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Abstract—Face images convey rich information which can
be perceived as a superposition of low-complexity components
associated with attributes, such as facial identity, expressions and
activation of facial action units (AUs). For instance, low-rank
components characterizing neutral facial images are associated
with identity, while sparse components capturing non-rigid defor-
mations occurring in certain face regions reveal expressions and
action unit activations. In this paper, the Discriminant Incoherent
Component Analysis (DICA) is proposed in order to extract low-
complexity components corresponding to facial attributes, which
are mutually incoherent among different classes (e.g., identity,
expression, AU activation) from training data, even in the pres-
ence of gross sparse errors. To this end, a suitable optimization
problem, involving the minimization of nuclear- and `1-norm,
is solved. Having found an ensemble of class-specific incoherent
components by the DICA, an unseen (test) image is expressed as
a group-sparse linear combination of these components, where
the non-zero coefficients reveal the class(es) of the respective
facial attribute(s) that it belongs to. The performance of the
DICA is experimentally assessed on both synthetic and real-world
data. Emphasis is placed on face analysis tasks, namely joint
face and expression recognition, face recognition under varying
percentages of training data corruption, subject-independent
expression recognition, and action unit detection by conducting
experiments on 4 datasets. The proposed method outperforms all
the methods that is compared to in all tasks and experimental
settings.

Index Terms—Discriminant Incoherent Component Analysis,
Incoherent Subspaces, Sparse-based Representation Classifica-
tion, Low-rank, Sparsity

I. INTRODUCTION

FACE analysis has been an active research topic over
the last thirty years. Human face is a rich source of

information consisting of several components which are
related to attributes associated with facial identity, emotional
expression and activation of action units (AUs). These
components are characterized by specific structures which
can assist the semantic interpretation of content in the visual
stream. For instance, facial expressions manifest themselves
through sparse non-rigid deformations occurring in certain
face regions [1], [2], while images depicting the neutral face
of the same person are expected to be highly correlated and
thus drawn from a low-rank subspace. Consequently, the
extraction of such features of low-complexity (i.e., exhibiting
low-rank or sparse structure) is essential for accurate face
and expression recognition.

Machine learning approaches to face recognition primarily
aim to extract discriminant features that are invariant to
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pose, expression and illumination variations in order to
train classifiers. To achieve this, subspace analysis methods
such as Eigenfaces [3], Fisherfaces [4], Laplacianfaces [5],
Locally Linear Embedding [6], [7] and Isomap [8] aim at
feature extraction, based on the assumption that the high-
dimensional observed faces live in a low-dimensional space.
However, those methods are susceptible to non-Gaussian,
gross contamination in the data (e.g., occlusions). A partial
remedy to this issue has been provided by Robust Principal
Component Analysis [9] and other similar approaches (e.g.,
[10]–[13]), whose building block is the decomposition of face
imagery into a low-rank part and an error term accounting for
sparse corruptions, occlusions, and outliers. Subspace learning
on Image Gradient Orientations (IGO) [14] also alleviates the
problem of illumination- and corruption-related noise without
significantly increasing the computational complexity. On
the other hand, Sparse Representation-based Classification
(SRC) [15] has boosted the development of methods that
focus more on face representation. The main assumption of
SRC is that an unseen (test) image can be represented as
a sparse linear combination of the training face images or
discriminative, noise-free atoms [16]–[22].

Most works on facial expression recognition focus on “mes-
sage judgement” – classifying observed facial expressions in
terms of emotions or other messages (e.g. pain, interest, stance,
accent) [23]–[26]. Various features have been employed for
this task, including Gabor features (e.g. [27]) and Local
Binary Patterns (LBP) [28], [29]. SRC has been shown to be
efficient also for recognition of emotional expression [27],
[30]–[33]. Other works in the field focus on “sign judgement”
– classifying observed facial expressions in terms of facial
muscle activations (AUs) that produced the observed expres-
sion [1], [2], [34]. These atomic facial actions correspond to
all visually discernible facial movements and can be measured
according to the facial action coding system (FACS) [35].

Face and facial expression recognition, despite being two
intertwined tasks within the context of face analysis, have hith-
erto been targeted jointly by just a few works. Vasilescu and
Terzopoulos [36] employ an extension of Singular Value De-
composition (SVD) to tensors to uncover subspaces generating
different faces, expressions, viewpoints, and illuminations.
Another SVD-based work is [37], where the proposed Higher-
Order SVD is used to learn the mapping between persons and
expressions, which is subsequently utilized to perform facial
expression decomposition. Recently, Taheri et al. [11] combine
RPCA [9] and K-SVD [38] to construct one identity and one
expression dictionary, which are in turn fed into a SRC-like
framework for joint face and expression recognition.

The fundamental constraint of the above mentioned
methods for face analysis is that the training data is often
assumed to be noise-free. That is, they are collected under
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Fig. 1. The proposed Discriminant Incoherent Component Analysis (DICA), as applied to the multi-label setting of joint face and expression recognition.
The data matrix X containing expressive face images is expressed as a superposition of identity- and expression-specific mutually incoherent components,
under the assumption of possible gross errors (outliers).

well controlled conditions in terms of illumination and pose
variations and they do not contain occlusions or disguise.
Consequently, the aforementioned methods are not applicable
in practical scenarios when both training and test data are
contaminated by gross non-Gaussian noise and corruptions
(e.g., occlusions and disguise). Moreover, the majority of
these works approach the tasks of face and expression
recognition separately rather than within a joint framework.

To alleviate the aforementioned drawbacks and motivated
by recent advances in robust subspace learning [13], [39]–
[43], we propose the Discriminant Incoherent Component
Analysis (DICA) in order to decompose training facial
images into a superposition of class-specific structured and
mutually incoherent components accounting for identity,
emotional expression or AUs in the presence of gross but
sparse non-Gaussian corruptions. In other words, we model
expressive faces as expressionless faces capturing the identity,
superimposed by sparse images of non-rigid deformations
corresponding to facial expressions, plus sparse components
corresponding sparse errors of large magnitude, which cannot
be explained by labels. To learn such a decomposition, we
impose low-rank constraints on the components capturing
the face’s identity and sparsity constraints to those related to
expressions. The proposed model can be also used to recover
more localized sparse components related to AUs. Having
found an ensemble of class-specific incoherent components, a
test image is expressed as a group-sparse linear combination of
these components with non-zero coefficients corresponding to
the identity and expression class that the test sample belongs
to. Overall, this discriminative representation furnished by
the DICA proves efficient for the related classification tasks.

The contributions of this paper are as follows:

1) The DICA provides a generic method to decompose
data into class-specific structured and incoherent
components, and a sparse matrix accounting for outliers.

2) An efficient Alternating-Directions Method of
Multipliers (ADMM)-based algorithm is presented

that can solve suitable optimization problems for the
DICA, according to the desirable component structure.

3) A dictionary-based classification framework is proposed,
according to which a test sample is collaboratively
represented via class-specific components extracted by
the DICA.

The performance of the DICA is assessed by conducting
experiments on joint face and expression recognition, face
recognition under varying percentages of training data
corruption, subject-independent expression recognition under
varying illumination conditions during training, and facial
action unit detection, using 4 datasets. The proposed method
outperforms the methods that is compared to in all the
aforementioned tasks.

The remainder of the paper is as follows. In Section II,
the DICA and its algorithmic framework are detailed. A
dictionary-based framework for classification via the DICA
is described in section III. The performance is assessed
experimentally on both synthetic and real-world data in
Section IV. Section V concludes the paper and gives insight
for future research directions.

