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Abstract— Despite major advances within the affective computing
research field, modelling, analysing, interpreting and responding to
naturalistic human affective behaviour still remains as a challenge
for automated systems as emotions are complex constructs with fuzzy
boundaries and with substantial individual variations in expression and
experience. Thus, a small number of discrete categories (e.g., happiness
and sadness) may not reflect the subtlety and complexity of the affective
states conveyed by such rich sources of information. Therefore, affective
and behavioural computing researchers have recently invested increased
effort in exploring how to best model, analyse, interpret and respond to
the subtlety, complexity and continuity (represented along a continuum
e.g., from -1 to +1) of affective behaviour in terms of latent dimensions
(e.g., arousal, power and valence) and appraisals. Accordingly, this
paper aims to present the current state of the art and the new challenges
in automatic, dimensional and continuous analysis and synthesis of
human emotional behaviour in an interdisciplinary perspective.

I. AFFECT IN DIMESIONAL SPACE

Emotions and affect are researched in various scientific disci-
plines such as neuroscience, psychology and cognitive sciences.
Development of automatic affect analysers depends significantly on
the progress in the aforementioned sciences. Hence, we start our
analysis by exploring the background in emotion theory, perception
and recognition. According to research in psychology, three major
approaches to affect modelling can be distinguished [1]: categor-
ical, dimensional and appraisal-based approach. The categorical
approach claims that there exist a small number of emotions that are
basic, hard-wired in our brain and recognised universally (e.g., [2]).
This theory on universality and interpretation of affective nonverbal
expressions in terms of basic emotion categories has been the most
commonly adopted approach in research on automatic measurement
of human affect. However, a number of researchers have shown that
in everyday interactions people exhibit non-basic, subtle and rather
complex affective states like thinking, embarrassment or depression.
Such subtle and complex affective states can be expressed via
dozens of anatomically possible facial and bodily expressions, audio
or physiological signals. Therefore, a single label (or any small
number of discrete classes) may not reflect the complexity of the
affective state conveyed by such rich sources of information [3].
Hence, a number of researchers advocate the use of dimensional
description of human affect, where affective states are not indepen-
dent from one another; rather, they are related to one another in a
systematic manner (e.g., [1], [3], [4], [5]). The most widely used
dimensional model is a circular configuration called Circumplex
of Affect introduced by Russell [3]. This model is based on the
hypothesis that each basic emotion represents a bipolar entity being
a part of the same emotional continuum. The proposed polars are
arousal (relaxed vs. aroused) and valence (pleasant vs. unpleasant).
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Another well-accepted and commonly used dimensional description
is the 3D emotional space of pleasure — displeasure, arousal —
nonarousal and dominance — submissiveness [4], at times referred
to as the PAD emotion space [6] or as emotional primitives [7].
To guarantee a more complete description of affective colouring,
some researchers include expectation (the degree of anticipating or
being taken unaware) as the fourth dimension [8], and intensity
(how far a person is away from a state of pure, cool rationality)
as the fifth dimension (e.g., [9]). Scherer and colleagues introduced
another set of psychological models, referred to as componential
models of emotion, which are based on the appraisal theory [1],
[5], [8]. In the appraisal-based approach emotions are generated
through continuous, recursive subjective evaluation of both our
own internal state and the state of the outside world (relevant
concerns/needs) [1], [5], [8], [10]. Despite pioneering efforts of
Scherer and colleagues (e.g., [11]), how to use the appraisal-
based approach for automatic measurement of affect is an open
research question as this approach requires complex, multicompo-
nential and sophisticated measurements of change. One possibility
is to reduce the appraisal models to dimensional models (e.g.,
2D space of arousal-valence). Ortony and colleagues proposed a
computationally tractable model of the cognitive basis of emotion
elicitation, known as OCC [12]. OCC is now established as a
standard (cognitive appraisal) model for emotions, and has mostly
been used in affect synthesis (in embodied conversational agent
design, e.g., [13]). Despite the existence of diverse affect models,
search for optimal low-dimensional representation of affect, for
analysis and synthesis, and for each modality or cue, remains open

[8].

