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Abstract

In this paper we propose to learn a mapping from image
pixels into a dense template grid through a fully convolu-
tional network. We formulate this task as a regression prob-
lem and train our network by leveraging upon manually an-
notated facial landmarks “in-the-wild”. We use such land-
marks to establish a dense correspondence field between
a three-dimensional object template and the input image,
which then serves as the ground-truth for training our re-
gression system. We show that we can combine ideas from
semantic segmentation with regression networks, yielding a
highly-accurate ‘quantized regression’ architecture.

Our system, called DenseReg, allows us to estimate
dense image-to-template correspondences in a fully convo-
lutional manner. As such our network can provide useful
correspondence information as a stand-alone system, while
when used as an initialization for Statistical Deformable
Models we obtain landmark localization results that largely
outperform the current state-of-the-art on the challenging
300W benchmark. We thoroughly evaluate our method on a
host of facial analysis tasks, and also demonstrate its use
for other correspondence estimation tasks, such as mod-
elling of the human ear. DenseReg code is made available
at http://alpguler.com/DenseReg.html along
with supplementary materials.

1. Introduction

Non-planar object deformations, e.g. due to facial pose
or expression, result in challenging but also informative sig-
nal variations. Our objective in this paper is to recover this
information in a feedforward manner by employing a dis-
criminatively trained convolutional network. Our motiva-
tion for this is the understanding that there is a gap between
discriminatively trained systems for detection and category-
level deformable models; we propose a system that com-
bines the merits of both.

In particular, discriminative learning-based approaches
typically pursue invariance to shape deformations, for in-
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Figure 1: We introduce a fully convolutional neural network
that regresses from the image to a “canonical”, deformation-
free parameterization of the face surface, effectively yield-
ing a dense 2D-to-3D surface correspondence field. Once
this correspondence field is available, one can effortlessly
solve many image-level problems by backward-warping
their canonical solution from the template coordinates to
the image domain for the problems of landmark localiza-
tion, semantic part segmentation, and face transfer.

stance by employing local ‘max-pooling’ operations to el-
licit responses that are invariant to local translations. As
such, these models can reliably detect patterns irrespec-
tive of their deformations through efficient, feedforward al-
gorithms. At the same time however this discards useful
shape-related information and only delivers a single cate-
gorical decision per position. Several recent works in deep
learning have aimed at enriching deep networks with infor-
mation about shape by explicitly modelling the effect of
similarity transformations [31] or non-rigid deformations
[20, 18, 9]; several of these have found success in classi-
fication [31], fine-grained recognition [20], and also face
detection [9]. There are works [24, 33] that model the de-
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formation via optimization procedures, whereas we obtain
it in a feedforward manner and in a single shot. In these
works, shape is treated as a nuisance, while we treat it as the
goal in itself. Recent works on 3D surface correspondence
[29, 5] have shown the merit of CNN-based unary terms
for correspondence. In our case we tackle the much more
challenging task of establishing a 2D to 3D correspondence
in the wild by leveraging upon recent advances in semantic
segmentation [10]. To the best of our knowledge, the task of
explicitly recovering dense correspondence in the wild has
not been addressed yet in the context of deep learning.

By contrast, approaches that rely on Statistical De-
formabe Models (SDMs), such as Active Appearance Mod-
els (AAMs) or 3D Morphable Models (3DMMs) aim at
explicitly recovering dense correspondences between a
deformation-free template and the observed image, rather
than trying to discard them. This allows one to both rep-
resent shape-related information (e.g. for facial expression
analysis) and also to obtain invariant decisions after reg-
istration (e.g. for identification). Explicitly representing
shape can have substantial performance benefits, as is wit-
nessed in the majority of facial analysis tasks requiring de-
tailed face information e.g. landmark localisation [35], 3D
pose estimation, as well as 3D face reconstruction “in-the-
wild” [22], where SDMs consitute the current state of the
art.

