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Abstract. Hidden Conditional Random Fields (HCRFs) are discrimi-
native latent variable models which have been shown to successfully learn
the hidden structure of a given classification problem. An infinite HCRF
is an HCRF with a countably infinite number of hidden states, which
rids us not only of the necessity to specify a priori a fixed number of
hidden states available but also of the problem of overfitting. Markov
chain Monte Carlo (MCMC) sampling algorithms are often employed
for inference in such models. However, convergence of such algorithms
is rather difficult to verify, and as the complexity of the task at hand
increases, the computational cost of such algorithms often becomes pro-
hibitive. These limitations can be overcome by variational techniques.
In this paper, we present a generalized framework for infinite HCRF
models, and a novel variational inference approach on a model based on
coupled Dirichlet Process Mixtures, the HCRF–DPM. We show that the
variational HCRF–DPM is able to converge to a correct number of repre-
sented hidden states, and performs as well as the best parametric HCRFs
—chosen via cross–validation— for the difficult tasks of recognizing in-
stances of agreement, disagreement, and pain in audiovisual sequences.

Keywords: nonparametric models, discriminative models, hidden con-
ditional random fields, dirichlet processes, variational inference

1 Introduction

Over the past decade, nonparametric methods have been successfully applied
to many existing graphical models, allowing them to grow the number of latent
states as necessary to fit the data [1–6]. Infinite HCRFs were first presented
in [7] and since exact inference for such models with an infinite number of pa-
rameters is intractable, inference was based on a Markov chain Monte Carlo
(MCMC) sampling algorithm. Although MCMC algorithms have been success-
fully applied on numerous applications, they have some significant drawbacks:
they are notoriously slow to converge, it is hard to verify their convergence,
and they often don’t scale well to larger datasets and higher model complexity.



Moreover, the model presented in [7] is not readily able to handle continuous
input features.

In this work, we consider a deterministic alternative to MCMC sampling for
infinite HCRFs with a variational inference [8] approach. Variational inference
will allow us to converge faster, verify convergence and scale without a prohibitive
computational cost. The model we present in this paper allows a countably
infinite number of shared, among labels, hidden states via the use of multiple
Dirichlet Process Mixtures (DPMs). Specifically, we present a novel mean field
variational approach that uses DPM constructions in the model potentials to
allow for the representation of a potentially infinite number of hidden states.
Furthermore, we show that our model, the HCRF–DPM, is a generalization of
the model presented in [7] and is able to handle continuous features naturally.

In the following section, we consicely present the theoretical background nec-
essary to understand this paper. We present in Section 3 our variational HCRF–
DPM model. Finally, we evaluate our model in Section 4.2, and conclude in
Section 5.

2 Theoretical Background

The HCRF–DPM, like many other infinite models, relies on DPMs. We present
in this section a brief introduction to Dirichlet Processes and Hidden Conditional
Random Fields.

2.1 Dirichlet Processes

A Dirichlet Process (DP) is a distribution of distributions, parameterized by
a scaling parameter α and a probability measure Ξ. The latter is the basis
around which the distributions G ∼ DP(α,Ξ) are drawn, with variability gov-
erned by the α parameter. [9] presented the so–called “stick–breaking” construc-
tion for DPs, which is based on random variables (β′k)∞k=1 and (hk)∞k=1, where
β′k|α,Ξ ∼ Beta(1, α) and hk|α,Ξ ∼ Ξ:

βk = β′k

k−1∏
l=1

(1− β′l) G =
∞∑
k=1

βkδhk
, (1)

where δ is the Dirac delta function. By letting β = (βk)∞k=1 we abbreviate this
construction as β|α ∼ GEM(α). A Dirichlet Process Mixture (DPM) model is
a hierarchical Bayesian model that uses a DP as a nonparametric prior:

G|α,Ξ ∼ DP(α,Ξ), ct | G ∼ G, st ∼ p(st|ct) , (2)

where (st)
T
t=1 is a dataset of size T , governed by a distribution conditioned on

(ct)
T
t=1, auxiliary index variables that get assigned each to one of the clusters

(hk)∞k=1. As new datapoints are drawn, the number of components in this mixture
model grows. In the model we present in this paper, as we explain later, we
employ a number of DP priors coupled together at the data generation level, i.e.
st above is a function of auxiliary index variables drawn from all different DPs.



