-W challenge (Sagonas et al. 2013b, a). We also used
the test set of the 300-W challenge (Sagonas et al. 2016)
and sampled frames from the videos of the 300-VW chal-
lenge (Shen et al. 2015), as well as from the videos of the
AFEW-VA dataset (Kossaifi et al. 2017). We name the set
of all these images and shapes the GAGAN-small set. To
allow for comparison with other traditional GAN methods,
we also used the CelebA dataset (Liu et al. 2015), which
contains 202,599 images of celebrities. Since the CelebA
dataset is only annotated for 5 fiducial points, we use the
recent deep learning based face alignmentmethod introduced
in Bulat and Tzimiropoulos (2017) to detect the entire set of
68 facial landmarks. This method has been shown to pro-
vide remarkable accuracy, often superior to that of humans
annotators (Bulat and Tzimiropoulos 2017). For higher reso-
lution (128×128 and 256×256)CelebA-HQ (Liu et al. 2015)
was used to be aligned and landmark tracked. The resulting
dataset has 29,623 images.

Cats Dataset For the generation of faces of cats, we used
the dataset introduced in Sagonas et al. (2015) and Sagonas

Fig. 6 Visualisation of images generated by GAGAN trained on the
CelebA dataset. The discriminator never sees the background pixels as
the images are mapped onto a canonical coordinate frame (first row).
The second row shows the corresponding generated image folllowed by
that same image superimposed by the shape prior used for generation.
When displaying results obtained with GAGAN we only show pixels
inside the shape used for generation (last row)

et al. (2016). In particularly, we used 348 images of cats,
for which 48 facial landmarks where manually annotated
(Sagonas et al. 2015), including the ears and boundaries of
the face. We first build the statistical shape space as we did
previously for human faces. The resulting canonical shape is
represented in Fig. 5.

Hand Gestures Dataset We used the Hand Gesture Recogni-
tion (HGR) (Grzejszczak et al. 2016; Nalepa and Kawulok
2014; Kawulok et al. 2014) which contains the gestures from
Polish Sign Language (‘P’ in the gesture’s ID) and American
Sign Language (‘A’). We only used the subsample of HGR
which has all 25 hand feature point locations, as some anno-
tations do only include the feature points which are visually
visible. This results in a training set of 276 samples.

Sketch Dataset Finally, to demonstrate the versatility of
the method, we apply GAGAN to the Face Sketch in the
Wild dataset (FSW) (Yang et al. 2014) which contains 450
greyscale sketches of faces. Similarly to the face databases
described above, the sketches are annotated with 68 facial
landmark.

Pre-processing All images were processed in the following
way. First, each shape is resized to be of size 60×60. The cor-
responding image is then resized by the same factor. Finally,
we take a central crop of size 64×64 around the centre of the
shape, leaving a margin of 2 pixels on all sides as the input
image and translate the shape accordingly.

Removing Background Pixels Rather than imposing an
explicit condition on the shape prior, the geometry is enforced
implicitly using a differentiable geometric transformation,
here a piecewise affine warping. During this process of warp-
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Fig. 7 Random samples from trained GAGAN models. Random
CelebA samples in sizes 64 × 64 (first row), 128 × 128 (second row),
256× 256 (third row), generated with GAWGAN-GP (fourth row) and

with background (fifth row). Further samples from GAGAN (ours),
obtained on face sketches (sixth row), cat faces (sixth row) and hand
gesture (last row)

Fig. 8 Random 256 × 256 samples with background. GAGAN was
trained with additional points to generate background. The last two
rows have the conditional shapes overlayed

ing the input image onto a canonical coordinate frame, pixels
outside the shape are discarded and the discriminator of
GAGAN never sees them. Consequently no background is
propagated through the networks and thus the background of
the generated images is randomand should be discarded. This
is why we only display the points inside the shape. Specifi-
cally, we take the convex hull of the shape points and discard
the pixels outside it, as illustrated in Fig. 6.