However SDM-based methods are limited in two re-
spects. Firstly they require an initialization from external
systems, which can become increasingly challenging for
elaborate SDMs: AAMs may require only a bounding box
type of initialisation but 3DMMs further require a good ini-
tialization of the position of particular facial landmarks -
while SDM performance may drop due to poor initializa-
tion. Furthermore, SDM fitting requires iterative, time-
demanding optimization algorithms, especially when the
initialisation is far from the solution. The advent of Deep
Learning has made it possible to replace the iterative opti-
mization task with iterative regression problems [38], but
this does not alleviate the need for initialization and multi-
ple iterations.

In this work we aim at bridging these two approaches,
and introduce a discriminatively trained network to obtain,
in a fully-convolutional manner, dense correspondences be-
tween an input image and a deformation-free template co-
ordinate system.

In particular, we exploit the availability of manual facial
landmark annotations “in-the-wild” in order to fit a 3D tem-
plate; this provides us with a dense correspondence field,
from the image domain to the 2-dimensional, U − V pa-
rameterization of the face surface. We then train a fully
convolutional network that densely regresses from the im-
age pixels to this U − V coordinate space.

This provides us with dense and fine-grained corre-

spondence information, as in the case of SDMs, while at
the same time being independent of any initialization pro-
cedure, as in the case of discriminatively trained ‘fully-
convolutional’ networks. We demonstrate that the perfor-
mance of certain tasks, such as facial landmark localisation
or segmantic part segmentation, is largely improved by us-
ing the proposed network.

Even though the methodology is general this paper is
mainly concerned with human faces. The general architec-
ture for the case of human face is described in Fig. 1.

Our approach can be on the one hand understood as pro-
viding a stand-alone, feedforward alternative to the combi-
nation of initialization with iterative fitting typically used in
SDMs. This allows us to have a feedforward system that
solves both the detection and correspondence problems at
approximate 7 − 8 frames per second for a 300 × 300 in-
put image. On the other hand, our approach can also be
understood as an initialization procedure for SDMs which
gets them started from a much more accurate position than
the bounding box, or landmark-based initializations cur-
rently employed in the face analysis literature. When taking
this approach we observe substantial gains over the current
state-of-the-art systems.

We can summarize our contributions as follows:

• We introduce the task of dense shape regression in
the setting of CNNs, and exploit the SDM-based no-
tion of a deformation-free UV-space to construct target
ground-truth signals (Sec.2).

• We propose a carefully-designed fully-convolutional
shape regression system that exploits ideas from se-
mantic segmentation and dense regression networks.
Our quantized regression architecture(Sec.3) is shown
to substantially outperform simpler baselines that con-
sider the task as a plain regression problem .

• We use dense shape regression to jointly tackle a mul-
titude of problems, such as landmark localization or
semantic segmentation. In particular, the template
coordinates allow us to ‘copy’ multiple annotations
constructed on a single template system, and thereby
tackle multiple problems in a single go.

• We use the regressed shape coordinates for the initial-
ization of SDMs; systematic evaluations on facial anal-
ysis benchmarks show that this yields substantial per-
formance improvements on tasks ranging from land-
mark localization to semantic segmentation.

• We demonstrate the generic nature of the method by
applying it to the task of estimating dense correspon-
dence information for human ears.
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Figure 2: Ground-truth generation: (a) Annotated land-
marks. (b) Template shape morphed based on the land-
marks. (c) Deformation-free coordinates (uh and uv), ob-
tained by unwrapping the template shape, transferred to im-
age domain.

Our system is particularly simple to implement, as it re-
lies on a variation of the broadly adopted Deeplab system
[10].

2. From SDMs to Dense Shape Regression
Following the deformable template paradigm [46, 17],

we consider that object instances are obtained by deforming
a prototypical object, or ‘template’, through dense deforma-
tion fields. This makes it possible to factor object variability
within a category into variations that are associated to defor-
mations, generally linked to the object’s 2D/3D shape, and
variations that are associated to appearance (or, ‘texture’ in
graphics), e.g. due to facial hair, skin color, or illumination.