Discussion: Affect in Dimesional Space

The interpretation accuracy of expressions and physiological responses
in terms of continuous emotions is very challenging. While visual signals
appear to be better for interpreting valence, audio signals seem to be
better for interpreting arousal [14]. For instance, speech in general is
reported to be less affected by the power dimension [3], than the arousal
dimension, etc. A thorough comparison between all modalities would
indeed provide a better understanding of which emotion dimensions are
better predicted from which modalities (or cues). Although for many
practical reasons arousal, valence and power dimensions have been
assumed to be independent from each other, researchers reported that
these emotion dimensions are correlated [15]. How to better exploit and
model the correlations between emotion dimensions, for analysis and
synthesis, should be investigated further.

II. MODALITIES AND CUES

An individual’s inner emotional state may become apparent
by subjective experiences (how the person feels), internal/inward
expressions (biosignals) and external/outward expressions (au-
dio/visual signals).

A. Biosignals

Biosignals are multichannel recordings from both the central and
the autonomic nervous systems. The biosignals used for automatic
measurement of affect are galvanic skin response that increases
linearly with a person’s level of arousal [16], electromyography



(frequency of muscle tension) that is correlated with negatively
valenced emotions [17], heart rate that increases with negatively
valenced emotions such as fear, heart rate variability that indicates
a state of relaxation or mental stress and respiration rate (how deep
and fast the breath is) that becomes irregular with more aroused
emotions like anger or fear [16], [17]. Measurements recorded
over various parts of the brain including the amygdala also enable
observation of the emotions felt [18]. For instance, approach or
withdrawal response to a stimulus is known to be linked to the
activation of the left or right frontal cortex, respectively. It is also
possible to observe the differences between positive and negative
emotional stimuli from asymmetrical brain activity [19]. A number
of studies also suggest that there exists a correlation between
increased blood perfusion in the orbital muscles and stress levels for
human beings. This periorbital perfusion can be quantified through
the processing of thermal imagery (e.g., [20]).

B. Audio Signals

Audio signals convey affective information through explicit (lin-
guistic) messages and implicit (acoustic and prosodic) messages that
reflect the way the words are spoken. There exist a number of works
focusing on how to map audio expression to dimensional models.
Cowie et al. used valence-activation space (similar to valence-
arousal) to model and assess affect from speech [21], [22]. Scherer
and colleagues have also proposed how to judge emotional effects
on vocal expression, using the appraisal-based theory [1]. In terms
of affect recognition from audio signals the most reliable finding
is that pitch appears to be an index into arousal [23]. Another
well-accepted finding is that mean of the fundamental frequency
(FO), mean intensity, speech rate, as well as pitch range [24],
blaring timbre [25] and high-frequency energy [26] are positively
correlated with the arousal dimension. Shorter pauses and inter-
breath stretches are indicative of higher activation [27]. There is
relatively less evidence on the relationship between certain acoustic
parameters and other affect dimensions such as valence and power.
Vowel duration and power dimension in general, and lower FO
and high power in particular, appear to have correlations. Positive
valence seems to correspond to a faster speaking rate, less high-
frequency energy, low pitch and large pitch range [26] and longer
vowel durations. A detailed literature summary on these can be
found in [28] and [29].

C. Visual Signals

Facial actions (e.g., pulling eyebrows up) and facial expressions
(e.g., producing a smile), and to a much lesser extent bodily postures
(e.g., backwards head bend and arms raised forwards and upwards)
and expressions (e.g., head nod), form the widely known and used
visual signals for automatic affect analysis and synthesis. Ekman
and Friesen [30] considered expressing discrete emotion categories
via face, and communicating dimensions of affect via body as more
plausible. Studies have shown that there is a relationship between
the notion of approach/avoidance via the body movements and
affective experiences [31], [32], e.g., as a feedback of positively and
negatively valenced emotions [33], postural leaning forwards and
backwards in response to affective pictures [34], etc. A number of
researchers have investigated how to map various visual signals onto
emotion dimensions. For instance, [3] mapped the facial expressions
to various positions on the 2D plane of arousal-valence, while
[35] investigated the emotional and communicative significance of
head nods and shakes in terms of arousal and valence dimensions,
together with dimensional representation of solidarity, antagonism
and agreement. Although in a stricter sense not seen as part of

the visual modality, motion capture systems have also been utilised
for recording the relationship between affect dimensions and facial
feature information [36], and affect dimensions and body posture
(e.g., [37], [38]). For instance, Kleinsmith et al. [38] identified that
scaling, arousal, valence and action tendency were the affective
dimensions used by human observers when discriminating between
various body postures.