2.2 Finite Hidden Conditional Random Fields

HCRFs —discriminative undirected models that contain hidden states— were
first presented in [10] and used to capture temporal dependencies across frames
and recognize different gesture classes. They did so successfully by learning a
state distribution among the different gesture classes in a discriminative manner,
allowing them to not only uncover the distinctive configurations that uniquely
identify each class, but also to learn a shared common structure among the
classes. Conditional Random Fields and HCRFs can be defined in arbitrary
graph structures but in our paper, driven by our application field, we assume
data to be sequences that correspond to undirected chains. Our work, however,
can be readily applied to tree–structured models.

We represent T observations as X = [x1,x2, . . . ,xT ]. Each observation at
time t ∈ {1, . . . , T} is represented by a feature vector ft ∈ <d, where d is the num-
ber of features, that can include any features of the observation sequence. We
wish to learn a mapping between observation sequence X and class label y ∈ Y,
where Y is the set of available labels. The HCRF does so by estimating the condi-
tional joint distribution over a sequence of latent variables s = [s1, s2, . . . , sT ],
each of which is assigned to a hidden state hk ∈ H, and a label y, given X.
One of the main representational power of HCRFs is that the latent variables
can depend on arbitrary features of the observation sequence. This allows us to
model long–range contextual dependencies: st, the latent variable at time t, can
depend on observations that happened earlier or later than t. An HCRF models
the conditional probability of a class label given an observation sequence by:

p(y | X,θ) =
∑
s

p(y, s | X,θ) =

∑
s F(y, s,X,θ)∑

y′∈Y,s F(y′, s,X,θ)
. (3)

The potential function F(y, s,X,θ) ∈ < is parameterized by θ, which measures
the compatibility between a label y, a sequence of observations X and a config-
uration of the latent variables s. The model is discriminative because it doesn’t
model a joint distribution that includes input X, but it only models the distri-
bution of a label y conditioned on X. The graph of a linear–chain HCRF is a
chain where each node corresponds to a latent variable st at time t. For such a
model, the potential function is usually defined as:

F(y, s,X,θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i) + θy(st, y) +

T∑
t=2

θe(st, st−1, y)

}
(4)

In this paper, we use the notation θx(hk, i) to refer to the weight that mea-
sures the compatibility between the feature indexed by i and state hk ∈ H.
Similarly, θy(hk, y) stand for weights that correspond to class y and state hk,
whereas θe(hk, h

′, y) measure the compatibility of y with a transition from h′ to
hk.



Fig. 1. Factor graph representation of our HCRF–DPM

3 Hidden Conditional Random Fields with Coupled
Dirichlet Process Mixtures

For an infinite HCRF we allow an unbounded number of potential hidden states
in H. This becomes possible, by introducing random variables {πx(hk|i)}∞k=1,

{πy(hk|y)}∞k=1, {πe(hk, y|ha)}∞,|Y|k=1,y=1 for an observation feature indexed by i,
label y, and an assignment st−1 = ha. These new random variables are drawn
by distinct processes that are able to model such quantities and are subsequently
incorporated in the node and edge potentials of our HCRF. We present in this
paper the HCRF–DPM, a model that uses DPMs to define these random quanti-
ties (see its factor graph representation in Fig. 1). These variables, even though
drawn by distinct processes, are coupled together by a common latent variable
assignment in our graphical model. We redefine our potential function F from
(4) as follows:

F(y, s,X,θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i) log πx(st|i) + θy(st, y) log πy(st|y)+

T∑
t=2

θe(st, st−1, y) log πe(st, y|st−1)

}
. (5)