This factorization largely simplifies the modelling task.
SDMs use it as a stepping stone for the construction of
parametric models of deformation and appearance. For
instance in AAMs a combination of Procrustes Analysis,
Thin-Plate Spline warping and PCA is the standard pipeline
for learning a low-dimensional linear subspace that captures
category-specific shape variability [13]. Even though we
have a common starting point, rather than trying to con-
struct a linear generative model of deformations, we treat
the image-to-template correspondence as a vector field that
our network tries to regress.

In particular, we start from a template X =
[x>1 ,x

>
2 , ...x

>
m]> ∈ R, where each xj ∈ R3 is a vertex

location of the mesh in 3D space. This template is ob-
tained by the automatic pipeline proposed from Booth et
al. [3] which brings a large set of 3D facial scans in corre-
spondence through the use of Procrustes alignment and an
adapted Non-Rigid ICP optimisation problem. We compute
a bijective mapping ψ, from template mesh X to the 2D
canonical space U ∈ R2×m, such that

ψ(xj) 7→ uj ∈ U , ψ−1(uj) 7→ xj . (1)

The mapping ψ is obtained via the cylindrical unwrapping
described in [4]. Thanks to the cylindrical unwrapping,
we can interpret these coordinates as being the horizontal
and vertical coordinates while moving on the face surface:
uhj ∈ [0, 1] and uvj ∈ [0, 1]. Note that this semantically

meaningful parameterization has no effect on the operation
of our method.

We exploit the availability of landmark annotations “in
the wild”, to fit the template face to the image by obtain-
ing a coordinate transformation for each vertex xj . This
involves estimating the morphable model parameters and
weak perspective projection parameters following [22]. The
corresponding canonical coordinate uj for each vertex on
the template face is then transferred to the morphed 3D
shape. The canonical coordinates that correspond to the vis-
ible image pixels are then obtained in 2D by a z-buffering
operation. As illustrated in Fig. 2, once the transformation
from the template face vertices to the morphed vertices is
established, the uj coordinates of each visible vertex on
the canonical face can be transferred to the image space.
This establishes the ground truth signal for our subsequent
regression task. We intend to make the established corre-
spondences publicly available.

3. Fully Convolutional Dense Shape Regression
Having described how we establish our supervision sig-

nal, we now turn to the task of estimating it through a con-
volutional neural network (CNN). Our aim is to estimate at
any image pixel that belongs to a face region the values of
u = [uh, uv]. We need to also identify non-face pixels, e.g.
by predicting a ‘dummy’ output.

On the one hand one can phrase this problem as a generic
regression task and attack it with the powerful machinery of
CNNs. Unfortunately, the best performance that we could
obtain this way was quite underwhelming, apparently due to
the task’s complexity. Our approach is to quantize and es-
timate the quantization error separately for each quantized
value. Instead of directly regressing u, the quantized re-
gression approach lets us solve a set of easier sub-problems,
yielding improved regression results.

In particular, instead of using a CNN as a ‘black box’
regressor, we draw inspiration from the success of recent
works on semantic part segmentation [39, 11], and land-
mark classification [6, 7]. These works have shown that
CNNs can deliver remarkably accurate predictions when
trained to predict categorical variables, indicating for in-
stance the facial part or landmark corresponding to each
pixel.

Building on these successes, we propose a hybrid
method that combines a classification with a regression
problem. Intuitively, we first identify a coarser face re-
gion that can contain each pixel, and then obtain a refined,
region-specific prediction of the pixel’s U − V field. As we
will describe below, this yields substantial gains in perfor-
mance when compared to the baseline of a generic regres-
sion system.