Discussion: Modalities and Cues

When input from multiple expressive channels is available the affective
message conveyed by different modalities might be congruent (i.e.,
agreeing), incongruent (i.e., disagreeing), or masked (e.g., feeling angry
and trying not to express it). A number of studies investigated the issue
of cross-modal interactions, i.e. combined perception of human facial
and bodily expressions [39], as well as human detection of emotion
signs in different modalities (speech, facial expressions, gestures) when
they appear to be blended or masked [40]. Overall, further research is
needed in multicue and multimodal affect expression and perception in
order to explore how congruency, cross-modal interactions and blended
expressions affect dimensional affect modeling and recognition.

III. DATA
A. Data Acquisition and Annotation

In the affective computing research field, the so-called data ac-
quisition protocol consists of context (application domain), subjects
(age, gender and cultural background), modalities, number and type
of affective states, and type of data to be recorded [41]. Recorded
data type can fall into one of the following categories: acted (posed),
re-acted (induced via clips) and inter-acted (occurring during an
interaction). Acquiring affect data without subjects’ knowledge is
strongly discouraged and the current trend is to record naturalistic
(spontaneous) data in more constrained conditions such as an
interview (e.g., [42]) or interaction (e.g., [9]) setting, where subjects
are still aware of placement of the sensors and their locations.
Currently, there exist a number of annotation tools with different
capabilities, used for different purposes in different context. Of
these, Feeltrace allows coders to watch the audiovisual recordings
and move their cursor, within the 2D emotion space confined to
[—1,1], to rate their impression about the emotional state of the
subject. For annotating the internal expressions (biosignals), the
level of valence and arousal is usually extracted from subjective
experiences (subjects’ own responses) (e.g., [18], [43]) due to the
fact that feelings, induced by an image or sound, can be very
different from subject to subject. The Self Assessment Mannequin
(SAM) [44] is the most widely used means for self assessment.
Another tool called the emotion slider allows the collection of self-
reported valence information from subjects while they interact with
a system [45]. When discretised dimensional annotation is adopted
(as opposed to continuous one), researchers seem to use different
intensity levels: either a ten-point Likert scale (e.g., O-low arousal,
9-high arousal), or an arbitrary range, e.g., between —50 and +50
[46], or between —1 and +1 (divided into a number of levels)
[14]. The final annotation is usually calculated as the mean of the
observers’ ratings.

B. Databases

There is a growing body of databases that contain natural-
istic multimodal data labelled continuously along the emotion
dimensions, and made publicly available for research purposes.
The Sensitive Artificial Listener (SAL) Database [47] consists of
naturalistic audio-visual data in the form of conversations that took
place between a participant and an operator undertaking the role of
an avatar with particular personalities, and has been annotated by 4



coders who provided continuous annotations with respect to valence
and arousal dimensions. The Vera am Mittag Database consists of
12 hours of audio-visual recordings of a German Talk Show, with
emotion labels given on a continuous-valued scale for the PAD
primitives [48]. The SEMAINE corpus [9] consists of naturalistic
audio-visual conversations taking place between a participant and
a number of virtual characters with particular personalities. All
recorded conversations have been transcribed and annotated for
five affective dimensions (arousal, valence, power, anticipation and
intensity) and partially annotated for 27 other dimensions, using
trace style continuous ratings [21]. More recent naturalistic affect
databases can be found in the upcoming Special Issue of IEEE Tran.
on Affective Computing [49].

Discussion: Data Acquisition and Annotation

A major challenge in affective data annotation is the fact that there is
no coding scheme that is agreed upon and used by all researchers in
the field that can accommodate all possible communicative cues and
modalities. Development of an easy to use, unambiguous and intuitive
annotation scheme that is able to incorporate inter-observer agreement
levels will indeed ease the heavy burden of the annotation task. Ob-
taining high inter-observer agreement is another challenge in affect
data annotation, especially when (continuous) dimensional approach is
adopted. Modelling inter-observer agreement levels within automatic
affect analysers, and finding which signals better correlate with self
assessments and which ones better correlate with independent observer
assessments remain as challenging issues in the field.

IV. AUTOMATIC ANALYSIS AND PREDICTION

After affect data has been acquired and annotated, representative
and relevant features need to be extracted prior to the automatic
measurement of affect in dimensional and continuous space. The
feature extraction techniques used for each communicative source
are similar to the previous works (reviewed in [50]) adopting a
categorical approach to affect recognition. For further details on
how features are extracted for each communicative modality, and
how multicue and multimodal fusion is achieved for affect analysis
purposes please see [14], [50], [51].

