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ABSTRACT

The presence of multiband amplitude and frequency modulations
(AM-FM) in wideband signals, such as textured images or speech,
has led to the development of efficient multicomponent modulation
models for low-level image and sound analysis. Moreover, compact
yet descriptive representations have emerged by tracking, through
non-linear energy operators, the dominant model components across
time, space or frequency. In this paper, we propose a generalization
of such approaches in the 3D spatio-temporal domain and explore
the potential of incorporating the Dominant Component Analysis
scheme for interest point detection and human action recognition in
videos. Within this framework, actions are implicitly considered as
manifestations of spatio-temporal oscillations in the dynamic visual
stream. Multiband filtering and energy operators are applied to track
the source energy in both spatial and temporal frequency bands. A
new measure for extracting keypoint locations is formulated as the
temporal dominant energy computed over the spatial dominant com-
ponents, in terms of their modulation energy, of input video frames.
Theoretical formulation is supported by evaluation and comparisons
in human action classification, which demonstrate the potential of
the proposed spatio-temporal detector.

Index Terms— Human action recognition in videos, spatio-
temporal interest point detectors, multiband filtering, multicompo-
nent AM-FM models, dominant component analysis

1. INTRODUCTION

Local space-time features have gained growing popularity over the
past years for the human action recognition task. Video represen-
tations in terms of such features exhibit efficiency in distinguishing
among action classes, while bypassing the need for precise back-
ground subtraction or tracking. The bag-of-features approach [1, 2,
3], that constructs a histogram-based representation, starting from an
orderless collection of spatio-temporal features, has proved success-
ful in conjunction with SVM classification frameworks.

Feature extraction is usually accomplished in two discrete steps.
First, spatio-temporal interest point detectors select highly informa-
tive and discriminative visual units that typically correspond to the
local maxima of a proposed saliency measure. A list of popular de-
tectors, extensively used within action recognition frameworks, in-
cludes Harris3D [4], Cuboid [5] and Hessian [6]. Next, local de-
scriptors employ image measurements, such as gradients and opti-
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cal flow, to encode local appearance and motion information in the
space-time neighborhood of the detected points. Among the most
prevalent descriptors are Cuboid [5], HOG/HOF [2], HOG3D [7]
and Extended SURF [6].

Interest points in space and time sought by detectors, correspond
in most cases to spatially prominent locations characterized by sharp
changes in the direction of motion. The extension of Harris detector
to 3D by Laptev and Lindeberg [4] was one of the first attempts to
address keypoint extraction in videos, and has been deemed a bench-
mark for quantitative evaluation of other detectors in publicly avail-
able datasets. Dollár et al. [5] argued against detections on the basis
of spatio-temporal “cornerness”, and introduced a response function
which relies on spatial Gaussian smoothing and a quadrature pair of
Gabor filters applied in the temporal dimension. Although the de-
tector favors periodic movements, these are intrinsically related to
the single center frequency used to tune the temporal filters, thus ig-
noring periodicity content present within other bands. Recently, Bre-
gonzio et al. [8] approached feature extraction through spatial Gabor
filters at multiple orientations on frame-difference based regions of
interest. Willems et al. [6] formulate a saliency measure as the de-
terminant of the spatio-temporal Hessian matrix, which also serves
for scale selection. The efficiency of the aforementioned detectors
(Cuboid, Harris3D and Hessian) was systematically evaluated in re-
alistic video settings by Wang et al. [3]. Notably, dense sampling at
a regular spatio-temporal grid was shown to be superior for recogni-
tion on two action datasets, Hollywood2 and UCF.

In this paper, we apply energy tracking for spatio-temporal in-
terest point detection in videos, based on unveiling locally dominant
modulation structures in both space and time. Modulation compo-
nents in wideband signals have been previously applied with suc-
cess in nonlinear speech analysis [9, 10, 11], texture analysis and
image segmentation [12, 13, 14]. Herein, we propose a novel, to the
best of our knowledge, generalization of multicomponent AM-FM
models in the spatio-temporal domain for video analysis and employ
the dominant energy volume for action recognition based on sparse,
non-regular feature sampling. More specifically, we combine multi-
band filtering and energy tracking for dominant modulation compo-
nent representations; these are sequentially applied first in the spatial
and following in the temporal domain. The resulting response func-
tion can be viewed conceptually as a saliency measure in terms of
the dominant spatio-temporal modulation energy. An illustration of
the proposed detector framework is given in Figure 1.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide background on energy operators and modulation
energy tracking along with an outline of the Dominant Component
Analysis scheme. Section 3 formulates the proposed spatio-temporal