We identify facial regions by using a simple geometric
approach. We tesselate the template’s surface with a carte-
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Figure 3: Proposed Quantized Regression Approach for the horizontal correspondence signal: The continuous signal is
regressed by first estimating a grossly quantized (or, discretized) function through a classification branch. For each quantized
value q̂h we use a separate residual regression unit’s prediction, r̂hq̂h , effectively multiplexing the different residual predictions.
These are added to the quantized prediction, yielding a smooth and accurate correspondence field.

sian grid, by uniformly and separately quantizing the uh and
uv coordinates into K bins, where K is a design parameter.
For any image that is brought into correspondence with the
template domain, this induces a discrete labelling, which
can be recovered by training a CNN for classification.

On Fig. 4, the tesselations of different granularities are
visualized. For a sufficiently large value of K even a plain
classification result could provide a reasonable estimate of
the pixel’s correspondence field, albeit with some staircas-
ing effects. The challenge here is that as the granularity of
these discrete labels becomes increasingly large, the amount
of available training data decreases and label complexity in-
creases. A more detailed analysis on the effect of label-
space granularity to segmentation performance is provided
in supplementary materials.

We propose to combine powerful classification results
with a regression problem that will yield a refined corre-
spondence estimate. For this, we compute the residual be-
tween the desired and quantized U−V coordinates and add
a separate module that tries to regress it. We train a separate
regressor per facial region, and at any pixel only penalize
the regressor loss for the responsible face region. We can
interpret this form as a ‘hard’ version of a mixture of re-
gression experts [21]. This interpretation is further elabo-
rated upon in the supplementary material.

The horizontal and vertical components uh, uv of the
correspondence field are predicted separately. This results

Figure 4: Horizontal and vertical tesselations obtained us-
ing K = 2, 4 and 8 bins.

in a substantial reduction in computational and sample com-
plexity - For K distinct U and V bins we have K2 regions;
the classification is obtained by combining 2 K-way clas-
sifiers. Similarily, the regression mapping involves K2 re-
gions, but only uses 2K one-dimensional regression units.
The pipeline for quantized face shape regression is provided
in Fig. 3.

We now detail the training and testing of this network;
for simplicity we only describe the horizontal component
of the mapping. From the ground truth construction, every
position x is associated with a scalar ground-truth value uh.
Rather than trying to predict uh as is, we transform it into a
pair of discrete qh and continuous rh values, encoding the
quantization and residual respectively:

qh = bu
h

d
c, rhi =

(
uhi − qhi d

)
, (2)

where d = 1
K is the quantization step size (we consider

uh, uv coordinates to lie in [0, 1]).
Given a common CNN trunk, we use two classifica-

tion branches to predict qh, qv and two regression branches
to predict rh, rv as convolution layers with kernel size
1 × 1. As mentioned earlier, we employ separate regres-
sion functions per region, which means that at any posi-
tion we have K estimates of the horizontal residual vector,
r̂hi , i = 1, . . . ,K.

At test time, we let the network predict the discrete bin
q̂h associated with every input position, and then use the
respective regressor output r̂hq̂h to obtain an estimate of u:

ûh = q̂hd+ r̂hq̂h (3)

For the qh and qv , which are modeled as categorical dis-
tributions, we use softmax followed by trcross entropy loss.
For estimating r̂h and r̂v , we use a normalized version of
the smooth L1 loss in [16]. The normalization is obtained
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Figure 5: Visualization of local average absolute error on
pairs of vertical-horizontal coordinate regression pairs for
both quantized and non-quantized regression. We visualize
the mean absolute error for each approach. The proposed
quantized regression clearly outperforms plain regression.

by dividing the loss by the number of pixels that contribute
to the loss.