Notations: Matrices (vectors) are denoted by uppercase
(lowercase) boldface letters , e.g., A, B , (a ,b). I denotes
the identity matrix of compatible dimensions. The ith ele-
ment of vector x is denoted as xi, while the ith column
of matrix X is denoted as xi. For the set of real numbers,
the symbol R is used. We refer to a set of N real matrices
of varying dimensions as {X(n) ∈ Rpn×qn}Nn=1. Regarding
vector norms, ‖x‖ =

√∑
i x

2
i denotes the Euclidean norm.

Regarding matrix norms, ‖X‖∗ denotes the nuclear norm,
which equals the sum of singular values, while ‖X‖ denotes
the spectral norm, which equals the largest singular value.
‖X‖1 =

∑
i

∑
j |xij | is the element-wise matrix `1-norm,

and ‖X‖F =
√∑

i

∑
j x

2
ij =

√
tr(XTX) is the Frobenius

norm, with tr(·) denoting the trace of a square matrix. Finally,
λmax[X] denotes the largest eigenvalue of a square matrix X.
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II. DISCRIMINANT INCOHERENT COMPONENT ANALYSIS

In this section, the DICA is described along with its solver.

A. Problem Statement

The goal of the DICA is to robustly learn components from
training samples that 1) are discriminant and exhibit low-
complexity structures (e.g., low-rank or sparsity) associated
with facial attributes, 2) are mutually incoherent among dif-
ferent classes, and 3) facilitate the classification of test samples
by means of sparse representation.

Let x ∈ Rd be a vectorized expressive face image and
l ∈ {0, 1}nc the label vector associated with it, whose
non-zero elements are those corresponding to the identity and
expression class it belongs to (nc denotes the total number
of classes). We seek to decompose x as a sum of nc class-
specific components y(i) ∈ Rd, capturing the discriminant
characteristics of each class. Thus, x is expressed as

x =

nc∑
i=1

y(i) (1)

We assume that each class-specific component y(i) lies in a
linear orthonormal subspace spanned by U(i) ∈ Rd×m(i)

, and
V(i) ∈ Rm(i)×d denotes the projection matrix that embeds
x onto the m(i)-dimensional space, while also preserving
the structure (e.g., low-rank or sparsity) related to the
class-specific attribute. Therefore, y(i) is written as

y(i) = U(i)V(i)x , (2)

Following [44] and [13], the above mentioned formulation
enables us to impose a specific structure on the projection
spaces V(i), by minimizing a suitable structure-inducing
norm ‖V(i)‖(·); this is either the nuclear norm [45] which
imposes low-rank on the projection spaces corresponding
to facial identities, or the `1-norm [46] which enables to
learn sparse projections for facial expressions or AUs. By
incorporating (2) into (1), x is written as

x =

nc∑
i=1

U(i)V(i)x , (3)

Clearly, to perfectly disentangle the class-specific com-
ponents y(i) (i.e., to ensure the identifiability of (1)), the
column spaces that they are stemming from should be mutually
incoherent, that is U(i)T U(j) = 0 for i 6= j. We observe
that Equation (3), combined with the mutual incoherence
property U(i)T U(j) = 0 for i 6= j, entails U(i)T ' V(i)

for i = 1, 2, . . . , nc. In other words, matrices U(i)T and V(i)

are proportional for every class i. This further entails that
U(i)T U(j) = 0 is equivalent to V(i)V(j)T = 0 for i 6= j.

To account also for the possible presence of facial aspects
that cannot be explained by labels, including outliers and gross
corruptions, we include the additive term o ∈ Rd in the
decomposition (3), which is written as

x =

nc∑
i=1

U(i)V(i)x + o , (4)

Having found the decomposition (4), the representation
vector [(V(1)x)T , (V(2)x)T , · · · , (V(nc)x)T ]T is expected to
be group-sparse, with non-zero elements corresponding to the
class(es) the sample x belongs to.

The DICA learns the reconstruction matrices {U(i)}nc
i=1

and projection matrices {V(i)}nc
i=1 by employing the

training matrix X ∈ Rd×N which contains in its columns
the vectorized training face images, with d being the
dimensionality of each image and N the number of training
observations. Let us denote by XS(i) ∈ Rd×N the column-
sparse matrix whose non-zero columns are the columns of
X with label i. Therefore, with the set W = {{U(i) ∈
Rd×m(i)}nc

i=1, {V(i) ∈ Rm(i)×d}nc
i=1, O ∈ Rd×N} containing

all the unknown variables, the DICA solves

argmin
W

λ(i)
nc∑
i=1

‖V(i)‖(·) + η
∑
i6=j

‖V(i)V(j)T ‖2F + λ1‖O‖1 ,

s.t. i) X =

nc∑
i=1

U(i)V(i)XS(i) + O ,

ii) U(i)T U(i) = I , i = 1, 2, . . . , nc ,
(5)

where the structure-inducing norm ‖V(i)‖(·) is either the
nuclear norm for face-specific projections or the `1-norm for
expression-specific and AU-specific projections. The term∑
i6=j ‖V(i)V(j)T ‖2F induces mutual incoherence among the

projection spaces and O ∈ Rd×N denotes the outlier matrix
accounting for components that cannot be explained by the
summand containing the class-specific reconstructions. The
positive parameters λ(i), η, and λ1 control the norm imposed
on {V(i)}nc

i=1, the mutual incoherence for all component
pairs, and the sparsity of outliers O, respectively.

In Fig. 1, one can see how the proposed DICA is applied
to the multi-label scenario of joint face and expression recog-
nition. In that case, each training image is characterized by
two labels, one for identity and the other for expression. The
data matrix X, containing the vectorized training images, is
accordingly represented as a superposition of discriminant and
mutually incoherent class-specific components (low-rank for
identity and sparse for expression), plus an outlier matrix O
accounting for unbounded sparse errors.

B. Alternating-Direction Method-Based Algorithm

The Alternating-Directions Method of Multipliers
(ADMM) [47] is employed hereby to solve (5). The
(partial) augmented Lagrangian function for (5) is defined as:

L(W,Y, µ) = λ(i)
nc∑
i=1

‖V(i)‖(·) + η
∑
i6=j

‖V(i)V(j)T ‖2F

+ λ1‖O‖1 + tr

(
YT

(
X−

nc∑
i=1

U(i)V(i)XS(i) −O

))

+
µ

2
‖X−

nc∑
i=1

U(i)V(i)XS(i) −O‖2F ,

(6)
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Algorithm 1 ADMM solver for the DICA (5)

Input: Data: X ∈ Rd×N . Parameters: λ(i), η, λ1, and {m(i)}nc
i=1.

1: Normalize each column of X to unit `2-norm.
2: Initialize: Set {{U(i)[0]}, {V(i)[0]}}nc

i=1, O[0], Y[0] to zero matrices. Set µ[0] = 1/‖X‖, ρ = 1.1, µmax = 1010.
3: while not converged do
4: for i = 1 : nc do
5: Calculate L = 1.02λmax

[
µ[t]XS(i)XT

S(i) + 2η
∑
j 6=i

V(j)[t]TV(j)[t]

]
.

6: if V(i) is associated with nuclear norm then
7: V(i)[t+ 1]← Dλ(i)/L

[
V(i)[t]− L−1∇f(V(i)[t])

]
.1

8: else if V(i) is associated with `1-norm then
9: V(i)[t+ 1]← Sλ(i)/L

[
V(i)[t]− L−1∇f(V(i)[t])

]
.