A. Biosignals

The most commonly employed strategy in automatic dimensional
affect recognition from biosignals is to reduce the recognition
problem to a two-class problem, e.g., arousal vs. non-arousal
and valence vs. non-valence [52]. Interesting concepts such as
multi-stage classification and identification of boundaries within
the continuous emotion space have also started to emerge. For
instance, Khosrowabadi et al. present in [53] an EEG-based emotion
recognition system using self-organizing map to identify the bound-
aries (threshold levels) between separable regions of the arousal
and valence dimension (into 4 emotional states). Frantzidis et al.
[54] recorded biosignals while subjects viewed affective pictures.
The recorded biosignals were first classified along the valence
dimension, and then together with gender information, were input
to a second layer distance classifier that classifies the data into high
and low arousal [54]. The design of emotion-specific classification
schemes that can handle multimodal and spontaneous data is one
of the most important issues in the field. In accordance with
this, Kim and Andre propose a novel scheme of emotion-specific
multilevel dichotomous classification (EMDC) using the property of
the dichotomous categorization in the 2D emotion model and the
fact that arousal classification yields a higher correct classification
ratio than valence classification (or direct multiclass classification)
[55]. They apply this scheme on classification of four emotions

(positive/high arousal, negative/high arousal, negative/low arousal
and positive/low arousal) from physiological signals recorded while
subjects were listening to music. How to create such emotion-
specific schemes for dimensional and continuous prediction of
emotions should be investigated further.

B. Audio Signals

Similarly to the affect recognition from biosignals, the most com-
monly employed strategy in automatic dimensional affect recogni-
tion from audio signals is to reduce the recognition problem to
a two-class problem (positive vs. negative or active vs. passive
classification; e.g., [56]) or a four-class problem (classification into
the quadrants of 2D arousal-valence (A-V) space; e.g., [57]). As
far as actual continuous dimensional affect prediction (without
quantisation) is concerned, there exist a number of methods that
deal exclusively with speech (i.e., [57], [58], [59]). The work
by Wollmer et al. uses the SAL Database and Long Short-Term
Memory neural networks and Support Vector Machines for Regres-
sion (SVR) [58]. Grimm and Kroschel use the Vera am Mittag
database [48] and SVRs, and compare their performance to that
of the distance-based fuzzy k-Nearest Neighbour and rule-based
fuzzy-logic estimators [59]. The work by Espinosa et al. also use
the Vera am Mittag database [48] and examine the importance
of different groups of speech acoustic features in the estimation
of continuous PAD dimensions [7]. Another pioneering attempt is
that of INTERSPEECH 2010 Paralinguistic Challenge featuring the
Affect Sub-challenge with a focus on dimensional affect [60].

C. Visual Signals

The most commonly employed strategy in automatic dimensional
affect recognition from visual signals is to reduce the recognition
problem to a two-class problem (positive vs. negative or active
vs. passive classification; e.g., [61], [62]) or a four-class problem
(classification into the quadrants of 2D A-V space; e.g., [63], [64]).
Currently, there are also a number of works focusing on dimensional
and continuous prediction of emotions from the visual modality
[65], [66], [67]. The work by Gunes and Pantic focuses on di-
mensional prediction of emotions from spontaneous conversational
head gestures by mapping the amount and direction of head motion,
and occurrences of head nods and shakes into arousal, expectation,
intensity, power and valence level of the observed subject using
SVRs [65]. Kipp and Martin in [66] investigated (without perform-
ing automatic prediction) how basic gestural form features (e.g.,
preference for using left/right hand, hand shape, palm orientation,
etc.) are related to the single PAD dimensions of emotion. The
work by Nicolaou et al. focuses on dimensional and continuous
prediction of emotions from naturalistic facial expressions within
an Output-Associative Relevance Vector Machine (RVM) regression
framework by learning non-linear input and output dependencies
inherent in the affective data [67].

A technique to automatically segment emotional clips from
long audiovisual interactions is proposed in [68], while extracting
emotional segments from video based on the PAD model (assum-
ing independency between the dimensions) is introduced in [69].
Overall, however, there is no agreement on (i) whether continuous
prediction should be done without segmentation and (ii) whether
segmenting videos into shorter clips is useful for dimensional and
continuous emotion recognition.