Compared to plain regression of the coordinates, the pro-
posed method achieves much better results. For a clear
demonstartion of this, we resort to two main branches
of analysis. Firstly, we decouple the effect of fore-
ground/background segmentation, by only analysing the er-
ror of detected foreground pixels. We transfer absolute
errors (absolute value of the difference between estimated
and regressed coordinates) to the template model using the
ground-truth coordinates. The errors corresponding to each
vertex are visualized in Fig. 5 along with mean absolute er-
ror computed from all of the detected pixels. We can ob-
serve that the errors are concentrated at the neck region,
where the fits might be rather inconsistent due to the lack
of landmarks. We can also observe that the quantized re-
gression approach yields much smaller errors, concentrated
mainly at boundaries of quantized regions. Secondly, we
plot the Cummulative Error Distribution(CED) for both of
the approaches on Fig. 6. The error is normalized by the
distance between two eyes in the deformation-free coordi-
nate system, to analyze the error in the range that is com-
monly used in facial landmark analysis. The results clearly
show that the quantized approach is significantly better, es-
pecially at the 0 - 0.1 regime, which is relevant for applica-
tions.
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Figure 6: Cumulative Error Distribution of absolute errors
normalized by the interocular distance on the deformation-
free coordinate system for quantized and non-quantized re-
gression approaches.The reported Area Under the Curve
(AUC) indicates that our alternative to the non-quantized
regression task performs substantially better.

4. Experiments

Herein, we evaluate the performance of the proposed
method (referred to as DenseReg) on various face-related
tasks. In the following sections, we first describe the
training setup (Sec. 4.1) and then present extensive quan-
titative and qualitative results on (i) semantic segmenta-
tion (Sec. 4.2), (ii) landmark localization on static images
(Sec. 4.3), (iii) deformable tracking (Sec. 4.4) , (iv) monoc-
ular depth estimation (Sec. 4.5) and (v) human ear landmark
localization (Sec. 4.6). We note that DenseReg is not trained
or fine-tuned specifically for each one of those tasks. Its pre-
dictions are used out-of-the-box for different task-specific
evaluations.

4.1. Training Setup

Training Databases. We train our system using the
300W database [36, 35] that is annotated with 68 land-
mark points. Our training set consists of the LFPW train-
set [2], Helen trainset [25] and AFW [49], thus 3148 im-
ages that are captured under completely unconstrained con-
ditions and exhibit large variations in pose, expression, illu-
mination, age, etc. Many of these images contain multiple
faces, some of which are not annotated. We deal with is-
sue by employing the out-of-the-box DPM face detector of
Mathias et al. [30] to obtain the regions that contain a face
for all of the images. The detected regions that do not over-
lap with the ground truth landmarks do not contribute to the
loss. For training and testing, we have rescaled the images
such that their largest side is 800 pixels.

CNN Training. For the dense regression network, we
adopt a ResNet101 [19] architecture with dilated convolu-
tions (atrous) [10, 27], such that the stride of the CNN is
8. We use bilinear interpolation to upscale both the q̂ and
r̂ branches before the losses. The losses are applied at the
input image scale and back-propagated through interpola-
tion. We apply a weight to the smooth L1 loss layers to bal-
ance their contribution. In our experiments, we have used
a weight of 40 for quantized (d = 0.1) and a weight of
70 for non-quantized regression, which are determined by a
coarse cross validation. We initialize the training with a net-
work pre-trained for the MS COCO segmentation task [26].
The new layers are initialized with random weights drawn
from Gaussian distributions. Large weights of the regres-
sion losses can be problematic at initialization even with
moderate learning rates. To cope with this, we use initial
training with a lower learning rate for a warm start. We
then use a base learning rate of 0.001 with a polynomial de-
cay policy for 20k iterations with a batch size of 10 images.
During training, each sample is randomly scaled with one
of the ratios [0.5, 0.75, 1, 1.25, 1.5] and cropped to form a
fixed 321× 321 input image.



Class
Methods

DenseReg Deeplab-v2
Left Eyebrow 48.35 40.57
Right Eyebrow 46.89 41.85
Left Eye 75.06 73.65
Right Eye 73.53 73.67
Upper Lip 69.52 62.04
Lower Lip 75.18 70.71
Nose 87.71 86.76
Other 99.44 99.37
Average 71.96 68.58

Table 1: Semantic segmentation accuracy on Helen testset
measured using intersection-over-union (IoU) ratio.