We assume that random variables {πx(hk|i)}∞k=1, {πy(hk|y)}∞k=1, {πe(hk, y|ha)}∞,|Y|k=1,y=1

are between 0 and 1. These are in effect the quantities that will allow the model
to ‘select’ an appropriate number of useful hidden states for a given classification
task. ft are nonnegative features extracted from the observation sequence X and,
as before, they can include arbitrary features of the input. We assume that θ
are nonnegative parameters and, as in (4), they model the relationships between
hidden states and features (θx), labels (θy) and transitions (θe). These nonneg-
ativity constraints for θ and f are essential in this model, since the π-quantities



are random variables and influence the probabilities of the hidden states: a neg-
ative parameter or feature would make an otherwise improbable state very likely
to be chosen. Moreover, these constraints ensure compliance with the positivity
constraints of our variational parameter updates (25)-(30), as we shall see later
in this section. Finally, it is important to note that the positivity of θ is not
theoretically restrictive for our model due to the HCRF normalization factor

1
Z(X) in (3) where

Z(X) =
∑
y′∈Y,s

F(y′, s,X,θ) . (6)

The HCRF–DPM model is an infinite HCRF where the quantities {πx(hk|i)}∞k=1,

{πy(hk|y)}∞k=1, {πe(hk, y|ha)}∞,|Y|k=1,y=1 in (5) are driven by coupled DPMs. It is
important to understand that for the DPMs driving the πe quantities in the
edge features, hk and y are treated as a single random variable –their product–
ωµ = {hk, y} that effectively has a state–space of size |Y| × |H|, still an infinite
number. According to the stick–breaking properties of DPs, we construct π =
{πx,πy,πe} conditioned on a new set of random variables π′ = {π′x,π′y,π′e}
that follow Beta distributions:

π′x(hk|i) ∼ Beta(1, αx), πx(hk|i) = π′x(hk|i)
k−1∏
j=1

(1− π′x(hj |i)) (7)

π′y(hk|y) ∼ Beta(1, αy), πy(hk|y) = π′y(hk|y)

k−1∏
j=1

(
1− π′y(hj |y)

)
(8)

π′e(ωµ|ha) ∼ Beta(1, αe), πe(ωµ|ha) = π′e(ωµ|ha)

µ−1∏
j=1

(1− π′e(ωµ|ha)) (9)

This process can be made clearer by examining Fig. 2, where we visualize
the stick breaking construction of an HCRF–DPM model with 2 observation fea-
tures, 3 labels, and 10 ‘important’ hidden states. The πe-sticks have an important
—for the implementation of our model— difference to the πx and πy–sticks in
that the hidden states are intertwined with the labels, with each stick piece rep-
resenting an ω–state. This means there are |Y| such states corresponding to one
h–state. This becomes particularly important later on when we calculate our
variational updates.

By using (5) the sequence of latent variables s = {s1, ...sT } can then be
generated by the following process:

1. Draw π′x|αx ∼ Beta(1, αx), π′y|αy ∼ Beta(1, αy), π′e|αe ∼ Beta(1, αe)

2. Calculate π from (7)-(9). Note that this will only need to be calculated for
a finite number of hidden states, due to our variational approximation.

3. For the tth latent variable, using (5) we draw



(a) Observation Features DPMs

(b) Label Features DPMs

(c) Transition Features DPMs

Fig. 2. Visualization of the π-‘sticks’ used to construct the infinite states in our HCRF–
DPM. The fictitious model presented here has 2 observation features f(1), f(2), 3 labels
y1, y2, y3 and fewer than 10 important hidden states h1, h2, h3 . . . . Each ‘stick’ sums
up to 1, and the last piece always represents the sum of the lengths that correspond
to all hidden states after the 10th state. Notice that for the πe-‘sticks’ this corresponds
to 30 ω–states. For example πe(h1, y3|h2) controls the probability of transitioning from
h2 to h1 in a sequence with label y3. See text for more details.



st|{π′x,π′y,π′e, st−1, y,X} ∼Mult

(
exp
{ d∑
i=1

θx(st, i)ft(i) log πx(st|i)+

θy(st, y) log πy(st|y)+

θe(st, st−1, y) log πe({st, y}|st−1)
})