D. Motion Capture Signals

Motion capture systems have mostly been utilised for recording
the relationship between affect dimensions and facial feature infor-
mation (e.g., [36]), and affect dimensions and body posture (e.g.,



[37], [38]). In general, low-level posture features such as orientation
(e.g., orientation of shoulder axis) and distance (e.g., distance
between left elbow and left shoulder) appear to help in effectively
discriminating between the (quantised) affect dimensions [37], [38].
To the best of our knowledge, dimensional and continuous analysis
of affect from motion capture data has not been attempted yet.

E. Thermal Imaging Signals

Relatively few efforts have been reported on dimensional affect
recognition from thermal imagery. Nhan and Chau [70] focus on
recording the thermal infrared signals of the subjects stimulated
with images from the International Affective Pictures System. They
use the self-reported affect as ground truth and achieve high vs.
low classification of arousal and valence using the time-frequency
features derived from thermal infrared data. Merla and Romani
utilised functional infrared imaging (fIR) to study the facial thermal
signatures of three emotional conditions: stress, fear and pleasure
arousal [71]. They reported that fIR can be reliably used to assess
emotional arousal. Overall, dimensional and continuous analysis of
affect from thermal signals has not been attempted yet.

E. Modality Fusion

When it comes to dimensional emotion recognition using multi-
ple modalities the focus has mainly been on discriminating between
more coarse categories, such as positive vs. negative [61] and
active vs. passive [72]. Of these, Caridakis et al. [72] use the SAL
database, combining auditive and visual modalities. Nicolaou et
al. focus on audio-visual classification of spontaneous affect into
negative or positive emotion categories using facial expression,
shoulder and audio cues, and utilising 2- and 3-chain coupled
Hidden Markov Models and likelihood space classification to fuse
multiple cues and modalities [61]. Kanluan et al. [73] combine
audio and visual cues for affect recognition in A-V space by fusing
facial expression and audio cues, using SVRs and late fusion with
a weighted linear combination with discretised labels (on a 5-point
scale in the range of [-1,+1] for each emotion dimension). Wollmer
et al. use multimodal acted data that contain face (obtained from
motion capture and video) and audio information, and recognise 3—
5 levels of A-V values using various classification techniques [36].
More recent works focus on dimensional and continuous prediction
of emotions from multiple modalities. For instance, Eyben et al.
[74] propose a string-based approach for fusing the behavioural
events from visual and auditive modalities (i.e., facial action units,
head nods and shakes, and verbal and nonverbal audio cues) to
predict human affect in a continuous dimensional space (in terms
of arousal, expectation, intensity, power and valence dimensions).
Although automatic affect analysers based on physiology end up
using multiple signal sources, explicit fusion of multimodal data
for continuous modelling of affect utilising dimensional models
of emotion is still relatively unexplored. For instance, Khalili and
Moradi propose multimodal fusion of brain and peripheral signals
for automatic recognition of three emotion categories (positively
excited, negatively excited and calm) [41]. Their results show that,
for the task at hand, EEG signals seem to perform better than
other physiological signals, and nonlinear features lead to better
understanding of the felt emotions. Another representative approach
is that of Gilroy et al. [75] that propose a dimensional multimodal
fusion scheme based on the PAD space to support detection and
integration of spontaneous affective behaviour of users (in terms of
audio, video and attention events) experiencing arts and entertain-
ment. Unlike many other other multimodal approaches (e.g., [61],
[72], [73]), the ground truth in this work is obtained by measuring

Galvanic Skin Response (GSR) as an independent measure of
arousal. Overall, finding the type of annotation to be used as ground
truth (i.e., self assessment, rater assessment or measurement-based
assessment) and the best way to fuse the modalities (fusing at
feature, event or decision level) for dimensional and continuous
emotion recognition remain as an open issues in the field.

Discussion: Automatic Analysis and Prediction

The window size to be used to achieve optimal affect recognition is one
of the issues that the existing literature does not provide a unique answer
to. Current affect recognisers employ various window sizes depending on
the modality. On one hand achieving real-time affect prediction requires
a small window size to be used for analysis (i.e., a few seconds, e.g.,
[42]), while on the other hand obtaining a reliable prediction accuracy
requires long(er)-term monitoring [76], [77]. Chanel et al. [42] reported
large differences in accuracy between the EEG and peripheral features
which may be due to the fact that the 8 s length of trials may be too
short for a complete activation of peripheral signals while it may be
sufficient for EEG signals.