4.2. Semantic Segmentation

As discussed in Sec. 2, any labelling function defined
on the template shape can be transferred to the image do-
main using the regressed coordinates. One application that
can be naturally represented on the template shape is se-
mantic segmentation of facial parts. To this end, we man-
ually defined a segmentation mask of 8 classes (right/left
eye, right/left eyebrow, upper/lower lip, nose, other) on the
template shape, as shown in Fig. 1.

We compare against a state-of-the-art semantic part seg-
mentation system (DeepLab-v2) [11] which is based on the
same ResNet-101 architecture as our proposed DenseReg.
We train DeepLab-v2 on the same training images (i.e.
LFPW trainset, Helen trainset and AFW). We generate the
ground-truth segmentation labels for both training and test-
ing images by transferring the segmentation mask using
the ground-truth deformation-free coordinates explained in
Sec. 2. We employ the Helen testset [25] for the evaluation.

Table 1 reports evaluation results using the intersection-
over-union (IoU) ratio. Additionally, Fig. 13 shows some
qualitative results for both methods, along with the ground-
truth segmentation labels. The results indicate that the
DenseReg outperforms DeepLab-v2. The reported im-
provement is substantial for several parts, such as eyebrows
and lips. We believe that this result is significant given that
DenseReg is not optimized for the specific task-at-hand,
as opposed to DeepLab-v2 which was trained for seman-
tic segmentation. This performance difference can be justi-
fied by the fact that DenseReg was exposed to a richer label
structure during training, which reflects the underlying vari-
ability and structure of the problem.

4.3. Landmark Localization on Static Images

DenseReg can be readily used for the task of facial land-
mark localization on static images. Given the landmarks’
locations on the template shape, it is straightforward to esti-
mate the closest points in the deformation-free coordinates
on the images. The local minima of the Euclidean distance
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Figure 7: Landmark localization results on the 300W test-
ing dataset using 68 points. Accuracy is reported as Cumu-
lative Error Distribution of RMS point-to-point error nor-
malized with interocular distance. Top: Comparison with
state-of-the-art. Bottom: Self-evaluation results.

between the estimated coordinates and the landmark coordi-
nates are considered as detected landmarks. In order to find
the local minima, we simply analyze the connected compo-
nents separately. Even though more sophisticated methods
for covering “touching shapes” can be used, we found that
this simplistic approach is sufficient for the task.

Note that the closest deformation-free coordinates
among all visible pixels to a landmark point is not necessar-
ily the correct corresponding landmark. This phenomenon
is called “landmark marching” [48] and mostly affects the
jaw landmarks which are highly dependent on changes in
head pose. It should be noted that in our work we do not
use any explicit supervision for landmark detection nor fo-
cus on ad-hoc methods to cope with this issue. Errors on jaw
landmarks due to invisible coordinates and improvements
thanks to deformable models can be observed in qualitative
results (Fig. 12).

Herein, we evaluate the landmark localization perfor-
mance of DenseReg as well as the performance obtained
by employing DenseReg as an initialization for deformable
models [32, 40, 1, 38] trained for the specific task. In the
second scenario, we provide a slightly improved initializa-
tion with very small computational cost by reconstructing
the detected landmarks with a PCA shape model that is con-



structed from ground-truth annotations.
We present experimental results using the very challeng-

ing 300W benchmark. This is the testing database that was
used in the 300W competition [36, 35] - the most impor-
tant facial landmark localization challenge. The error is
measured using the point-to-point RMS error normalized
with the interocular distance and reported in the form of
Cumulative Error Distribution (CED). Figure 7 (bottom)
presents some self-evaluations in which we compare the
quality of initialization for deformable modelling between
DenseReg and two other standard face detection techniques
(HOG-SVM [23], DPM [30]). The employed deformable
models are the popular generative approach of patch-based
Active Appearance Models (AAM) [32, 40, 1], as well as
the current state-of-the-art approach of Mnemonic Descent
Method (MDM) [38]. It is interesting to notice that the per-
formance of DenseReg without any additional deformable
model on top, already outperforms even HOG-SVM detec-
tion combined with MDM. Especially when DenseReg is
combined with MDM, it greatly outperforms all other com-
binations.