10: end if
11: U(i)[t+ 1]← P

[(
X−

∑
j 6=i

U(j)[t]V(j)[t+ 1]XS(j) −O[t] + µ[t]−1Y[t]

)(
V(i)[t+ 1]XT

S(i)

)]
.

12: end for

13: O[t+ 1]← Sλ1/µ[t]

[
X−

nc∑
i=1

U(i)[t+ 1]V(i)[t+ 1]XS(i) + µ[t]−1Y[t]

]
.

14: Update the Lagrange multiplier by Y[t+ 1]← Y[t] + µ[t]

(
X−

nc∑
i=1

U(i)[t+ 1]V(i)[t+ 1]XS(i) −O[t+ 1]

)
.

15: Update µ by µ[t+ 1] = min(ρ · µ[t], µmax).
16: end while
Output: {U(i) ∈ Rd×m(i)

, V(i) ∈ Rm(i)×d}nc
i=1, O ∈ Rd×N .

where µ is a positive parameter and Y ∈ Rd×N is the
Lagrange multiplier related to the linear constraint in (5).

At each iteration, (6) is minimized with respect to each
variable in W in an alternating fashion and, subsequently,
the Lagrange multiplier Y and parameter µ are updated.
The iteration index is denoted herein by t. The notation
L(U(i),Y[t], µ[t]) is used to denote the solution stage in
which all other variables but U(i) are kept fixed, and similarly
for the other unknown variables. Thus, given the variables
W[t] , the Lagrange multiplier Y[t] and the parameter µ[t] at
iteration t, the updates of ADMM are calculated as follows.
Update the primal variables:

U(i)[t+ 1] = argmin
U(i)

L(U(i),Y[t], µ[t])

s.t. U(i)T U(i) = I , i = 1, 2, . . . , nc

= argmin
U(i)

µ[t]

2
‖X−

nc∑
i=1

U(i)V(i)XS(i) −O + µ[t]
−1

Y‖2F

s.t. U(i)T U(i) = I , i = 1, 2, . . . , nc
(7)

V(i)[t+ 1] = argmin
V(i)

L(V(i),Y[t], µ[t])

= argmin
V(i)

λ(i)‖V(i)‖(·) + η
∑
i6=j

‖V(i)V(j)T ‖2F

+
µ[t]

2
‖X−

nc∑
i=1

U(i)V(i)XS(i) −O + µ[t]
−1

Y‖2F

= argmin
V(i)

λ(i)‖V(i)‖(·) + f(V(i)) , i = 1, 2, . . . , nc

(8)

Algorithm 2 Framework for face/expression recognition.
Input: Data: training set X ∈ Rd×N , query image y ∈ RN×1.
Parameters: λLasso.

1: Normalize each column of X to unit `2-norm.
2: Compute low-rank matrices {A(i)}nc

i=1 by performing
RPCA [9] on each class-specific sub-matrix X(i).

3: Initialize: For each subspace i ∈ {1, 2, . . . , nc}, set
U(i)[0] = M(i), and V(i)[0] = M(i)T , where A(i) =

M(i)ΣN(i)T is the skinny SVD of A(i).
4: Calculate {V(i)}nc

i=1 according to Algorithm 1, using the
nuclear- (`1-) norm in Problem (5) for face (expression)
recognition.

5: Form dictionary D =
[
D(1),D(2), . . . ,D(nc)

]
, with

D(i) = U(i)V(i)X(i) , i ∈ {1, 2, . . . , nc}.
6: Normalize each column of D to unit `2-norm.
7: Perform SRC: α̂ =

argmin
α

1

2
‖y −Dα‖2 + λLasso‖α‖1.

8: for i = 1 : nc do
9: err(i) = ‖y −Dδ(i)(α̂)‖.

10: end for
11: i∗ ← argmini∈{1,2,...,nc} err(i).
Output: subject (expression) label i∗.

O[t+ 1] = argmin
O

L(O,Y[t], µ[t])

= argmin
O

λ1‖O‖1

+
µ[t]

2
‖X−

nc∑
i=1

U(i)V(i)XS(i) −O + µ[t]
−1

Y‖2F

(9)
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Update the Lagrange Multiplier:

Y[t+1] = Y[t]+µ[t]

(
X−

nc∑
i=1

U(i)V(i)XS(i) −O

)
(10)

Equations (7)-(9) are solved by means of the operators and
Lemmas that are introduced next. We begin by defining the
shrinkage operator [9] as Sτ [a] = sgn(a)max(|a| − τ, 0),
whose matrix version is obtained by applying it element-wise.
Also, if A = MΣNT denotes the SVD of a matrix A,
the singular value thresholding operator (SVT) is defined as
in [48]: Dτ [A] = MSτ [Σ]NT . Based again on the SVD of
A, the Procrustes operator is defined as P[A] = MNT and
solves the problem in the following Lemma.

Lemma 1 [44]: The constrained minimization problem:

argmin
B

‖A−B‖2F s.t. BTB = I (11)

has a closed-form solution given by P = P[A].

The solution of (8) is presented in detail in the Appendix
and is based on the SVT (shrinkage) operator when the
nuclear- (`1-) norm is employed for the component V(i).
Moreover, the minimizer of (9) is based on the shrinkage
operator. Finally, (7) is solved as in Lemma 1. The ADMM-
based solver of (5) is wrapped up in Algorithm 1. For all
experiments presented herein, Algorithm 1 is terminated when

‖X−
nc∑
i=1

U(i)V(i)XS(i)−O‖F /‖X‖F < 10−7, or when 1000

iterations are reached.
Computational Complexity and Convergence: In the

case where the nuclear norm is enforced on {V(i)}nc
i=1, the

cost of each iteration in Algorithm 1 is mainly associated
with the calculation of the SVT operator in Step 7. Hence,
each iteration has a complexity equal to that of SVD, i.e.,
O(max(d2N, dN2)). In the case where the `1-norm is used,
the shrinkage operator becomes the most time-consuming
calculation, thus entailing linear complexity O(dN). As far as
convergence of Algorithm 1 is concerned, the convergence of
the ADMM to local minima has not been proved for the cases
where the latter is adopted to solve non-convex problems [47],
[49]. A systematic convergence proof does not fall within the
scope of this paper, yet for proof of the weak convergence of
Algorithm 1 one can follow the approach in [50]. Nonetheless,
the experiments in Section IV serve as a testament to the
guaranteed convergence of Algorithm 1.

III. DICA-BASED CLASSIFICATION

In this section, a dictionary-based framework built upon the
DICA (5) is proposed. This can be tailored accordingly to
cope with either a single- or a multi-label scenario. Herein,
the framework is presented for the problems of face and
expression recognition, viewed either as separate single-label
tasks or jointly within a multi-label setting. For the multi-label
scenario, an extension of our framework, which can deal with
the facial action unit detection task, is also described.

1f is the smooth differentiable part of the minimizer (8).

Fig. 2. Decomposition of an expressive image from the CK+ Dataset into
an identity component, an expression component and a sparse error term
accounting for outliers, as produced by the DICA.

A. Single-Label Case: Face/Expression Recognition

Suppose each column xn of our training data matrix
X ∈ Rd×N represents a vectorized image, with subject (ex-
pression) label i ∈ {1, 2, . . . , nc}, where nc equals the number
of subjects (expressions). Let us also denote by X(i) ∈ Rd×n(i)

the matrix that is composed of the n(i) columns of X that
are associated with the subject (expression) label i.