Fig. 1: Spatio-temporal interest point detection stages (better viewed in color) on three sample frames from SitDown action of Hollywood2
Actions Dataset. Original frames (left), converted to grayscale, undergo spatial Gabor filtering (five scales and eight orientations) and the
Spatial Dominant Component (max-energy filter output) is extracted pointwise (left middle) using 2D Dominant Component Analysis (DCA).
Next, temporal Gabor filtering (five frequencies) and 1D DCA yield the Temporal Dominant Energy at each point (right middle). Final
detections (right) are the prominent local maxima on the 3D energy volume.

dominant modulation energy, both conceptually and algorithmically.
In Section 4, we present the experimental framework and action
recognition results. Finally, Section 5 concludes the paper.

2. ENERGY OPERATORS AND MULTIBAND
MODULATION ENERGY TRACKING

The development of the nonlinear, differential Teager-Kaiser Energy
Operator (TKEO) [9] Ψ[s(t)] , [s′(t)]2 − s(t)s′′(t) has facilitated
the energy representation and demodulation of signals modeled by
non-stationary sinusoids, with amplitude and frequency modulation
(AM-FM), of the form s(t) = α(t) cos(φ(t)). Under realistic con-
ditions [10], when applied to such a signal the operator Ψ yields as
output Ψ[s(t)] ≈ [α(t)φ′(t)]2, which equals to the energy of the
oscillatory source. Maragos and Bovik [12] extended the energy
operator to signals of higher dimensions, rendering it applicable to
real-valued grayscale images I(x, y) as a 2D operator

Φ(I(x, y)) , ‖∇I(x, y)‖2 − I(x, y)∇2I(x, y). (1)

However, a typically wideband speech or image signal (e.g. tex-
ture) entails the coexistence of multiple modulations in the spectrum.
To cope with this, speech can be represented through a multicompo-
nent AM-FM model as a sum of non-stationary, narrowband sinu-
soids [10]. Estimation of each component’s Teager-Kaiser energy
presupposes a decomposition on different frequency bands. An effi-
cient solution to the component separation and energy tracking prob-
lem, resulting also in noise suppression, is through bandpass Gabor
filtering [10] and the Regularized or Gabor TKEO [11] operator

Ψh(s(t) ∗h(t)) = [s(t) ∗h′(t)]2− [s(t) ∗h(t)][s(t) ∗h′′(t)], (2)

where h(t) is the filter’s impulse response.
Similarly to the 1D case, textured or wideband images in gen-

eral, characterized by non-smooth structures, are more accurately
represented by a multicomponent AM-FM image model

I(x, y) =
K∑

k=1

αk(x, y) cos(φk(x, y)) (3)

instead of a single modulation component [13]. In this decomposi-
tion, for each of the K narrowband components the amplitude mod-
ulating signal αk(x, y) conveys local image contrast information,

while local image structure properties, such as scale and orientation,
can be disclosed by the frequency modulation vector ωk(x, y) =
∇φk(x, y). The output of the 2D TKEO (1) on the k-th narrowband
component approximates the energy product of the squared ampli-
tude and frequency magnitude Ψ(Ik) ≈ ak

2||ωk||2. Kokkinos et
al. [14] coupled multiband filtering and modulation energy estima-
tion by introducing the 2D counterpart of the Gabor TKEO (2)

Φg (I ∗ g) = ‖I ∗ ∇g‖2 − (I ∗ g)
(
I ∗ ∇2g

)
, (4)

where g(x, y) denotes the impulse response of a real-valued Gabor
filter. The wideband image is decomposed into a fixed component
tessellation, based on the pre-defined 2D Gabor filter configuration,
with the oscillation energy of each local modulation continuously
estimated across image locations.

Analysis schemes procured by multiband filtering and compo-
nent demodulation have shown efficacy in reconstructing and uncov-
ering the most significant structures of textured images [13, 14]. The
Dominant Component Analysis (DCA) method [13] seeks at each
pixel the channel associated to the component whose response pre-
vails in the local image spectrum. In [14] the modulation energy
was proposed as an alternative to the amplitude estimate, as the cri-
terion for dominant channel selection. Given that modulation energy
jointly encompasses amplitude and frequency content, the energy-
based DCA scheme attributes saliency, in locally high-contrast re-
gions or low-contrast but high modulating frequency magnitude.