Method AUC Failure Rate (%)
DenseReg + MDM 0.5219 3.67
DenseReg 0.3605 10.83
Fan et al. [15] 0.4802 14.83
Deng et al. [14] 0.4752 5.5
Martinez et al. [28] 0.3779 16.0
Cech et al. [8] 0.2218 33.83
Uricar et al. [42] 0.2109 32.17

Table 2: Landmark localization results on the 300W testing
dataset using 68 points. Accuracy is reported as the Area
Under the Curve (AUC) and the Failure Rate of the Cu-
mulative Error Distribution of the RMS point-to-point error
normalized with interocular distance.

Figure 7 (top) compares DenseReg+MDM with the re-
sults of the latest 300W competition [35], i.e. Cech et
al. [8], Deng et al. [14], Fan et al. [15], Martinez et al. [28]
and Uricar et al. [42]. We greatly outperform all competi-
tors by a large margin. It should be noted that the partic-
ipants of the competition did not have any restrictions on
the amount of training data employed and some of them are
industrial companies (e.g. Fan et al. [15]), which further il-
lustrates the effectiveness of our approach. Finally, Table 2
reports the area under the curve (AUC) of the CED curves,
as well as the failure rate for a maximum error of 0.1. Apart
from the accuracy improvement shown by the AUC, we be-
lieve that the reported failure rate of 3.67% is remarkable
and highlights the robustness of DenseReg.

4.4. Deformable Tracking

For the challenging task of deformable face tracking
on lengthy videos, we employ the testing database of the
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Figure 8: Deformable tracking results against the state-of-
the-art on the 300VW testing dataset using 68 points. Ac-
curacy is reported as Cumulative Error Distribution of RMS
point-to-point error normalized with interocular distance.

300VW challenge [37, 12] - the only existing benchmark
for deformable tracking “in-the-wild”. The benchmark con-
sists of 114 videos (∼ 218k frames in total) and includes
videos captured in totally arbitrary conditions (severe occlu-
sions and extreme illuminations). The tracking is performed
based on sparse landmark points, thus we follow the same
strategy as in the case of landmark localization in Sec. 4.3.

We compare the output of DenseReg, as well as
DenseReg+MDM which was the best performing combina-
tion for landmark localization in static images (Sec. 4.3),
against the participants of the 300VW challenge: Yang et
al. [45], Uricar et al. [41], Xiao et al. [44], Rajamanoha-
ran et al. [34] and Wu et al. [43]. Figure 8 reports the
CED curves for all video categories, whereas Table 3 re-
ports the AUC and Failure Rate measures. DenseReg com-
bined with MDM demonstrates the best performance, even
by a short margin from the winner of the 300VW competi-
tion. However, it should be highlighted that our approach is
not fine-tuned for the task-at-hand as opposed to the rest of
the methods that were trained on video sequences and most
of them make some kind of temporal modelling. Finally,
similar to the 300W case, the participants were allowed to
use unlimited training data (apart from the provided train-
ing seuqences), as opposed to DenseReg (and MDM) that
were trained only on the 3148 images mentioned in Sec. 4.1.
Please refer to the supplementary material for a more de-
tailed presentation of the tracking results.

4.5. Monocular Depth Estimation

The fitted template shapes also provide the depth from
the image plane. We transfer this information to the visi-
ble pixels on the image using the same z-buffering opera-
tion used for the deformation-free coordinates (detailed in
Sec. 2 of the paper). We adopt this as an additional su-



Method AUC Failure Rate (%)
DenseReg + MDM 0.5937 4.57
DenseReg 0.4320 8.1
Yang et al. [45] 0.5832 4.66
Xiao et al. [44] 0.5800 9.1
Rajamanoharan et al. [34] 0.5154 9.68
Wu et al. [43] 0.4887 15.39
Unicar et al. [41] 0.4059 16.7

Table 3: Deformable tracking results against the state-of-
the-art on the 300VW testing dataset using 68 points. Ac-
curacy is reported as the Area Under the Curve (AUC) and
the Failure Rate of the Cumulative Error Distribution of the
RMS error normalized with interocular distance.