First, for face (expression) recognition, the nuclear- (`1-)
norm is chosen for V(i) in the DICA, as the goal here is to
uncover low-rank (sparse) components. Second, RPCA [9] is
performed on each X(i) for warm initialization of U(i) and
V(i) in (5). Specifically, each basis U(i) and component V(i)

is initialized as U(i) = M(i) and V(i) = M(i)T , respectively,
where A(i) denotes the low-rank matrix yielded by RPCA
for subject (expression) i and A(i) = M(i)ΣN(i)T denotes
its skinny SVD. Note that setting V(i) = M(i)T = U(i)T

is an intuitive choice, considering that V(i) and U(i)T are
proportional to each other, as shown in Section II-A. Choos-
ing an initial estimate that is close to the optimum sought
can markedly speed up the convergence of a non-convex
optimization problem like the DICA [47]. RPCA has been
proved efficient in recovering low-complexity facial compo-
nents, while also being robust to gross errors in the data [11].
This motivates its choice for the initialization step, while its
positive impact on the convergence speed was corroborated
by preliminary experiments. Third, Problem (5) is solved
according to Algorithm 1.

Following a SRC-like approach, the class-specific recon-
struction images {D(i) = U(i)V(i)X(i)}nc

i=1 are concatenated
to construct the dictionary D. Then, for each query image
y ∈ Rd×1 a vector α̂ ∈ RN×1 is sought so that y is
represented as a sparse linear combination of the dictionary
atoms, i.e., y = Dα̂. The sparse coefficient vector α̂ is
obtained by solving the Lasso minimization problem:

α̂ = argmin
α

1

2
‖y −Dα‖2 + λLasso‖α‖1 (12)

Finally, the subject (expression) label i∗ is estimated as that
accounting for the minimum class-specific reconstruction error
of y, i.e.,

i∗ = argmin
i∈{1,2,...,nc}

‖y −Dδ(i)(α̂)‖ , (13)

where α̂ is the solution of (12), and {δ(i)(·) : RN×1 7→
RN×1}nc

i=1 are class-specific selector operators calculated as

δ(i)(qn) =

{
qn, if n ∈ S(i)

0, otherwise
(14)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2016.2539502

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Fig. 3. Example registered images from each of the 4 datasets used. From top
to bottom: CK+ [51], AR [52], CMU Multi-PIE [53], GEMEP-FERA [54].

The proposed single-label framework is summarized in Algo-
rithm 2 for face/expression recognition.

B. Multi-Label Case: Joint Face and Expression Recognition
& Action Unit Detection

The framework described in the previous section is extended
to the multi-label case, where each observation is associated
with multiple labels w.r.t. different attributes. Two face anal-
ysis tasks that fall in this multi-label case are (a) joint face
and expression recognition, and (b) facial action unit (AU) de-
tection. In this section, we choose to present the DICA-based
classification framework tailored to the aforementioned tasks,
on which our experimental validation in Section IV is based.

Joint Face and Expression Recognition: First, the
DICA (5) is solved for the total number of classes nc =
ns + ne, with ns (ne) being the number of subjects (ex-
pressions). Similarly to the single-label case, for the subject-
(expression-)specific components i ∈ {1, 2, . . . , ns} (i ∈
{ns + 1, ns + 2, . . . , ns + ne}) the nuclear- (`1-) norm is en-
forced on the corresponding V(i). Second, the derived identity-
related reconstruction images are used to form the identity
dictionary DI , while the expression-related reconstruction
images are used to form the expression dictionary DE . The
final dictionary consists of the concatenation of DI and DE
as D =

[
DI DE

]
.

Subsequently, the SRC algorithm is modified accordingly to
solve jointly for the identity and expression coefficient vectors
α̂I and α̂E , respectively:

α̂I , α̂E = argmin
αI ,αE

1

2
‖y −

[
DI DE

] [αI
αE

]
]‖2

+
λLasso

2
‖
[
αI
αE

]
‖1

= argmin
αI ,αE

1

2
‖y −DIαI −DEαE‖2

+
λLasso

2
‖αI‖1 +

λLasso
2
‖αE‖1

(15)

Finally, the component separation approach of [11] is fol-
lowed, where the reconstruction image ŷI = DIα̂I based
on the identity dictionary DI is utilized for face recognition,
and, similarly, the reconstruction image ŷE = DEα̂E based on

the expression dictionary DE is utilized for expression recog-
nition, according to the following minimum-residual rules:

i∗I = argmin
i∈{1,2,...,ns}

‖ŷI −DIδ
(i)(α̂I)‖ (16)

i∗E = argmin
i∈{ns+1,ns+2,...,ns+ne}

‖ŷE −DEδ
(i)(α̂E)‖ (17)

In Fig. 2, one can see the decomposition of an expressive
image into a identity-related component, an expression-related
component and a sparse error term. The identity (expression)
component is formed out of the reconstruction of the origi-
nal image based on the corresponding subject- (expression-
)specific subspace. It can be visually verified that indeed
the identity (expression) component contains no expression-
(subject-)related information, due to its calculation based on
images of all training expressions (subjects) and the mutual
incoherence property. Finally, the outliers term encodes what-
ever image features deviate in a non-Gaussian sense from the
class-specific decomposition that model (5) dictates.

Facial Action Unit Detection: The DICA (5) is applied
for the total of nc of AU-specific classes, using the `1-
norm to enforce sparse structure on the respective components
{V(i)}nc

i=1. Note that a training image with more than one
AUs activated can appear multiple times in (5), through
the corresponding class-specific sub-matrices XS(i) . Similarly
to Algorithm (2), reconstruction images are next used to
form class-specific dictionaries D(i) = U(i)V(i)X(i) , i ∈
{1, 2, . . . , nc}, each of which is associated only with the
respective AU label, regardless of the possible presence of
other AUs in the corresponding training images. The final
dictionary D ∈ Rd×N is formed out of the concatenation of
all class-specific dictionaries {D(i)}nc

i=1. Next, for each test
set vector y ∈ Rd×1 the sparse coefficient vector α̂ ∈ RN×1
and the reconstructed test vector ŷ = Dα̂ are obtained by
solving (12).

Classical SRC, formulated as in Equation (13), is not
directly applicable to the action unit detection task, as the
latter necessitates binary classification for each of the AU-
specific classes. The sparse similarity voting approach in [55]
is adopted herein for classification. Let ln ∈ {0, 1}nc be the
binary label vector associated with the dictionary atom dn. By
construction, only one element of ln will be non-zero for our
framework, i.e., that which corresponds to the AU label of the
class-specific dictionary dn. Let also L ∈ {0, 1}nc×N be the
label matrix for the whole dictionary, with corresponding label
vectors ln in its columns. Then, the multi-label confidence
vector c ∈ Rnc for the test sample y, is given by

c =
N∑
n=1

wnln = Lw , (18)

where wn denotes the similarity between the test vector y and
its reconstruction by the n-th dictionary atom, given by

wn =
α̂ndn

Ty

‖y‖‖ŷ‖
(19)

Each element ci of the label vector c in (18) can be perceived
as a confidence score with regards to the test sample belonging
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(a) Synthetic Data (b) Data corrupted with sparse noise (c) Reconstruction by the DICA

Fig. 4. Illustration of corrupted synthetic data reconstruction, as produced by the DICA. Each 600×150 subset of the data matrix (where the first dimension
is the feature space and the second dimension is the ambient space) is a superposition of one of the two low-rank components (depicted as 600×300 blue
striped backgrounds in (a)) and one of the four block-sparse components, which form a shape of filled triangle, asterisk, circle and butterfly, respectively.
(a) Original synthetic data, (b) Synthetic data of (a) contaminated with additive sparse noise, (c) Low-Rank/Sparse Reconstruction of the corrupted signal
as produced by the DICA.

to the i-th AU class. Finally, binary labels for the test sample
with respect to each class are obtained by thresholding each
ci via ROC analysis [56].