Implementation Details We use a traditional DCGAN archi-
tecture as introduced by Radford et al. (2015). The input is a
dataset with either 64 × 64 pixel (rescaled) images and cor-
responding shapes. The latent vector c of the generator has
size 100, is normal distributed and is concatenated with the
normalised shape parameters p. We trained our model using
Adam with a learning rate of 0.0002 for the discriminator
and a learning rate of 0.001 for the generator. Model collapse
has been observed with higher learning rates. Reducing the
learning rate was sufficient to avoid this issue. We used val-
ues of [0, 1.0, 2.5, 5.0] for λ. We found 1.0 to be the best
regularisation factor in terms of quality of generated images.
For α we chose values of [0, 0.01, 0.05, 0.1], for β values of
[0, 0.1, 0.5, 0.8]. By visual inspection, we excluded α > 0.1
as then image and corresponding shape were not aligned and
thus decreasedquality of generation.Wealso ran experiments
for β > 0.8, but observed no significant improvement.

Baselines and State-of-the Art Comparisons For compari-
son, we used a the Conditional GAN (CGAN) (Mirza and
Osindero 2014), modified to generate images conditioned on
the shape or shape parameters. Shape-CGAN is a CGAN
conditioned on shapes by channel-wise concatenation and
P-CGAN is a CGAN conditioned on the shape parameters
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Fig. 9 Comparison between
samples of faces generated by
the baseline models and our
model GAGAN for a the
GAGAN-small set, b CelebA
and c cat dataset. The first row
shows some real images. The
following rows presents results
obtained with our baseline
models: shape-CGAN (row 2),
P-CGAN (row 3) and
Heatmap-CGAN (row 4). The
last row presents images
generated by our proposed
GAGAN architecture. The first
three columns show generated
samples solely, while we
visualise the shape prior on the
generated images in the last
three columns

by channel-wise concatenation. To be able to compare with
our model, we also ran experiments on Heatmap-CGAN,
a CGAN conditioned on shapes by heatmap concatenation.
First a heatmap taking value 1 at the expected position of
landmarks, and 0 everywhere else is created. This is then
used as an additional channel and concatenated to the image
passed on to the discriminator. For the generator, the shapes
are flattened and concatenated to the latent vector z. All mod-
els use the architecture of DCGAN (Radford et al. 2015).

4.2 Generality of GAGAN

This subsection presents results showing the versatility and
generality of GAGAN. As such, we show the different
domains GAGAN can applied to as well as GAGAN used
for different image sizes (128× 128 and 256× 256) and dif-
ferent architectures [improved Wasserstein GAN (Gulrajani
et al. 2017)]. Further, we extend GAGAN to generate the
entire image and discuss the limitations of GAGAN.

Different Domains Figure 7 shows different image domains
that GAGAN was applied to. GAGAN is a general model
able to generate any structured objects, including human

faces, but also cat faces, sketches and hands. Generally, it
is only restricted to objects that have an underlying geome-
try that can be leveraged by the model. The first row of Fig. 7
shows representative samples generated faces from CelebA
(Liu et al. 2015). We also trained GAGAN to successfully
generates face sketches from 450 sketches annotated with 68
landmark points (sixth row). Further,GAGANwas trained on
cat images annotated with 48 facial landmarks (seventh row)
and a subset of HGR which include 25 hand feature point
annotations (last row). More samples generated for GAGAN-
small and CelebA can be found at the end of the paper (cf.
Figs. 21, 22 and 23).

Different Sizes and Architectures GAGAN leverages a sta-
tistical shape model, as well as a differentiable piecewise
affine transformation to learn a geometry-aware generative
adversarial model. These concepts are not limited to a spe-
cific image size and GAN architecture. We extended the
DCGAN architecture to generate images of size 128 × 128
and 256×256, and samples from our bestmodel are shown in
Fig. 7 (second and third row). Further, we transferred the con-
cept of GAGAN to improved Wasserstein GAN (Gulrajani
et al. 2017). We call this model Geometry-Aware WGAN-
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Fig. 10 Manipulating shape latent codes onCelebA:we show the effect
of the learned continuous latent factors p on the output for their values
varying from− 2.5 and 2.5. In every other rowwe also plot the shapes to
show how images and shapes are aligned. In rows 1 and 2 we show that

one of the continuous latent codes captures facial expressions, from sad
over neutral to happy. In rows 3 and 4we show that different latent codes
control horizontal and vertical rotation. In rows 5 and 6 a continuous
latent space learns the morphology of the face

GP (GAW-GAN-GP) and samples from the model are also
depicted in Fig. 7 (third row).