The Baseline problem is another major challenge in the field. For
biosignals this refers to the problem of finding a condition against
which changes in measured physiological signals can be compared (a
state of calmness) [78]. For audio modality this is usually achieved by
segmenting the recordings into turns and processing each turn separately
(e.g., [58]). For visual modality the aim is to find a frame in which
the subject is expressionless and against which changes in subject’s
motion, pose, and appearance can be compared. This is usually achieved
by segmenting the recordings (e.g., [61], [79]). This remains a great
challenge in automatic analysis, which typically relies on existence of a
baseline for analysis and processing of affective information.
Generalisation capability of automatic affect analysers across subjects
is still a challenge in the field. Kulic and Croft [43] reported that for bio
signal based affect measurement subjects seem to vary not only in terms
of response amplitude and duration, but for some modalities, a number
of subjects show no response at all. This makes generalisation over
unseen subjects a very difficult problem. A common way of measuring
affect from biosignals is doing it for each participant separately (without
computing baseline), e.g., [42]. Similarly to the recent works on
automatic affect prediction from audio or visual cues (e.g., [67]), better
insight may be obtained by comparing subject-dependent vs. subject-
independent prediction results.

Classification methods used for dimensional and continuous affect mea-
surement should be able to produce continuous values for the target
dimensions. Some of the classification schemes that have been explored
for this task are, SVR, RVM, and Long Short-Term Memory Recurrent
Networks. Linear Discriminant Analysis, Conditional Random Fields
and Support Vector Machines have been used for quantised dimensional
affect recognition tasks (e.g., [58]). Overall, there is no agreement on
how to model dimensional affect space (continuous vs. quantised) and
which classifier is better suited for automatic, multimodal, continuous
affect analysis using a dimensional representation.

Evaluation measures applicable to categorical affect recognition are not
directly applicable to dimensional approaches. Using the Mean Squared
Error (MSE) between the predicted and the actual value of arousal and
valence, instead of the recognition rate (i.e., percentage of correctly
classified instances) is the most commonly used measure by related work
in the literature (e.g., [58], [73]). However, using MSE might not be
the best way to evaluate the performance of dimensional approaches
to automatic affect recognition. Therefore, the correlation coefficient is
also employed by several studies (e.g., [73]) together with MSE. Overall,
however, how to obtain optimal evaluation metrics for continuous and
dimensional emotion recognition remains an open research issue [14].

V. AUDIO-VISUAL SYNTHESIS
A. Speech

There has been a lot of past research on neutral speech synthesis
and a number of tools are already freely available for research
purposes (see [80] for a recent review). However, despite various
methods proposed (e.g., rule-based, data-driven [81], etc.), expres-
sive speech synthesis is still a challenging research issue. Expressive
speech synthesis utilises acoustic features, such as pitch variables



(FO level, range, contour and jitter), intensity and speech rate.
This is either done in a data-driven manner (using a pre-recorded
database and modelling a few well-defined emotional states) or
in a model-based manner (using a pre-defined model) [29]. The
most commonly employed strategy in expressive speech synthesis
is using the categorical representation of emotions and the unit
selection method, that concatenates speech segments stored in a
database (e.g., [82], [83], [84]). Of these, Bulut et al. propose an
interesting approach of emotional speech re-synthesis that consists
of synthesis, recognition, parameter selection and re-synthesis mod-
ules that appears to improve the human evaluation of emotionally
synthesised speech [85]. The feasibility and usefulness of such
a method should be explored for dimensional and continuous
representation in emotional speech synthesis. A representative work
for using dimensional representation of emotions is that of Schroder
who proposes a model-based expressive speech synthesis technique
in [29]. Tao et al. in [86] focus on expressive speech synthesis
utilising the unconventional categories of strong, medium, and weak
classifications and create a deviation of perceived expressiveness
(DPE) measure to evaluate the expressiveness of the output speech.
Their evaluation results show that a database with neutral semantic
content should be used for emotional speech synthesis. Siliang et
al. introduce an emotional speech synthesis process, by adjusting
the parameters (XML-tags) used to synthesise emotional speech
dynamically, using interactive Genetic Algorithms [87]. For an
overview on emotional speech synthesis and its practical applica-
tions see [88].