IV. EXPERIMENTS

Our method is evaluated on four distinct tasks: (a) face
recognition, (b) facial expression recognition, (c) joint
face and expression recognition, and (d) facial action unit
detection. Our dictionary-based framework for joint face and
expression recognition is evaluated on CK+ Dataset [51],
while experiments on subject-independent facial expression
recognition are conducted on both CK+ [51] and CMU
Multi-PIE [53] datasets. For face recognition experiments
and action unit detection experiments, AR database [52] and
GEMER-FERA database [54] is used, respectively.

The proposed method is compared to the approaches of Lin-
ear Regression Classifier (LRC) [57], Sparse Representation-
based Classification (SRC) [15], as well as Robust Principal
Component Analysis and SRC (RPCA+SRC) and Low-Rank
Matrix Recovery with Structural Incoherence (LRSI) com-
bined with SRC [12]. For RPCA+SRC, RPCA [9] is applied
for each subject and the resulting low-rank (sparse) matrices
are used for SRC-based face (expression) recognition similarly
to [11]. For LRSI, the algorithm in [12] is applied subject-
wise for face recognition and expression-wise for expression
recognition; the nuclear norm is used for all components. In
case of identical experimental protocol, LRSI results corre-
spond to those reported in [12]. Unlike [12], where PCA is
used to reduce dimensionality, vectorized images in the pixel
domain are used for all experiments, with the exception of AU
detection experiments in Section IV-E.

Implementation details: For both our method and LRSI,
the parameter η that controls incoherence is set to the value
10−1, which was proved efficient upon preliminary experi-
ments. For the DICA, various values, different for each task,
are examined for the parameter λ(i) controlling the norm
‖V(i)‖(·) and the outlier-related parameter λ1 in Problem (5),
and the best score achieved is reported each time. For each
RPCA+SRC and LRSI optimization problem applied class-

wise, the value λ1 = 1/
√

max(d, n(i)) is used for the

TABLE I
QUANTITATIVE RECONSTRUCTION RESULTS PRODUCED BY THE DICA ON
THE SYNTHETIC DATA SHOWN IN FIG. 4. FOR A GIVEN COMPONENT X(i) ,

THE RECONSTRUCTION METRIC USED HERE CORRESPONDS TO
‖X(i) − X̂(i)‖F /‖X(i)‖F , WHERE X̂(i) = U(i)V(i)X(i) .

Reconstructions
Clean Signal 0.369
Error Signal 0.916
Low-Rank Component 1 0.986
Low-Rank Component 2 0.972
Triangle 0.933
Asterisk 0.928
Circle 0.916
Butterfly 0.927

Relative Constraint 9.9 · 10−8

parameter associated with the sparse error term, which is an
efficient heuristic according to [9].

For the face recognition experiments in Section IV-C, the
Lasso minimization problem (12) for the SRC-based ap-
proaches is solved by means of the Homotopy method [58],
in order for our results to be comparable to those in [12]. For
all SRC-based experiments in Sections IV-B, IV-D, and IV-E,
the Efficient Euclidean Projections method [59] is chosen to
solve the Lasso problems (12) and (15), thanks to its fast
implementation and robustness to matrix singularities.

For all experiments with the DICA, the regulariza-
tion parameter λLasso of the Lasso minimization prob-
lems (12) and (15) is examined amongst the values {10−5, 5 ·
10−5, 10−4, . . . , 5 ·10−1}, and the best result is reported each
time. For joint face and expression recognition, recognition
accuracies reported correspond to the best average score over
the two tasks. For all experiments with the other SRC-based
approaches, that is, SRC, RPCA+SRC, and LRSI, λLasso is
fixed to 10−3.

The DICA is also evaluated by means of experiments with
synthetic data in Section IV-A. The results of these experi-
ments serve as an important proof of concept since (a) they
validate the effectiveness of our method both qualitatively and
quantitatively, and (b) they provide evidence that our method
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Fig. 5. Face and expression recognition accuracies (%), as produced by the
DICA and SRC for the first fold of the protocol for the CK+ Dataset, varying
with the image resolution.

can be applied equally well to any labeled data populations,
thus serving diverse applications other than face analysis tasks.

A. Experiment on Synthetic Data

Our method is first evaluated on synthetic data corrupted
with sparse, non-Gaussian noise. Each data point is con-
structed as a superposition of a low-rank and block-sparse
component. In more detail, we first create a rank-2 component
X(1) with column space U(1) ∈ R600×2, based on the first
two principal components of a random matrix A ∈ R600×300.
Next, we form a second rank-2 component X(2) with column
space U(2) = RU(1), where R is a random orthogonal matrix;
as a result of this, the two components are mutually incoherent.
Subsequently, four block-sparse components X(i) ∈ R600×150

(3 ≤ i ≤ 6) are constructed, with their non-zero elements
corresponding to visually discernible shapes, that is, triangle,
asterisk, circle and butterfly, respectively. Those are then
added to the low-rank components to form the matrices
Y1 = X(1) + X(3) + X(4) and Y2 = X(2) + X(5) + X(6).
Our final clean data matrix Y is the result of concatenation
of Y1 and Y2 along the second dimension, and can be seen
in Fig. 4a.

Subsequently, sparse, non-Gaussian noise is added to the
original signal Y to simulate a more realistic scenario. First,
a matrix containing only values in {+1,−1} is created as E =
sgn(B), where B ∈ R600×600 is a random matrix and sgn de-
notes the sign function. The final error matrix O is formed by
setting to zero those entries of E whose indices i and j satisfy
the rule N [i, j] ≤ 0.8, where N ∈ R600×600 is a matrix whose
elements follow the Normal distribution. The final corrupted
signal Ỹ = Y+O and the low-rank/sparse reconstruction pro-
duced by the DICA (5) can be seen in Fig. 4b and Fig. 4c, re-
spectively. It is evident that our method reconstructs accurately
all components, both the low-rank components lying in the
background and the sparse components appearing as shapes,
while, at the same time, isolates the sparse, gross errors.
Quantitative results are reported in Table I, in terms of normal-
ized reconstruction error for each component, that is, ‖X(i)−
U(i)V(i)X(i)‖F /‖X(i)‖F . It is worth noting that all subspace-
specific reconstruction errors along with the clean signal
reconstruction error ‖Y−

∑6
i=1 U(i)V(i)XS(i)‖F /‖Y‖F have

low value, corroborating the conclusions drawn for our method
from the qualitative inspection of Fig. 4.

B. Joint Face & Expression Recognition on CK+ Dataset

Our method is evaluated on the two-label setting of joint
face and expression recognition. CK+ [51] has been widely
used for the task of face and posed expression recognition. It
contains 123 subjects in a total of 593 sequences, 327 out of
which are annotated with respect to the emotion portrayed. As
our method does not consider the temporal dimension, only the
last 4 frames are used as expressive images for each sequence,
as those are close to the apex phase of the expression. The
experimental setup is identical to that of [11]. Specifically,
a subset of 25 subjects, corresponding to 108 sequences, is
used herein that meet the following criteria: (a) there are
at least 4 annotated sequences for each of them, and (b)
they perform one of the 6 universal emotions2(Anger, Disgust,
Fear, Happiness, Sadness and Surprise). The first condition is
essential in order for the subjects to appear with a sufficient
amount of images in the training set (at least 12 images), and
the resulting dictionary to be balanced (for the face recognition
part). Example images for a female subject of CK+ can be seen
in Fig. 3.