(10)

Rather than expressing the model in terms of π, we use π′ = {π′x,π′y,π′e}
resulting in the folowing joint distribution that describes the HCRF–DPM:

p(y, s,π′|X, θ) = p(y, s | π′,X, θ)p(π′x)p(π′y)p(π′e) (11)

with

p(y, s | π′,X, θ) =
1

Z(X)
F(y, s,π′,X,θ) (12)

where Z(X) =
∑
y′∈Y,s F(y′, s,π′,X,θ). We assume independence of all π′ vari-

ables above, so for example p(π′x) =
∏∞
k=1

∏d
i=1 π

′
x(hk|i).

Comparison with Previous Work It is important at this stage to compare
our model described by (5) with the MCMC model (IHCRF–MCMC) presented
in [7]. The latter work defined potentials for each of the relationships between
hidden states and features, labels and transitions and the potential function F
as their product along the model chain:

F(y, s,X) = Fx(s,X)Fy(y, s)Fe(y, s) (13)

Fx(s,X) =

T∏
t=1

d∏
i=1

πx(st|i)ft(i) (14)

Fy(y, s) =

T∏
t=1

πy(st|y) (15)

Fe(y, s) =

T∏
t=2

πe(y, st|st−1) (16)

The quantities πx,πy,πe above are conceptually the same as in our model,
except for the fact that in [7] they have Hierarchical Dirichlet Process (HDP)
priors instead of DP priors, as we do in this paper.4

4 Using HDP priors allows separate DPMs to be linked together via an identical base
probabilistic measure, which is itself a DP. It would be interesting to use such priors
for our model, but we were able to obtain satisfactory results without introducing
higher complexity and additional hyperparameters into the variational model we ex-
perimented with. Notice that our model allows for such flexibility: using HDP priors
would simply change the updates for our variational coordinate descent algorithm.



The potential function (13) above can be rewritten as follows:

F(y, s,X) = exp

{
T∑
t=1

d∑
i=1

ft(i) log πx(st|i) + log πy(st|y) +

T∑
t=2

log πe(st, y|st−1)

}
(17)

A comparison between (17) and (5) makes it clear that our model is a generaliza-
tion of the model presented in [7], which assumes, according to our framework,
that θ-parameters are set to 1. The introduction of these parameters is not re-
dundant, but allows for a more powerful and flexible models. Also, when dealing
with classification problems involving continuous observation features using (5)
for the potential function of an infinite HCRF is more suitable than (17), as we
show in the experimental section. In those cases it is known that θ–parameters
are of particular importance as they are able to capture the scaling of each in-
put feature. The former model is not guaranteed to perform well unless some
non–trivial normalization is applied on the observation features.

3.1 Variational Inference for the HCRF–DPM

Since inference on our model (11) is intractable, we need to approximate the
marginal probabilities along the chain of our graphical model, and the π–quantities
in (5). We shall do so with a mean–field variational inference approach. We use
the following approximation for the joint distribution of our model:

q(y, s,π′|X) = q(y, s|X)q(π′x)q(π′y)q(π′e) (18)

where,

q(y, s|X) = q(y, s1|X)

T∏
t=2

q(y, st|st−1,X) (19)

Each individual approximate q(π′x), q(π′y), q(π′e) follows a Beta distribution with
variational parameters τx, τ y, τ e respectively. Explicitly, for features indexed by
i, labels indexed by y, and hidden states indexed by k, k′:

q(π′x(hk|i)) = Beta (τx,1(k, i), τx,2(k, i)) (20)

q(π′y(hk|y)) = Beta (τy,1(k, y), τy,2(k, y)) (21)

q(π′e(y, hk|hk′)) = Beta (τe,1(y, k, k′), τe,2(y, k, k′)) (22)

We approximate all π variables by employing a truncated stick–breaking rep-
resentation which approximates the infinite number of hidden states with a finite
number L [11]. This is the crux of our variational approach, and it effectively
means that we set a truncation threshold L, above which the above quantities
are set to 0: ∀k > L, q(π′x(hk|i)) = 0, q(π′y(hk|y)) = 0, q(π′e(y, hk|hk′)) = 0. Note
that using this approximation is statistically rather different from using a finite



model: an HCRF–DPM simply approximates the infinite number of states and
will still reduce the number of useful hidden states to something smaller than
L. It is finally important to stress that by constraining our θ–parameters and
observation features to be positive, we effectively make the number of the θ–
parameters that matter finite: changing a θ–parameter associated with a hidden
state k > L will not change our model.