3. SPATIO-TEMPORAL DOMINANT ENERGY AND
KEYPOINT DETECTION

As a human action evolves over time, image intensities within the
regions containing significant body parts movements vary with time
in a way that intuitively resembles the behavior of 1D time-domain
AM-FM signals. Thus, such quasi-periodic limb motions occurring
at different speeds in the scene are highly likely to correspond to si-
nusoidal components of non-stationary temporal amplitude and fre-
quency modulations. Motivated by such analogies between space-
time activity and temporal modulations and the representational po-
tential of energy-based DCA, we propose a 3D generalization of the
model and apply it for keypoint detection in videos of human actions.

The framework involves extraction of the temporal DCA on the
dominant components of the video sequence frames. Initially, 2D



energy-based DCA is applied on each grayscale-converted frame
to emphasize the prominent texture variations and meaningful ob-
ject boundary information. For spatial multiband filtering, a set of
K = 40 isotropic, complex Gabor filters are arranged in five scales
and eight orientations to densely cover the 2D frequency plane. The
energy of the narrowband, filtered components per frame is com-
puted using the 2D Gabor TKEO (4). According to the max-energy
DCA criterion, the dominant channel i(x, y) at each spatial location
(x, y) is the one yielding the maximum value in the operator output

i(x, y) = arg max
1≤k≤K

{Φg(I ∗ gk)(x, y)} . (5)

Subsequently, each location is represented only by (I∗gi)(x, y), i.e.,
the i-th filtered bandpass image value at pixel (x, y). These DCA-
synthesized filtered images for all frames form a new 3D volume,
henceforth termed Spatial Dominant Component (SDC).

To decouple temporal modulation components, multiband tem-
poral filtering is applied on volume SDC (x, y, t) by five 0.75-
bandwidth temporal Gabor filters, linearly spaced to span the nor-
malized frequency interval [0 − framerate/2] Hz. Similar to the
spatial processing step, the 1D Gabor TKEO (2) accounts for both
tasks of filtering and modulation energy tracking for each of the
L = 5 channels. The 1D energy-based DCA methodology is
applied to select voxelwise the dominant temporal channel

j(x, y, t) = arg max
1≤l≤L

{Ψh (SDC (x, y, t) ∗ hl(t))} , (6)

where hl the impulse response of the l-th filter.
The proposed spatio-temporal energy function is established as

the Temporal Dominant Energy of the Spatial Dominant Component

R(x, y, t) = Ψh (SDC(x, y, t) ∗ hj(t)) , (7)

where j(x, y, t) is given by (6). A setM of interest points is com-
prised by detecting the local maxima over space and time of the vol-
ume energy function (7). False alarms are banished via the imposi-
tion of an appropriate global threshold T to the local maxima values,
leading to the final detection subset D ⊆M

D =
{

(x, y, t) ∈M : R(x, y, t) > T ·max
M

(R)
}
. (8)

4. EXPERIMENTAL RESULTS

The novel interest point detector, called DCA3D, is tested on four
action classes of the challenging Hollywood2 Actions Dataset [15],
namely AnswerPhone, SitDown, StandUp and FightPerson. The
global threshold was set to T = 0.07, after experimenting with sev-
eral values, by optimizing keypoint density, according to recognition
results. To generate feature vectors we choose the HOG/HOF de-
scriptor in its multiscale implementation, where the detection scales
(σ, τ) were set equal to the standard deviation of the dominant fil-
ter Gaussian envelope in each respective dimension and then quan-
tized to the default values in [2]. With all samples processed at half
spatial resolution, the 3D patch size was defined by ∆x = ∆y =
10σ,∆t = 8τ . For the rest of the evaluation framework, we fol-
lowed a bag-of-features SVM approach identical to [3], using the
standard Gaussian kernel. As a baseline, we use the combination
of Harris3D detector [4] and the standard multiscale HOG/HOF de-
scriptor [2], as an optimal, state-of-the-art performance method [3].

Recognition scores, expressed as Average Precision for each
class, are reported in Table 1 for the evaluated detection algorithms.