To examine how image dimensionality affects accuracy in
both face and expression recognition and tune it accordingly,
the following experiment is conducted. Specifically, the DICA
and SRC are tested on joint face and expression recognition
with the image resolution varying through the range 32× 32,
40×40, 48×48 and 56×56 pixels. Note that all images have
been previously converted to gray scale and aligned based on
the location of the eyes. For each subject, 3 sequences are
randomly picked to be used for training, leaving the rest for
testing. The parameters of the DICA and SRC are optimized
separately for each resolution and the best accuracy obtained
is reported in Fig. 5. The choice of 32×32 pixels for the image
size consistently leads to the best performance. This behaviour
was expected as by using a smaller image size the curse of
dimensionality is avoided (given that no feature extraction is
performed to the aim of dimensionality reduction). It is also
worth mentioning that using a smaller resolution for the DICA
has the additional benefit of speeding-up the convergence,
which increases quadratically with the dimensionality owing
to the SVT operator (see Section II-B). Accuracies achieved
using the three remaining resolutions do not vary largely. In
view of the above, the image size is fixed to 32×32 pixels for
all experiments of this section.

For joint face and expression recognition, for each subject,
3 sequences are randomly selected to be used for training, and
the remaining sequences are used for testing. This process is
repeated 10 times, and the average scores for the face and
expression recognition tasks are reported. Leave-one-subject-
out expression recognition experiments are also conducted and
the average rate over 25 folds is reported. For all experiments,
parameters λ(i) controlling the nuclear norm of the identity-
related V(i) in Problem (5) are set to 1. For joint face and
expression recognition, the values for λ1 and the expression-
related λ(i) accounting for the best average score over the
two tasks were found to be 10−2 and 10−2, respectively. For

218 sequences depicting ‘Contempt’ are not included.
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TABLE II
RECOGNITION RATES (%) FOR JOINT FACE & EXPRESSION RECOGNITION AND SUBJECT-INDEPENDENT EXPRESSION RECOGNITION ON CK+ DATASET.

Method Joint Face & Expression Recognition Subject-Independent
Face Expression Expression Recognition

LRC [57] 86.2 57.7 60.1
SRC [15] 75.4 41.4 53.5
RPCA+SRC [12] 89.6 59.5 70.6
LRSI [12] 92.9 75.5 71.4
DICA 96.7 83.6 75.7

expression recognition, the corresponding values were 10−2

and 5 · 10−2, respectively.
Recognition rates for both tasks are reported in Table II.

The merits of the DICA for face and expression recognition
are directly evident from Table II: it is the best-performing
method for both tasks, yielding face and expression recog-
nition accuracies of 96.7% and 83.6%, respectively3. LRSI
comes second in performance, by a negative margin of 3.8%
and 8.1% for face and expression recognition, respectively.
Surprisingly, LRC provides scores close to those obtained by
RPCA+SRC, presumably due to the beneficial effect of small
training size and the similarity between training and test data
populations. It is worth stressing that results of the DICA
and RPCA+SRC correspond to the same sparsity parameter
λLasso/2 being used for the two dictionaries in (15). We
believe that by separately optimizing the sparsity parameters
for the SRC coefficients of identity and expression classes,
that is, αI and αE , respectively, one can achieve even higher
performance.

Our method achieves the best score of 75.7% in the second
setup also, where facial expression is recognized on data
from subjects unseen in the training phase. LRSI is again the
second-best-performing method with 71.4%. SRC performs
poorly in this setup too, primarily due to test images being
associated with sparse linear combinations of similar faces
rather than similar expressions in the dictionary.

Fig. 6 illustrates the low-rank identity-based reconstruc-
tion (Fig. 6b) and the sparse expression-based reconstruction
(Fig. 6d), as produced by our method for the joint face and ex-
pression recognition experiment on CK+ images, grouped by
subject (Fig. 6a) and by expression (Fig. 6c), respectively. Note
that no expression variations are retained in the subject-based
reconstruction, while, at the same time, the sparse expression
components contain no subject-related information. It is also
worth observing that the expression components (Fig. 6d)
are ‘denser’ and also account for higher values in the image
regions where the action units ‘shaping’ each corresponding
expression lie [60] (e.g., Brow-Lowerer AU4 for ‘Anger’,

3The recognition scores obtained for the dictionary-based component
separation (DCS) algorithm from [11] are 99.1% and 81.6% for joint face
and expression recognition, respectively, and 86.8% for subject-independent
expression recognition. These results are only to some extent comparable to
those reported in Table II, given that the dataset and protocol are identical.
However, bear in mind that in [11], K-SVD [38] is also applied to refine
the identity and expression dictionaries, which are initially provided by
RPCA [9]. For this reason, the corresponding results are not considered in
the discussion of this section.

(a) (b) (c) (d)

Fig. 6. Joint Face and Expression Recognition on the CK+ Database: (a)
Training images from six subjects showing various expressions, (b) Low-rank
reconstruction produced by the DICA for each identity class, (c) Training
images from six expression classes (from top to bottom: Anger, Disgust,
Fear, Happiness, Sadness, Surprise) posed by various subjects, (d) Sparse
reconstruction produced by the DICA for each expression class.

or Lip Corner Depressor AU15 for ‘Sadness’). Overall, the
resulting reconstructions are discriminant for both tasks.

C. Face Recognition on AR Dataset

For the task of face recognition, the focus of experiments is
to investigate methods’ performances for varying percentage of
face images corrupted due to occlusion in the training set. This
is a frequently-occurring scenario in real-world biometrics
applications, where noise-free training data is hard to be
attained (e.g., due to uncontrolled recording conditions and
huge amount of data). To this end, the AR Database [52] is
used, which includes a total of 4,000 frontal images for 126
individuals. The face images exhibit variations with respect
to expression, illumination and two types of occlusion, that
is, sunglasses and scarf (see Fig. 3). For each subject, images
are taken in two sessions, each one constituent of 13 images:
3 images with sunglasses, 3 with scarves, 4 with different
expressions, and the remaining 3 with different illuminations.
The latter 7 images, which do not include occlusions, are
considered as neutral images for the experiments in this
section.

A randomly picked subset of 100 subjects is used for our
experiments. Three protocols are tested in an identical way
as in [12], corresponding to occlusion in the training images
due to (1) sunglasses, (2) scarf, and (3) sunglasses and scarf,
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TABLE III
RECOGNITION RATES (%) FOR PROTOCOL 1 (SUNGLASSES) AND PROTOCOL 2 (SCARF) WITH VARYING PERCENTAGE OF OCCLUDED IMAGES (no/7) IN

THE AR DATABASE TRAINING SET.

Method Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf
0% = 0/7 14% = 1/7 29% = 2/7 43% = 3/7

LRC [57] 61.3 59.5 69.2 66.7 72.9 73.3 73.3 73.2
SRC [15] 72.3 71.4 82.4 83.3 88.6 89.3 88.9 90.1
RPCA+SRC [12] 75.4 85.0 81.6 89.4 87.7 90.7 88.8 87.3
LRSI (reported in [12]) 73.0 72.8 84.2 82.6 83.7 80.5 83.7 79.6
DICA 85.9 88.3 93.5 94.4 93.4 94.0 93.3 93.1

TABLE IV
RECOGNITION RATES (%) FOR PROTOCOL 3 (SUNGLASSES+SCARF) WITH VARYING PERCENTAGE OF OCCLUDED IMAGES (2no/(7 + 2no)) IN THE AR

DATABASE TRAINING SET.