Extending Regularised GAGAN to Generate Background
One of the apparent limitations of GAGAN is that the
discriminator only discriminates piecewise affine transfor-
mations and thus only considers the face. As a consequence
background information as well as features like hair, ears and
neck were not generated. In order for GAGAN to consider
background, we have added four additional points to each
fiducial shape set:

s(i)corner = [xi1, yi1, xi2, yi2, . . . , xim, yim] ∪
[0, 0, w, 0, h, 0, w, h], (12)

where w represents the width and h the height of the image.
Visually, these four points are the corner points of the image
and thus the warped images will include background and
hair. Training GAGAN with the corner points is exactly the
same as without corner points except that we have to retrain
our statistical shape model. Figures 7 (fourth row) and 8 also
presents samples generated from a CelebA model including
the four additional corner points.

Limitations Regularised GAGAN has three dependencies:
(1) shape annotations, (2) statistical shape model and (3)
piecewise affine transformation. The performance of both
statistical shape model and piecewise affine transformation

Fig. 11 Manipulating appearance latent codes on CelebA: by varying
c(i) and leaving p(i) constant, we generate images with the same shape
but different identities. Each row has the same p(i) while c(i) ∼ N (0, I)
was sampled for each row element. In every odd row we also plot the
shapes to show how images and shapes are aligned

both depends on the shape annotations. The generated hands
(cf. Fig. 7, last row) do suffer in quality as both statisti-
cal shape model and piecewise affine transformation require
outer shape annotations, whereas annotations of HGR (Grze-
jszczak et al. 2016; Nalepa and Kawulok 2014; Kawulok
et al. 2014) only provide inner shape annotations. This also
explains the observed thinness of the generated fingers.
The second limitation is the piecewise affine transforma-
tion, which performs best when all shape meshes are visible.
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Fig. 12 Manipulating appearance latent codes on cats and hands: by
varying p(i) and leaving c(i) constant, we generate imageswith the same
identity but different shape

Fig. 13 Percentage of images as a function of the cumulative nor-
malised point-to-point. The error between the landmarks detected by the
detector is plotted against those used as prior to generate the images for
a model trained on our GAGAN-small set (green) and CelebA (orange)

Therefore, side faces are difficult to handle. One way to
address this issue to to use a part-based model (Tzimiropou-
los and Pantic 2014b) based on a more flexible, patch-based
transformation. However, it is worth noting that our method
does not suffer as much as AAMs from this limitation since
the generator creates images in their original coordinate
frame. Only the discriminator sees the warped image. As
such, the discriminator also learns which deformation corre-
sponds to which shape parameters. This is why the images
generated by GAGAN do not display artefacts resulting from
deformation by the piecewise affine warping.

4.3 Qualitative Results

This subsection presents a qualitative evaluation of our
proposed regularised GAGAN. If not further mentioned, reg-
ularised GAGAN was trained with α = 0.01, β = 0.5,
λ = 1.0.

Comparisons to Baseline Models We compared GAGAN
with Heatmap-GAN, P-GAN and Shape-GAN. Figure 9
depicts samples from the dataset (first row), from all base-
line models (rows 2–4) and our results (fifth row) for each (a)
GAGAN-small, (b) CelebA and (c) cat dataset. Shape-GAN
can only create face images if the dataset is large enough
(cf. Fig. 9b), as completely fails to generate any faces when
trained on the GAGAN-small set (cf. Fig. 9a). P-GAN and
Heatmap-GAN generate samples that follow the shape con-
dition, but the images are either distorted or highly pixelated.
Generation is better when trained on CelebA for all models,
including ours. This can be explained by the size of each
dataset. CelebA is about ten times as large as GAGAN-small
set and offers more variety in terms of ethnicity and pose. As
known, deep learning methods, including GANs, currently
require large training datasets.

Fig. 14 Baseline comparison. GAGAN in comparison with Heatmap-CGAN, P-CGAN and Shape-CGAN in a and a close-up plot of P-CGAN
and Shape-CGAN is provided in b. Note the different scale of average scores for GAGAN and Heatmap-CGAN in contrast to P-CGAN and
Shape-CGAN
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Fig. 15 Cross-database comparison of GAGAN and regularised GAGAN. The performance of GAGAN and regularised GAGAN is compared for
cross-database testing on 300VW and CelebA

Fig. 16 GAGANversus regularisedGAGAN.Random64×64 samples
from GAGAN without (α, β) regularisation (first row) and GAGAN
with (α, β) regularisation (second row). Both models were trained on
GAGAN-small set