B. Multimodality

Audio-visual expressive speech synthesis is a relatively new
research area [89], [90], [91] with a major focus on discrete
representation of basic emotions. More recently, a number of
works started focusing on dimensional representation of emotions:
exploring the facial expressions within a 2D emotion space [92],
adopting the activation - evaluation dimensions for synthesising
facial expressions of pure and mixed emotions of varying intensities
[93], creating an embodied conversational agent by modeling the
emotion with positive-negative valence and timing (past, current
and future), generating facial expressions that convey the nonverbal
information accompanying speech [94], and creating interactive
installations that combine both discrete and dimensional models
of emotions/moods [95]. Busso et al. [96] found that head motion
patterns with neutral speech significantly differ from head motion
patterns with emotional speech in terms of motion activation,
range and velocity. Their synthesis results also show that head
motion modifies the emotional perception (represented in terms of
quantised PAD values) of the facial animation especially in the
valence and activation domain. Boukricha et al. in [97] present a
facial expression simulation system that has a control architecture
for simulating emotional facial expressions with respect to PAD
values, and an expressive output component for animating the
virtual human’s facial muscle actions (Action Units) based on the
Facial Action Coding System (FACS). One of the most recent
attempts has been introduced by Jia et al. in [6] that uses the 3-D
PAD emotion model and proposes a unified model for emotional
speech conversion (using Boosting Gaussian Mixture Model) and
a facial expression synthesis model. Shen et al. in [98] introduce a
system that synthesises the emotional audio-visual speech for a 3-D
talking agent by utilising a GMM-based model to predict variation
of acoustic features for emotional speech by PAD values, and build
a parametric framework of PAD-driven emotional facial expression
synthesis.

A further step in audio-visual expressive speech synthesis is the
design of virtual humans, commonly known as embodied conversa-
tional agents (ECA), that are endowed with (more) elaborate social
skills. ECAs have appeared in the scene slightly before the start
of this century [99]. The difference between a Spoken Dialogue
System and an ECA lies in the latter ‘having an identity and a
persona’ [99]. Therefore, similarly to human-human interaction, an
ECA is at times expected to play the role of a speaker (producer of
the communicative behaviour), while at other times the role of a lis-
tener (recipient of the communicative behaviour), with appropriate
turn-taking behaviour (a turn occurs when an interlocutor resumes
the primary speaker role). Most of the past research focused on

Discussion: Synthesis and ECAs

Creating virtual agents that can interactively align to their interaction
partners in their verbal and nonverbal behaviour is challenging. A virtual
agent can be made capable of showing alignment behaviour by picking
up the behaviour of the dialogue partner’s syntactic structures and lexical
items in its subsequent utterances, and generating gestures that will
concord with such linguistic content (e.g., [101]). Currently, linguistic
features are predominant in mediating alignment.

The ECA systems of today assume independency between parsing
(analysing), interpreting (understanding) and generating (producing)
speech. As each of these tasks faces different challenges, they are
modeled (and optimised) independently. Currently the aim is to retain the
empirically observed correlations between speech and other modalities
(e.g., gesture) while keeping the predominant role of the linguistic
choices (lexical or syntactic choices). However, modelling cross-modal
aspects (modality alignment and coupling) of an interaction remains
a complex task, and calls for appropriate understanding of natural
language.

The speaker role of an ECA, by actively generating verbal and non-
verbal signals, has received much more emphasis than its listener role
[103]. Endowing ECAs with appropriate listening behaviuor is more
challenging as it depends on the context and the state of the user, and
involves generating feedback signals and back-channels accordingly.
Most ECA systems are concerned with congruent adaptation and cou-
pling of modalities (obtained via empirical observation). When and how
to model incongruency remains as an interesting phenomenon to be
explored for ECAs.

creating ECA systems based on static input parameters, rather than
dynamically changing the behaviour of the virtual agent based on
the behaviour of the user during interaction [99]. One of the pio-
neering attempts in creating expressive and adaptive virtual agents is
the SEMAINE system [100], a publicly available, fully autonomous
Sensitive Artificial Listeners (SAL) system that consists of virtual
dialogue partners based on audiovisual analysis and synthesis [100].
The system runs in real-time, and combines incremental analysis
of user behaviour, dialogue management, and synthesis of speaker
and listener behaviour of a SAL character displayed as a virtual
agent. Endowing ECAs with multimodal expressive and adaptive
behaviour is an ongoing research topic within the virtual agent
research community [101], [102]. The ECAs of today are endowed
with functions and capabilities in various areas such as task and
content, control and social-affective behaviour (e.g., displaying
friendliness, being able to motivate people and give confidence,
and being polite, showing rapport, empathy, or engagement). The
interplay of these areas and multiple behavioural cues challenge the
mapping between signal/behaviour and meaning/function [99]. Al-
though perception studies have attempted to unveil the significance
of these, they strip off the context from the displayed behaviour,
and therefore provide only limited insight to the issue. This is in a
way the chicken or the egg causality dilemma, where current video
recordings contain only somewhat artificial interactions used for the
design of current generation virtual agents, that in turn only allow
for somewhat artificial interactions, that are judged negatively by the