Sunglasses+Scarf
Method 0% = 0/(7 + 0) 22% = 2/(7 + 2) 36% = 4/(7 + 4) 46% = 6/(7 + 6)
LRC [57] 59.9 66.2 69.1 70.3
SRC [15] 71.6 82.1 89.0 90.5
RPCA+SRC [12] 72.5 86.3 90.8 93.1
LRSI (reported in [12]) 62.8 80.8 81.8 82.8
DICA 81.8 93.8 95.2 95.4

respectively. Note that sunglasses account for occlusion of
about 20% of the face image, whereas for the scarf scenario
this percentage amounts to about 40%.

The three protocols are outlined below:
• Protocol 1: For each subject, ncl neutral images and no ∈
{0, 1, 2, 3} occluded images (sunglasses) from Session 1
are used for training, where ncl+no = 7. 7 neutral images
and 3 occluded images (sunglasses) from Session 2 are
used for testing.

• Protocol 2: Same as Protocol 1, with occluded images
containing scarf rather than sunglasses.

• Protocol 3: For each subject, ncl = 7 neutral im-
ages, nsg ∈ {0, 1, 2, 3} sunglasses images, and nsc ∈
{0, 1, 2, 3} scarf images, from Session 1 are used for
training, where nsg = nsc. Here, the amount of training
images per subject varies from 7 to 13, as opposed to
the first two protocols, in which it is fixed to 7. All 13
images (7 neutral, 3 sunglasses, 3 scarf) from Session 2
are used for testing.

Results are shown in Table III for Protocols 1 and 2, and
in Table IV for Protocol 3. The DICA achieves the most
accurate recognition in all scenarios, reaching 95.4% accuracy
in Protocol 3 when 46% of training images are corrupted.
The value of parameter λ1 that yielded the best scores for
our method was 10. It is worth noting that all methods show
a significant increase in performance in all three protocols
when at least one occluded image per subject is included in
the training set, as compared to the case of 100% clean data.
Notably, the performance achieved by the DICA fluctuates
less as the percentage of training set corruption increases,
as compared to that of the other methods. This is because
components produced in the output of the DICA are by
definition mutually incoherent, regardless of how many
images with similar corruptions in similar face regions across
classes are used for training. In Protocol 3, where two different
kinds of data corruption are present, RPCA+SRC consistently

achieves the second-best accuracy. It is also worth observing
that, even for large percentages of training set corruption,
SRC performs quite accurately also. This can be attributed to
the efficiency of SRC in scenarios where the training and test
set distributions are characterized by similar variations [61].
LRSI shows poor performance possibly due to its inability to
suppress the effect of occlusion in the generated subspaces.
LRC underperforms the rest of the methods in all cases. This
can be largely attributed to singularities occurring in the matrix
DTD, where D is the dictionary matrix (see [57], [61]).

In Fig. 7, the performance of our method and RPCA is
comparatively illustrated on an instance of Protocol 1, that
is, 7 images of a male subject, 3 of which are occluded by
sunglasses. One can observe that both methods successfully
remove variations caused by expression or illumination in
the derived low-rank reconstruction. Nonetheless, our method
succeeds to discard the occlusion in the reconstruction images,
as opposed to the RPCA. This is due to the fact that presence
of sunglasses in the reconstructed images of all subject classes
would clash with the mutual incoherence property, which
entails that class-specific components are as close as possible
to being orthogonal. The same holds for Protocol 2, where the
occlusion due to scarf covers even larger part of the image.
Reconstructions yielded by our method for images of the
same subject in Protocols 1 and 2 are shown in Fig. 8, for
the scenario in which the occluded images cover 3/7 of the
training set.

D. Expression Recognition on CMU Multi-PIE Dataset

In Section IV-B we presented expression recognition
experiments for the case of different subjects being included
in the training and test set. Aiming to evaluate the effectiveness
of our method in a scenario where labels from an additional
source of variation, such as illumination, are not utilized in our
discriminant analysis during training, we perform expression
recognition also on the CMU Multi Pose Illumination, and
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(a) Training Images (Protocol 1)

(b) Reconstruction by the RPCA

(c) Reconstruction by the DICA

Fig. 7. Face Recognition on the AR Database: Reconstruction images, as
produced by the RPCA (b), and the DICA (c), on all training images of a
subject in Protocol 1 (3/7=43% of occluded images (sunglasses)) (a).

(a) Training Images (Protocol 1)

(b) Reconstruction by the DICA

(c) Training Images (Protocol 2)

(d) Reconstruction by the DICA

Fig. 8. Face Recognition on the AR Database: Reconstruction produced by
the DICA ((b),(d)), on all training images of a subject in Protocols 1 and 2
(3/7=43% of occluded images - sunglasses in (a) and scarf in (c), respectively).

Expression (Multi-PIE) Database [53]. This dataset contains
337 subjects, corresponding to about 750,000 images with
19 illumination variations, 15 different poses, and 6 facial
expressions (Neutral, Smile, Surprise, Disgust, Scream,
Squint). In the current study, only the frontal pose images are
considered. For the presented experiments, 50 subjects are
randomly selected. For each subject, 5 different illumination
conditions are generated (corresponding to pan angles −30◦,
−15◦, 0◦, 15◦, 30◦) for all 6 expressions, resulting in
30 images per subject. Some characteristic images from
Multi-PIE are illustrated in Fig. 3.

The same protocol used in Section IV-B is adopted for facial

TABLE V
RECOGNITION RATES (%) FOR SUBJECT-INDEPENDENT EXPRESSION

RECOGNITION ON MULTI-PIE DATASET.

Method Expression Recognition
LRC [57] 18.0
SRC [15] 58.9
RPCA+SRC [12] 60.4
LRSI [12] 67.3
DICA 74.4

expression recognition. Subject-independent experiments are
conducted and the average score over 50 runs is reported.
The best values for the sparsity-controlling parameters λ1 and
λ(i) for the expression components were found to be 10 and
1, respectively. Recognition rates are reported in Table V.
Here, illumination conditions vary a lot across training images,
rendering the task even more challenging. Still, our method
achieves the best accuracy of 74.4%, followed by LRSI
that achieves 67.3%. RPCA+SRC and SRC perform rather
similarly, meaning that RPCA pre-processing fails in this case
to uncover the class-specific low-rank manifolds. Note also
that LRC shows a surprisingly poor performance. Again, the
DICA efficiently decouples expression-related deformations
from subject-specific characteristics and other effects, thereby
enabling us to construct a much more discriminative expres-
sion dictionary.

E. Facial action unit detection on GEMEP-FERA Dataset

In this section, the efficiency of the DICA in decom-
posing an expressive image into mutually incoherent sparse
components related to AUs is examined. The training sub-
set of the GEMEP-FERA [54] dataset is used for subject-
independent action unit detection experiments. It contains 7
subjects depicted in 87 image sequences, which are FACS-
labeled on a frame-by-frame basis in terms of AUs. In this
paper, we use only the images in which at least one out of
8 action units is activated. The AUs considered are: AU1
(Inner Brow Raiser), AU2 (Outer Brow Raiser), AU4 (Brow
Lowerer), AU6 (Cheek Raiser), AU7 (Lid Tightener), AU12
(Lip Corner Puller), AU15 (Lip Corner Depressor), and AU17
(Chin Raiser). Images are converted to gray scale, aligned
based on the location of the eyes, and, subsequently, resized
to 128×128 pixels. Characteristic images are shown in Fig. 3.
Intensities from 22× 22 pixel patches around 15 facial points
(extracted by the tracker in [62]) are gathered in a single vector
for each image. The final feature vector is composed of PCA
coefficients corresponding to components that account for 98%
of the total variance (374 components in our experiments).