3.2 Model Training

A trained variational HCRF–DPM model is defined as the set of optimal param-
eters θ∗ and optimal variational parameters τ ∗. In this work we obtain these
with a training algorithm that can be divided in two distinct phases: (i) the
optimization of our variational paramaters through a coordinate descent algo-
rithm using the updates derived below and (ii) the optimization of parameters θ
through a gradient descent method. Although it would be possible to have a fully
Bayesian model with θ being random variables in our model, inference would
become more difficult. Moreover, having a single value for our θ parameters is
good for model interpretability and makes the application of a trained model to
test data much easier.

Phase 1: Optimization of Variational Parameters τ Now that we have
defined an approximate model distribution in (18), we can approximate the
necessary quantities for our inference. These approximations, as one can see later
in this section, depend solely on our variational parameters τ . We calculate those
by minimizing the Kullback-Liebler divergence (KL) between approximate and
actual joint distributions of our model, (11) and (18), using a coordinate descent
algorithm:

KL[q||p] = logZ(X)−〈logF(y,x,π′,X)p(π′)〉q(y,s,π′|X)+〈log q(y, s|X)q(π′)〉q(y,s,π′|X)

(23)
where 〈·〉q is the expectation of · with respect to q. Thus, the energy of the
configuration of our random variables y, s, and π′ is logF(y,x,π′,X)p(π′) and
the free energy of the variational distribution:

L(q) = −〈logF(y,x,π′,X)p(π′)〉q(y,s,π′|X) + 〈log q(y, s|X)q(π′)〉q(y,s,π′|X)

(24)
Since logZ(X) is constant for a given observation sequence, minimizing the free
energy L(q) minimizes the KL divergence.

We will obtain the variational updates for the two groups of latent variables
q(y, s|X) and q(π′) by setting the partial derivative with respect to each group
of L(q) to 0 and solving for the approximate distribution of each group of latent



variables. The updates for the Beta parameters of q(π′) from (20)-(22) are:

τx,1(k, i) = 1 +
∑
t

ft[i]θx(k, i)q(st = hk) (25)

τx,2(k, i) = αx +
∑
t

ft[i]
∑
b>k

θx(b, i)q(st = hb) (26)

τy,1(y, i) = 1 +
∑
t

θy(k, y)q(st = hk) (27)

τy,2(y, i) = αy +
∑
t

∑
b>k

θy(b, i)q(st = hb) (28)

τe,1(y, k, k′) = 1 +
∑
t

θe(k, k
′, y)q(st = hk, st−1 = hk′ , y) (29)

τe,2(y, k, k′) = αe +
∑
t

∑
yl>y

θe(k, k
′, yl)q(st = hk, st−1 = hk′ , yl)+∑

b>k,yl

θe(b, k
′, yl)q(st = hb, st−1 = hk′ , yl) (30)

Quantities q(st), and q(st, st−1, y) can be obtained by the forward–backward
algorithm. The latter requires only conditional approximate likelihoods q(st = hk|i, y, hk′),
which can be also be calculated by setting the derivative of L(q) to zero:

q(st = hk|i, y, hk′) ∝ exp

{

ft(i)θx(k, i)

〈log π′x(hk|i)〉q(π′) +

k−1∑
j=1

〈log(1− π′x(hj |i))〉q(π′)


θy(k, y)

〈log π′y(hk|y)
〉
q(π′)

+

k−1∑
j=1

〈
log(1− π′y(hj |y))

〉
q(π′)


θe(k, k

′, y)

(
〈log π′e(hk, y|hk′)〉q(π′) +

∑
yl>y

〈log(1− π′e(hj , yl|hk′))〉q(π′) +

k−1∑
j=1

∑
yl

〈log(1− π′e(hk, yl|hk′))〉q(π′)

)}
(31)

Since all π′ follow a Beta distribution, the expectations above are known.