Fig. 17 Cross-database results for GAGAN with and without per-
turbation. Both models were trained without (α, β) regularisation on
GAGAN-small and hyperparameter optimised on all other GAN hyper-
parameter. The test was conducted with the entire CelebA dataset

Generating Images from Small Datasets As observed with
training baselinemodelswithGAGAN-small set (cf. Fig. 9a),
conditional GANs struggle to learn a joint hidden representa-
tion to generate realistic images when the sample size is not

large enough. P-GAN best manages to generate faces among
all baselines, although they are distorted and not realistic
and require larger training datasets (see comparison between
generation from GAGAN-small set and CelebA in Fig. 9a).
In addition, we compared the generation of cats from Sag-
onas et al. (2015, 2016) for our model with the baseline
models. We chose to generate cats because it was among
the smallest datasets used in our experiments and the shape
model differs greatly from the ones for human faces. The
samples of the dataset (first row) and each model are visu-
alised in Fig. 9c. Both Shape-GAN and P-GAN struggle
with generating anything but noise whereas Heatmap-GAN
generates blurry images.Our approach stands out, solely gen-
erating realistic images solely even when trained on a small
dataset.

Disentangled Representation In our experiments, we visu-
alise the disentanglement by interpolating only one continu-
ous latent variable p(i)

j in the range [−2.5, 2.5]while keeping
all other p(i)

k , k �= j and c(i) fixed. Figure 10 shows that the
continuous latent variables p encode visual concepts such as
pose, morphology and facial expression while appearance
remains constant, indicating successful disentangled. Fig-
ure 7 shows some representative samples drawn from z at
resolutions of 64 × 64. Only one latent variable p(i)

j was
changed at a time for each row in Fig. 10. We observe real-
istic and shape-following images for a wide range of facial
expressions (rows 1–2), poses (rows 3–4) and morphology
(rows 5–6). We show the entire range of [− 2.5, 2.5] as this
was the range that GAGAN was trained on. Extreme facial
expressions shown in rows 1–2 (first 3 samples each) are hard
to generate for GAGAN because they are less realistic and
do not occur naturally, with lips too thin to generate.
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Fig. 18 Varying α and β for testing on LFPW and Helen test. The GAGANmodels were trained with all samples fromGAGAN-small set excluding
all images from LFPW and Helen test. For aGAGANwas trained with keeping β = 0.5 constant, while GAGANwas trained with keeping α = 0.1
constant

Fig. 19 Cross-database results for varying α. All models for a were trained on GAGAN-small set without 300VW and tested on 300VW, while
all models for b were trained on the entire GAGAN-small set and tested on CelebA. For GAGAN we kept β = 0.5 constant while varying
α = [0.0, 0.01, 0.05, 0.1]

Similarly, we only randomly sampled c(i) ∼ N (0, I) and
kept p(i). The results are shown in Fig. 11. In each row we
sampled different c(i) ∼ N (0, I). As depicted in Fig. 11,
by only sampling c(i) the shape is constant in every row,
while the identity varies from image to image. The proportion
between men and women sampled seems to be balanced,
though we observed fewer older people. Interestingly, the
modelwas able to generate accessories such as glasses during
sampling.

Figure 12 shows examples of cats and hands generated
by varying the shape parameter p(i) while keeping c(i)

constant.

4.4 Quantitative Results

This section discusses quantitative results, especially we
focus on the discriminative ability of GAGAN to verify land-
mark detections.
Generation of Aligned Faces The facial landmark detec-
tor introduced in Bulat and Tzimiropoulos (2017) detects
fiducial points with an accuracy in most cases higher than
that of human annotators. Since our model takes as input
a shape prior and outputs an image that respects that prior,
we can access how well the prior is followed by running
that detector on the produced images and measuring the dis-
tance between the shape prior and the actual detected shape.
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Fig. 20 Cross-database results for varying β. All models for a were trained on GAGAN-small set without 300VW and tested on 300VW, while
all models for b were trained on the entire GAGAN-small set and tested on CelebA. For GAGAN we kept α = 0.05 constant while varying
β = [0.1, 0.5, 0.8]