human interlocutors. Further research is needed to understand how
various communicative signals work together in different content,
context and conditions.

VI. FRAMEWORKS AND TOOLS

In the last five years, various research groups have created
publicly available frameworks and tools to be used for researching
dimensional and continuous analysis and synthesis of emotions
(e.g., [104], [105], [106]). Of these, the SEMAINE API introduced
in [104] is an open source framework for building emotion-oriented
systems, using standard representation formats and providing a
Java and C++ wrapper around a message-oriented middleware. The
OpenSmile library is written in C++ and enables extraction of large
audio feature spaces in real-time [105]. A middleware solution to
aid the design and development of healthcare applications with
affective information is introduced in [106].

VII. APPLICATIONS

Various applications have been using the dimensional (both
quantised and continuous) representation and prediction of emo-
tions, ranging from human-computer (e.g., Sensitive Talking Heads
[107], Sensitive Artificial Listeners [100], spatial attention analysis
[98], arts installations [95]) and human-robot interaction (e.g.,
humanoid robotics [108], [109] ), clinical and biomedical studies
(e.g., stress/pain monitoring [110], [111], [112], autism-related
assistive technology), learning and driving environments (e.g.,
episodic learning [113], affect analysis in the car [114]), multimedia
(e.g, video content representation and retrieval [115], [116] and
personalised affective video retrieval [117]), and entertainment tech-
nology (e.g., gaming [118]). These indicate that affective computing
has matured enough to have a presence and measurable impact
in our lives. There are also spin off companies emerging out of
collaborative research at well-known universities (e.g., Affectiva
[119] established R. Picard and colleagues of MIT Media Lab).
These advances, in turn, have triggered further issues such as
ethics. As has been emphasised in the IEEE Tran. on Affective
Computing’s Special Issue on ethics [121], ‘If machines are going
to be turned loose on their own to kill and heal, explore and decide,
the need for designing them to be moral becomes pressing’. The
rapid progress in affective computing points to the fact that ethics
is not merely science fiction and should be taken into serious
consideration [120].

VIII. CONCLUDING REMARKS

Human affect representation, analysis and synthesis based on
dimensional approaches is still in its infancy. However, there
is a growing research interest driven by various advances and
demands (e.g., real-time representation and analysis of naturalistic
and continuous human affective behaviour for emotion-related
disorders like autism), and funded by various research projects (e.g.,
European Union FP 7, SEMAINE). To date, despite the existence
of a number of dimensional emotion models, the two-dimensional
model of arousal and valence appears to be the most widely used
model. The current automatic measurement technology has already
started dealing with spontaneous data obtained in less-controlled en-
vironments using various sensing devices, and exploring a number
of machine learning techniques and evaluation measures. However,
naturalistic settings pose many challenges to continuous affect
sensing and recognition (e.g., when subjects are not restricted
in terms of mobility, the level of noise in all recorded signals
tends to increase), as well as affect synthesis and generation. As a
consequence, a number of issues, that should be addressed in order

to advance the field, remain unclear. These have been summarised
in this paper in the Discussion tables provided in each section.
Despite encouraging efforts and major progress in affect analysis
and synthesis, highlighted in this paper, in general, (dynamic)
social-affect capabilities, that by definition require understanding
of the needs, desires, goals and emotional state of the user, of most
virtual agents are rather limited [99]. Overall, affect analysis and
affect synthesis appear to be detached from each other even in multi-
party and multi-disciplinary projects such as SEMAINE [100].
Although the overall perception and acceptability of an automated
system depends on the (complex) interplay of these two domains,
analysis and synthesis are treated as independent problems and only
linked in the final stage. Investigating how to inter-relate these in
earlier stages will indeed provide valuable insight into the nature of
both areas that play a crucial role for the realisation of multimodal,
dimensional and continuous affective computing.
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