Phase 2: Optimization of Parameters θ We find our optimal parameters
θ∗ = arg max log p(y|X,θ) based on a training set by using a common HCRF
quasi–Newton gradient descent method (LBFGS), which requires the gradient
of the log–likelihood with respect to each parameter. These gradients for our



model are:

∂ log p(y|X,θ)

∂θx(k, i)
=
∑
t

p(st = hk|y,X,θ)ft(i) log πx(hk|i)−∑
y′∈Y,t

p(st = hk, y
′|X,θ)ft(i) log πx(hk|i) (32)

∂ log p(y|X,θ)

∂θy(k, y)
=
∑
t

p(st = hk|y,X,θ) log πy(hk|y)−∑
y′∈Y,t

p(st = hk, y
′|X,θ) log πy(hk|y) (33)

∂ log p(y|X,θ)

∂θe(k, k′, y)
=
∑
t

p(st = hk, st−1 = hk′ |y,X,θ) log πe(hk, y|hk′)

−
∑
y′∈Y,t

p(st = hk, st−1 = hk′ , y
′|X,θ) log πe(hk, y|hk′) (34)

We make this gradient descent tractable by using the variational approximations
for the intractable quantities in the above equations. However, there is a signif-
icant difference with other CRF and HCRF models that use such techniques to
find optimal parameters: we are constrained to only positive θ-parameters Since
we are using a quasi–Newton method with Armijo backtracking line search, we
can use the gradient projection method of [12, 13] to enforce this constrain. Fi-
nally, it is important to stress here that, although our model includes parameters
that are not treated probabilistically, we have not seen signs of overfitting in our
experiments (see Fig. 4).

4 Experimental Results

4.1 Performance on a Synthetic Dataset with Continuous Features

In an effort to demonstrate the ability of our HCRF–DPM to model sequences
with continuous features correctly, we created a synthetic dataset, on which we
compared its performance to that of the IHCRF–MCMC model [7]. The simple
dataset was generated by two HMMs, with 4 Gaussian hidden states each. Two
of the states were shared between the two HMMs, resulting in a total of 6 unique
hidden states, out of a total of 8 for the two labels.

We trained 10 randomly initialized models of the finite HCRF, IHCRF–
MCMC and HCRF–DPM on 100 training sequences and chose in each case
the best one based on their performance on an evaluation set of 100 different
sequences. The performance of the models was finally evaluated by comparing
the F1 measure achieved on a test set of 100 other sequences. All sets had an
equal number of samples from each label. The IHCRF–MCMC model was unable



to solve this simple two–label sequence classfication problem with continuous-
only input features: it consistently selected Label 1. On the other hand, the finite
HCRF and the new HCRF–DPM model were successful in achieving a perfect
F1 score of 100% on the test set (see Table 1).

4.2 Application to the Audiovisual Analysis of Human Behavior

The problem of automatically classifying episodes of high–level emotional states,
such as pain, agreement and disagreement, based on nonverbal cues in audiovi-
sual sequences of spontaneous human behavior is rather complex [14]. Although
humans are particularly good at interpreting such states, automated systems
perform rather poorly. Infinite models are particularly attractive for modeling
human behavior as we usually cannot have a solid intuition regarding the num-
ber of hidden states in such applications. Furthermore, it opens up the way of
analyzing the hidden states these models converge to, which might provide social
scientists with valuable information regarding the temporal interaction of groups
of behavioral cues that are different or shared in these behaviors. We therefore
decided to evaluate our novel approach on behavior analysis and specifically the
recognition of agreement, disagreement and pain in recordings of spontaneous
human behavior. We expected that our HCRF–DPM models would find a good
number of shared hidden states and perform at least as well as the best cross–
validated finite HCRF and IHCRF–MCMC models.