Seven-fold subject-independent cross-validation is per-
formed, so that all images for the 7 subjects are tested. For
each fold, a randomly selected subset of the training images,
evenly distributed across subjects and AU labels, is used. For
the DICA, the action unit detection framework described in
Section III-B is used. Specifically, the rank m(i) of each
subspace is set to 5, while the remaining parameters are
optimized similarly to the previous experiments. The values of
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TABLE VI
F1 SCORES (%) FOR EACH ACTION UNIT AND METHOD EXAMINED IN THE

ACTION UNIT DETECTION EXPERIMENTS ON THE GEMEP-FERA
DATABASE TRAINING SET.

AU ML-kNN [63] Rank-SVM [64] LRC [57] SRC [15] STM [65] DICA
1 53.8 67.0 37.7 60.5 68.1 66.3
2 41.6 46.3 47.2 58.3 65.5 58.9
4 20.3 20.4 61.5 58.3 43.3 55.5
6 62.2 68.2 57.1 63.9 71.6 70.2
7 53.7 61.9 66.2 67.8 66.2 70.6

12 75.8 77.7 75.8 76.9 82.1 78.0
15 28.1 44.8 46.2 30.1 39.3 41.0
17 39.3 38.0 18.6 37.8 35.9 32.0

Avg. 46.9 53.0 51.3 56.7 59.0 59.1

the sparsity-controlling parameters λ1 and λ(i) accounting for
the best performance were found to be 0.05 and 1, respectively.

Except for the DICA, LRC and SRC are also examined,
while RPCA+SRC and LRSI are not considered, as their
design is not adaptable to this task. Multi-Label k-Nearest
Neighbours (ML-kNN) [63] (k = 10 neighbours) and Rank-
SVM [64] (with polynomial kernel of degree 8) are also
examined, as they are general-purpose algorithms for multi-
label classification. For the DICA, each dictionary atom is
associated with a single AU label (see Section III-B), as
opposed to other methods, for which the training data retain
their initial multi-class labelling. For the dictionary-based
methods, namely the DICA, LRC and SRC, ROC ranking [56]
is employed to threshold the class-specific confidence scores
obtained by (18) and thus provide multi-class predictions
for each test sample. Finally, for all algorithms examined
in the experiments of this section, the F1 score, defined as
F1 = 2 · Precision·RecallPrecision+Recall , is used as the evaluation metric.

Action unit detection results in terms of F1 score, as
produced by each method, are reported in Table VI for each
action unit along with the average performance over all AU
classes. For comparison purposes, we choose to also include in
Table VI the results reported in [65] for the same evaluation
protocol for Selective Transfer Machine (STM), which is a
recently published successful method for AU detection. The
DICA achieves similar performance to that of STM4, while
it outperforms all other methods. SRC also achieves high
performance, thus validating previous evidence that sparse
representation is efficient for the AU detection task [27]. LRC,
as well as the baseline methods ML-kNN and Rank-SVM,
attain much poorer performance.

V. CONCLUSION AND FUTURE WORK

A method for recovering mutually incoherent and structured
components in face imagery, relying on discriminant informa-
tion as well as structure-inducing norms on the facial aspects,
has been proposed in this paper. An ADMM-based algorithm
that can solve appropriate minimization problems for the
DICA, according to the matrix norm imposed, while also
being robust to gross outliers through sparsity regularization,
has been also proposed. Finally, a dictionary-based framework
that combines the DICA with sparse representation to jointly

4The difference in average performance over all AUs achieved by the DICA
and the STM is not significant, according to a paired t-test at significance level
0.05.

address interrelated classification tasks within multi-label
scenarios has been presented. The experimental validation of
our method was primarily focused on face analysis tasks. The
effectiveness of the DICA was first demonstrated on synthetic
data contaminated with sparse, non-Gaussian noise. Next,
extensive experiments were conducted on joint face and ex-
pression recognition, face recognition for varying percentages
of corrupted images in the training set, subject-independent
expression recognition under varying illumination conditions
during training, as well as facial action unit detection. The
DICA outperformed all methods that were used for compari-
son, in all tasks and experimental scenarios. Overall, the DICA
is a robust framework that can generalize to classification
of any number or type of labelled attributes that manifest
themselves in the visual stream through specific structures,
associated with mutually incoherent modes of variation.

Possible future research directions include the exploitation
of alternative structures for component extraction induced by
other matrix norms, the extension of the DICA to the temporal
dimension, and its coupling with hierarchical/deep architec-
tures, aiming at extracting incoherent, invariant subspaces.
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APPENDIX
SOLUTION OF PROBLEM (8)

Let us consider the problem (8). In this step of ADMM,
we are minimizing w.r.t. V(i) at iteration t, with {U(i)}nc

i=1,
{V(j)[t]}j 6=i, and O kept fixed. Let us re-write the problem
for clarity of presentation:

V(i)[t+ 1] = argmin
V(i)

L(V(i),Y[t], µ[t])

= argmin
V(i)

λ(i)‖V(i)‖(·) + η
∑
i6=j

‖V(i)V(j)T ‖2F

+
µ[t]

2
‖X−

nc∑
i=1

U(i)V(i)XS(i) −O + µ[t]
−1

Y‖2F

= argmin
V(i)

λ(i)‖V(i)‖(·) + f(V(i))

(20)

The minimizer (20) consists of a non-smooth term, induced
by a norm function ‖ · ‖(·), and a smooth, twice differentiable
term described by the function f . It can easily be proved that
the gradient ∇f is Lipschitz-continuous.

By linearizing f in the vicinity of the current point V(i)[t],
and by exploiting the Lipschitz-continuity of ∇f , we obtain
the following equivalent problem

min
V(i)

λ(i)‖V(i)‖(·) + f(V(i)[t])

+ tr
(
∇f(V(i)[t])T (V(i) −V(i)[t])

)
+
L

2
‖V(i) −V(i)[t]‖2F

(21)
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where L > 0 is an upper bound on the Lipschitz constant of
∇f . Problem (21) is re-written as

min
V(i)

λ(i)‖V(i)‖(·) +
1

2
‖V(i) − (V(i)[t]− 1

L
∇f(V(i)[t])‖2F

(22)
Having expressed the minimizer in this form, we now di-

rectly apply the SVT (shrinkage) operator, in case the nuclear-
(`1-) norm is chosen for the first term of (22). For the nuclear
norm, the solution is given by

V(i)[t+ 1]← Sλ(i)/L

[
V(i)[t]− 1

L
∇f(V(i)[t])

]
, (23)

whereas for the `1-norm the solution is given by

V(i)[t+ 1]← Dλ(i)/L

[
V(i)[t]− 1

L
∇f(V(i)[t])

]
(24)

The gradient ∇f(V(i)[t]) is computed as

∇f(V(i)[t]) =
(
−µ[t]U(i)[t]T

)(
X−

nc∑
i=1

U(i)[t]V(i)[t]XS(i)

−O[t] + µ[t]−1Y[t]

)
XT
S(i) + 2η

∑
j 6=i

V(j)[t]TV(j)[t] ,

(25)

whereas an upper bound on the Lipschitz constant of ∇f is
given by

L = 1.02λmax

[
µ[t]XS(i)XT

S(i) + 2η
∑
j 6=i

V(j)[t]TV(j)[t]

]
(26)

The respective closed-form solutions are obtained by
substituting (25) and (26) into (23) or (24).
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