Actions DCA3D Harris3D
AnswerPhone 25.8% 29.0%

SitDown 61.4% 58.8%
StandUp 72.2% 68.2%

FightPerson 83.3% 94.7%

Table 1: Average Precision (AP) on four actions of Hollywood2
Dataset for HOG/HOF features using DCA3D and Harris3D.

Fig. 2: Average number of detected points per frame computed over
all samples belonging to each action class, for both detectors.

Results with DCA3D compare favorably to those obtained from Har-
ris3D for two action classes, StandUp and SitDown, while perform-
ing less accurately on class labeling for the remaining two. Average
detections per frame, extracted for samples with the same action by
each detector, are illustrated in Figure 2. As can be seen, there is a
certain discrepancy in feature density in most action classes between
the two methods, with DCA3D yielding about 1.75 times the Har-
ris3D detections in average. This behavior is partially affected by
the empirical selection of the threshold T which can be optimally
tuned through systematic validation techniques, such as ROC per-
formance analysis. In addition, feature density distribution is more
uniform across classes for DCA3D and thus less dependent on ac-
tion type, which is rather undesirable for this task. A remedy for that
could lie on action-specific learning of the global threshold in order
to derive a representation with class-adaptive feature sparsity. The
relatively low performance on FightPerson can be attributed to cam-
era motion and fast shot changes, typical for such action samples,
on which the detector is more susceptible due to its high-response
to multiscale motion. Their effects could be alleviated using camera
motion tracking and stabilization or, alternatively, shot-based key-
point extraction, after shot-detection on the action sequence.

To demonstrate competing performance on a simpler bench-
mark database, we applied our 3D detector framework on the KTH
database and evaluation framework [2, 3]. We restricted to using
only HOF as features, as state-of-the-art average accuracy of 92.1%
has been obtained using Harris3D/HOF [3]. The detection threshold
was empirically set to a fixed value T = 0.14, by imposing an

Walk
ing

Jogging

Running

Boxing
Waving

Clap
ping

Walking 1.00 0.00 0.00 0.00 0.00 0.00
Jogging 0.47 0.31 0.21 0.01 0.00 0.00
Running 0.23 0.17 0.59 0.01 0.00 0.00
Boxing 0.01 0.00 0.00 0.92 0.01 0.06
Waving 0.00 0.00 0.00 0.00 0.92 0.08

Clapping 0.00 0.00 0.00 0.01 0.00 0.99

Table 2: Confusion matrix for DCA3D/HOF on KTH Dataset.
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Fig. 3: DCA3D detector on a sample from AnswerPhone action of the Hollywood2 Dataset. Intermediate outputs and detections are shown
on three action instances corresponding roughly to its starting, middle and ending point. Note how the Spatial Dominant Component (and
Energy) de-emphasizes low-energy textured areas, while preserving main image structure, like edges and boundaries. The Temporal Dominant
Energy assigns salient values to regions of complex motion, e.g. person’s hand or elbow, resulting on a dense concentration of detected points.

average rate of 10 detections/frame across train and test sets. The
confusion matrix for the six action classes can be seen on Table 2,
corresponding to an average DCA3D/HOF accuracy of 78.8%. It is
noteworthy that, without parameter validation and tuning, DCA3D
surpasses 90% in four classes and achieves superior performance in
three (Walking, Waving, Clapping) compared to the state-of-the-art
Harris3D/HOF [2]. The misclassifications for Jogging and Running
actions can be suppressed by using class-based detected density and
validation-based parameter learning.

5. CONCLUSION

We proposed a new video analysis method that builds on both tex-
ture and motion decomposition to detect and track multiband spatio-
temporal modulation components. Their energy has been formulated
as the basis of a spatio-temporal interest point detector for sparse
feature extraction from video volumes and applied for recognizing
actions in movie clips. The proposed representation is effective in
capturing local oscillations in the spatial domain, as non-stationary
contrast, scale and orientation changes, and the temporal, as vary-
ing, non-stationary movements of inherent periodicity. Preliminary
experimental results show comparable performance to an efficient,
state-of-the-art detector on actions from a challenging database (Hol-
lywood2). Our aim is to refine the tracking process and parameter
selection, investigate the potential for action-driven feature selection,
and extend our experimental comparisons to more action datasets.
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