In this work we used an audiovisual dataset of spontaneous agreement and
disagreement and a visual dataset of pain to evaluate the performance of the
proposed model on four classification problems: (1) ADA2, agreement and dis-
agreement recognition with two labels (agreement vs. disagreement); (2) ADA3,
agreement and disagreement recognition with three labels (agreement vs. dis-
agreement vs. neutral); (3) PAIN2, pain recognition with two labels (strong pain
vs. no pain); and (4) PAIN3, pain recognition with three labels (strong pain vs.
moderate pain vs. no pain). We show that (1) our model is capable of finding
a good number of useful states; and (2) HCRF–DPMs perform better than the
best performing finite HCRF and IHCRF–MCMC models in all of these prob-
lems with the exception of ADA3, where the performance of the HCRF–DPM
is similar to that of the finite model.

The dataset of agreement and disagreement comprises 53 episodes of agree-
ment, 94 episodes of disagreement, and 130 neutral episodes of neither agreement
or disagreement. These feature 28 participants and they occur over 11 political
debates. We used automatically extracted prosodic features (continuous), and
manually annotated hand and head gestures (binary). We compared the finite
HCRF and the IHCRF–MCMC to our HCRF–DPM based on the F1 measure
they achieved. In each case, we evaluated their performance on a test set consist-
ing of sequences from 3 debates. We ran all models with 60 random initializations,
selecting the best trained model each time by examining the F1 achieved on a
validation set consisting of sequences from 3 debates. It is important to stress
that each sequence belonged uniquely to either the training, the validation, or
the testing set.



The database of pain we used includes 25 subjects expressing various levels
of pain in 200 video sequences. Our features were based on the presence (binary)
of each of the 45 observable facial muscle movements–Action Units (AUs) [15].
For our experiments, we compared the finite HCRF and the IHCRF–MCMC to
our HCRF–DPM based on the F1 measure they achieved. We evaluated the per-
formance of the models on 25 different folds (leave–7–subjects–out for testing).
In each case we concatenated the predictions for every test sequence of each fold
and calculated the F1 measure for each label. The measure we used was the av-
erage F1 over all labels. We ran all experiments with 10 random initializations,
selecting the best model each time by examining the F1 achieved on a valida-
tion set consisting of the sequences from 7 subjects. In every fold our training,
validation and testing sets comprised not only of unique sequences but also of
unique subjects.

(a) πx (green) and πy (black)—L = 10 (b) πe, Label 1—L = 10

(c) πe, Label 2—L = 10

Fig. 3. Hinton Diagrams of π-quantities in node and edge features of variational HCRF-
DPM models with truncation level L = 10 for ADA2. The first column presents the π-
quantities for node features: πx for observation features in green, πy for labels in black.
The second and third columns present the πe-quantities for labels 1 and 2 respectively.
See text for additional details



For all four tasks, in addition to the random initializations the best HCRF
model was also selected by experimenting with different number of hidden states
and different values for the HCRF L2 regularization coefficient. Specifically, for
each random initialization we considered models with 2, 3, 4, and 5 hidden states
and an L2 coefficient of 1, 10, and 100. This set of values for the hidden states
was selected after preliminary results deemed a larger number of hidden states
only resulted in severe overfitting for all problems. We did not use regularization
for our HCRF-DPM models and all of them had their truncation level set to
L = 10 and their hyperparameters to s1 = 1000 and s2 = 10. Finally, our finite
HCRF models were trained with a maximum of 300 iterations for the gradient
ascent method used [10], whereas our HCRF-DPM models were trained with
a maximum of 1200 variational coordinate descent iterations and a maximum
of 600 iterations of gradient descent. All IHCRF–MCMC models were trained
according to the experimental protocol of [7]. They had their initial number of
represented hidden states set to K = 10, they were trained with 100 sampling
iterations, and were tested by considering 100 samples.