We directly run the method on 10,000 images generated
by the generator of our GAGAN. The error is measured
in terms of the established normalised point-to-point error
(pt-pt-error), as introduced in Zhu and Ramanan (2012) and
definedas theRMSerror normalisedby the face-size. Follow-
ing Tzimiropoulos and Pantic (2016, 2017); Kossaifi et al.
(2015, 2014, 2017) we produced the cumulative error distri-
bution curve depicting for each value on the x-axis in Fig. 13,
the percentage of images for which the point-to-point error
was lower than this value. For comparison we run the facial
landmarks detector on our GAGAN-small set and compute
the error using the ground-truth provided with the data. As
can be observed, most of the images are pretty well fitted for
the model trained on our GAGAN-small set. When trained
on CelebA, our model generates faces according to the given
prior with similar accuracy as the landmark detector obtains
on our training set.

Discriminative Power As GAGAN is trained to discriminate
real and fake images conditioned on shapes, we measured
how accurately the GAGAN discriminator can assess how
well image and shape pairs are aligned. In practice, this is
useful because even though state-of-the-art landmark detec-
tion performs well, verification of the landmark is usually
donemanually. This can nowbe done automatically using the
regularised GAGAN to discriminate between good and bad
alignment. In the following experiments, we vary the pt–pt
error by adding perturbations to the shapes to assess this capa-
bility. We report for all experiments the average prediction
score and one standard deviation in relation to the pt–pt-error
of a given image-shape input. We compare the best GAGAN
model (β = 0.5, α = 0.1) to the baseline models Heatmap-
CGAN, P-CGAN and Shape-CGAN. We trained each of the
models with GAGAN-small set without 300VW and tested

it on 300VW. Similarly as Fig. 20, the curves are plotted by
calculating the average prediction score from image-shape
pairs from CelebA and its perturbations and the correspond-
ing pt-pt error. In Fig. 14a, Heatmap-CGAN has a similar
predictive performance, with a much higher variance. We
plotted P-CGAN and Shape-CGAN separately in Fig. 14b to
assess the slope and predictability. Shape-CGAN performs
worse than GAGAN and Heatmap-CGAN as the scale of
predictions is much smaller (0.0, 0.003) and the curves show
high spikes of variance, especially at the critical pt–pt error
of 0.05. P-CGAN fails almost completely to detect any dif-
ferences in pt–pt-error.

4.5 Improvement Through Regularisation

We also compare the original GAGAN1 against GAGAN
with (α > 0, β > 0) regularisation. We compared the ability
to discriminate alignment quantitatively with test samples
from 300VW and CelebA. Both GAGAN and regularised
GAGAN were trained on GAGAN-small set, leaving out
300VWsamples,withλ = 1.0. In both test cases, regularised
GAGAN results in a better discrimination of alignment in
terms of slope and variance as observed in Fig. 15.

Further, we also investigated the generation of images of
GAGAN and regularised GAGAN. Figure 16 shows samples
from both models, GAGAN (first row) and GAGAN with
(α, β)-regularisation (second row). While GAGAN with-
out regularisation suffers from minor artefacts, we observe
smoother textures generated from GAGAN with regularisa-
tion.

1 Original GAGAN can be expressed as regularised GAGAN+ with
(α = 0, β = 0).
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4.6 Ablation Study

In this subsection, we present experiments conducted to
show the impact of the perturbation and (α, β) regulari-
sation on GAGAN. Firstly, we will show qualitative and
quantitative results on GAGAN trained with and without
perturbation. Secondly, similarly to the quantitative experi-
ments in Sect. 4.4, we use our trained GAGAN discriminator
for automatic facial landmark verification while varying the
alignment of image-shape pairs.

Cross-Database Results With and Without Perturbation We
conducted cross-database experiments by training GAGAN
on the GAGAN-small set and testing the ability of auto-
matic facial landmark verification on CelebA. Figure 17
shows the pt–pt-error curves in relation to the average
prediction score. GAGAN without perturbation cannot dis-
criminate between well and badly aligned image-pairs,
whereas GAGAN with perturbation establishes a smooth
trend, although only in the between range 0.0 and 0.2 of
prediction score. The performance of GAGAN with pertur-
bation is also poor because we did not employ any (α, β)

regularisation. This allowed for a unbiased evaluation of the
perturbation.