Figure 9: Exemplar 3D renderings obtained using estimated
depth values.

pervision signal: Z ∈ [0, 1] and add another branch to our
network to estimate the depth along with the deformation-
free coordinates. To our knowledge, there is no existing
results in literature that would allow a quantitative compar-
ison. We are providing example reconstructions using esti-
mated monocular depth fields at Fig.9. We observe that this
additional branch does not affect the performance of other
branches and adds little to the complexity, since it is just
a 1x1 convolution layer after the final shared convolutional
layer.

4.6. Ear Landmark Localization

In order to highlight the ability of DenseReg to general-
ize to any kind of deformable object, we report experimen-
tal results on the human ear. We employ the 602 images and
sparse landmark annotations that were generated in a semi-
supervised manner by Zhou et al. [47]. Due to the lack of
a 3D model of the human ear, we apply Thin Plate Splines
to bring the images in dense correspondence and create the
deformation-free space. Then, we perform landmark local-
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Figure 10: Landmark localization results on human ear us-
ing 55 points. Accuracy is reported as Cumulative Error
Distribution of normalized RMS point-to-point error.

ization following the same procedure as in Sec. 4.3. We
split the images in 500 for training and 102 for testing.

Given the lack of state-of-the-art deformable models on
human ear, we compare DenseReg with DenseReg+AAM
and DenseReg+MDM. We also trained a DPM detector in
order to compare the initialization quality with DenseReg.
Figure 10 reports the CED curves based on the 55 landmark
points using the RMS point-to-point error normalized by the
bounding box average edge length and on Table.4, we pro-
vide failure rate and the Area Under Curve(AUC) measures.
Once again, the results are highly accurate even without im-
proving DenseReg with a deformable model.

Method AUC Failure Rate (%)
DenseReg + MDM 0.4842 0.98
DenseReg 0.4150 1.96
DenseReg + AAM 0.4263 0.98
DPM + MDM 0.4160 15.69
DPM + AAM 0.3283 22.55

Table 4: Landmark localization results on human ear us-
ing 55 points. Accuracy is reported as the Area Under the
Curve (AUC) and the Failure Rate of the Cumulative Error
Distribution of the normalized RMS point-to-point error.

Figure 11: Exemplar pairs of deformation-free coordinates
of dense landmarks on human ear. Left: Estimated by
DenseReg. Right: Ground-truth produced by TPS.



Figure 12: Qualitative Results. From left to right: Original image, ground-truth horizontal coordinates(uh), estimated hori-
zontal coordinates(ûh) , ground-truth vertical coordinates(uv), estimated vertical coordinates(ûv) , Landmarks for DenseReg,
Landmarks for DenseReg+MDM. Estimated landmarks(blue), ground-truth(green), lines between estimated and ground-truth
landmarks(red).



Figure 13: Exemplar semantic segmentation results. Left: Ground-truth. Center: DenseReg. Right: DeepLab-v2.

5. Conclusion

We propose a fully-convolutional regression approach
for establishing dense correspondence fields between ob-
jects in natural images and three-dimensional object tem-
plates. We demonstrate that the correspondence informa-
tion can successfully be utilised on problems that can be
geometrically represented on the template shape. Through-
out the paper, we focus on face shapes, where applications
are abundant and benchmarks allow a fair comparison. We
show that using our dense regression method out-of-the-
box outperforms a state-of-the-art semantic segmentation
approach for the task of face-part segmentation, while when
used as an initialisation for SDMs, we obtain the currently
best results on the challenging 300W landmark localization
challenge. We believe that our method will find ubiquitous
use, since it can be readily used for face-related tasks and
can be easily integrated to many other correspondence prob-
lems.
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