Fig. 4. HCRF–DPM F1 measure (higher F1 means higher perfomance) achieved on the
validation set of ADA2. Our model does not show signs of overfitting: the F1 achieved
on the validation set does not decrease as the truncation level L, and thus the number
of θ–parameters, increases.

In Fig. 3 we show the learned nonparametric π parts of the features of the
best HCRF–DPM ADA2 model, based on F1 achieved on our validation set, for
truncation level L = 10. Each row is a separate DPM; with the DPMs for the
edge potentials spanning across labels. Recall from Fig. 2 that these quantities
have to sum to 1 across each row. As one can see in these figures, setting the
truncation level L = 10 was a reasonable choice. Paying particular attention to
the first column (node features), it seems that HCRF–DPMs converge to a small
number of utilized hidden states —the equivalent table for a finite HCRF would
be dense with each state being used. One can see unique and shared states, a



feature of HCRFs that makes them particularly appealing for classification tasks.
Fig. 3a clearly shows that the model uses only two states, one of them (state
1) being shared among both labels –features 12 and 13 in this Hinton diagram–
and another (state 5) being used only by label 2.

Since we have introduced parameters θ it is sensible to test our methodology
for signs of overfitting. The only value linked with the number of our parameters
is our truncation level L: their number increases as we increase L. In Fig. 4 we
show the F1 measure achieved on the validation set of ADA2 for HCRF–DPMs
with L=10, 20, 30, 40. This graph is a strong indication that HCRF–DPMs do
not show signs of overfitting. We would see such signs if by increasing L the
performance (F1 measure) for our validation set would decrease. However, as
we see here, performance on the validation sets remains roughly the same as we
increase L.

Table 1. F1 measure achieved by our HCRF-DPM vs. the best, in each fold of each
problem, finite HCRF and IHCRF-MCMC. Synthetic: Two–label classification for
an HMM–generated dataset with continuous–only features ADA2: Two–label classi-
fication for the Canal9 Dataset of agreement and disagreement; ADA3: Three-label
classification for the Canal9 Dataset; PAIN2: Two–label classification for the UNBC
dataset of shoulder pain; PAIN3: Three–label classification for the UNBC dataset

Dataset Finite HCRF IHCRF–MCMC Our HCRF–DPMs

Synthetic 100.0% 33.3% 100.0%

ADA2 58.4% 61.2% 76.1%
ADA3 50.7% 60.3% 49.8%

PAIN2 83.9% 88.4% 89.2%
PAIN3 53.9% 57.7% 59.0%

Table 1 shows the average over all labels of the F1 measure on the test sets for
all our problems. Since the nonparametric model structure is not specified a priori
but is instead determined from our data, the HCRF–DPM model is more flexible
than the finite HCRF and is able to achieve better performance in all cases,
with the exception of 3-label classification problem of agreement/disagreement
(ADA3), where the HCRF–DPM seems to perform almost equally well with the
finite model. The HCRF–DPM perfomed better than the IHCRF–MCMC in all
problems with the exception of ADA3. An analysis of a IHCRF–MCMC model
trained for ADA3 shows that the model ignored the two continuous dimensions
and used only the binary features to model the dataset, which evidently resulted
in slightly better performance.

5 Conclusion

In this paper we have presented a novel variational approach to learning an
infinite Hidden Conditional Random Field, the HCRF–DPM, a discriminative



nonparametric sequential model with latent variables. This deterministic ap-
proach overcomes the limitations of sampling techniques, like the one presented
in [7]. We have also shown that our model is in fact a generalization of the
IHCRF–MCMC presented in [7] and is able to handle sequence classification
problems with continuous features naturally. In support of the latter claim, we
conducted an experiment with a Gaussian HMM–generated synthetic dataset of
continuous–only features which showed that HCRF–DPMs are able to perform
well on classification problems where the IHCRF–MCMC fails. Furthermore, we
conducted experiments with four challenging tasks of classification of naturalis-
tic human behavior. HCRF–DPMs were able to find a good number of shared
hidden states, and to perform well in all problems, without showing signs of
overfitting.
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