Test on Helen and LFPW Experiments using test sets where
the training set includes the corresponding training dataset
(LFPW, Helen) were performed to assess how well GAGAN
discriminators are able to distinguish between good and bad
alignment. Since the GAGAN-small set consists of shape
annotationswhich have beenmanually verified and corrected
by experts, we know that annotations are well aligned to the
images. We trained with all samples except the ones from
the LFPW and Helen test set and varied α or β while keep-
ing respectively β = 0.5 and α = 0.1 constant. GAGAN
was trained with λ = 1.0. Figure 18 shows that, with
α = 0.1 and β = 0.5, GAGAN predicts alignments with
pt–pt-error = 0.0 with an average score of almost 1.0,
and decreasing to an average score of 0.0 with pt–pt-error
> 0.05. This average scoring is desirable as in practice any
alignment with pt–pt-error > 0.05 should be manually cor-
rected.

Cross-Database Results We also conducted cross-database
experiments by training GAGAN on the GAGAN-small set,
leaving out all samples from 300VW for testing. Further, we
also trained GAGAN on the entire GAGAN-small set to test
it on CelebA. We ran several experiments for GAGAN vary-
ing α = [0.0, 0.01, 0.05, 0.1] and β = [0.0, 0.1, 0.5, 0.8],
with λ = 1.0. Figure 19 shows the average prediction score
in relation to increasing pt–pt-error for testing 300VW and
CelebA for different α. In these experiments, α was trained
with different values in range of [0.0, 0.01, 0.05, 0.1] while
keeping β = 0.5 constant. We observe an improvement in

average prediction score with higher α values of 0.05 and
0.01, while α = 0.0 fails completely to detect any difference
in pt–pt-error and α = 0.0. Further, the average prediction
scores on the CelebA dataset have higher variance than the
ones of 300VW. This is likely the result it beingmore diverse
and much larger.

We also varied β = [0.1, 0.5, 0.8] while keeping α = 0.1
constant in our cross-database experiments. Results are visu-
alised in Fig. 20. By increasing β we decrease the variance
in predictions and have a clearer threshold between well
aligned images and shapes (pt–pt error < 0.05) and badly
aligned images and shapes for both 300VW and CelebA.
With β = 0.0, there is a clear division between aligned
images and shapes (pt–pt error = 0.0) and aligned images
and shapes with pt–pt error of approx. 0.05–0.2 for 300VW.
However, the average prediction score rises with 0.2 pt–
pt-error which is counter-intuitive of how the discriminator
should rank the images and shapes. Further, with increasing
β, the variance of the average prediction score decreases, and
thus gives better precision to the predictions.

5 Conclusion

We introduced regularized GAGAN, a novel method able to
produce realistic images conditioned on disentangled latent
shape and appearance representations. The generator sam-
ples from the probability distribution of a statistical shape
model and generates faces that respect the induced geom-
etry. This is enforced by an implicit connection from the
shape parameters fed to the generator to a differentiable
geometric transformation applied to its output. The discrimi-
nator, trained only on images normalised to canonical image
coordinates, is able to not only differentiate realistic from
fake samples, but also judge the alignment between image
and shape without being explicitly conditioned on the prior.
The resulting representational power allows to automatically
assess the quality of facial landmarks tracking, while avoid-
ing dataset shifts. We demonstrated superior performance
compared to other methods across datasets, domains and
sample sizes. Our method is general and can be used to aug-
ment any existing GAN architecture.

Appendix

See Figs. 21, 22, 23.
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Fig. 21 Samples from GAGAN trained with CelebA (128 × 128): all
samples are from one batch generated by GAGAN. Rows 1–2 are
the samples without processing, rows 3–4 are samples with shapes

superimposed, rows 5–9 are samples with the background removed
during post-processing and rows 9–12 are samples with the background
removed and shapes superimposed

123



International Journal of Computer Vision

Fig. 22 Samples from GAGAN trained with CelebA (64 × 64): all
samples are from one batch generated by GAGAN. Rows 1–2 are
the samples without processing, rows 3–4 are samples with shapes

superimposed, rows 5–9 are samples with the background removed
during post-processing and rows 9–12 are samples with the background
removed and shapes superimposed
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Fig. 23 Samples from GAGAN trained with GAGAN-small: all sam-
ples are from one batch generated by GAGAN. Rows 1–2 are the
samples without processing, rows 3–4 are samples with shapes super-

imposed, rows 5–9 are samples with the background removed during
post-processing and rows 9–12 are samples with the background
removed and shapes superimposed
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