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Abstract

We propose a correlation-based approach to parametric

object alignment particularly suitable for face analysis ap-

plications which require efficiency and robustness against

occlusions and illumination changes. Our algorithm regis-

ters two images by iteratively maximizing their correlation

coefficient using gradient ascent. We compute this corre-

lation coefficient from complex gradients which capture the

orientation of image structures rather than pixel intensities.

The maximization of this gradient correlation coefficient re-

sults in an algorithm which is as computationally efficient

as ℓ2 norm-based algorithms, can be extended within the in-
verse compositional framework (without the need for Hes-

sian re-computation) and is robust to outliers. To the best

of our knowledge, no other algorithm has been proposed so

far having all three features. We show the robustness of our

algorithm for the problem of face alignment in the presence

of occlusions and non-uniform illumination changes. The

code that reproduces the results of our paper can be found

at http://ibug.doc.ic.ac.uk/resources.

1. Introduction

Object alignment methods aim at finding the transforma-

tion or deformation which minimizes the discrepancies be-

tween two or more images/objects. In automated face anal-

ysis, these discrepancies usually stem from rigid head mo-

tions induced by observing faces at different time instances

and from different viewpoints as well as from non-rigid fa-

cial deformations induced by facial expressions. Alignment

methods aim at estimating these motions and, therefore,

play a central role in the efficacy and robustness of high-

level applications such as face recognition, speech reading
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and facial expression analysis.

In this work, we focus on object alignment methods

based on gradient descent optimization. Since the first al-

gorithm of this type, the Lucas-Kanade (LK) algorithm [1],

gradient descent has become one of the key ingredients in

face alignment algorithms. Numerous extensions to the

LK algorithm have been proposed to address issues related

to efficiency [2–5], generalization capacity [2, 6, 7], opti-

mization [8, 9] and robustness [10–13]. Most prior work

is based on ℓ2 norm minimization. The ℓ2 norm is the

standard choice [1, 2, 5, 13, 14], as it can result in compu-

tationally efficient algorithms. Perhaps, the most notable

example of such algorithms is the inverse compositional al-

gorithm proposed by Baker and Matthews [4, 5]. At each

iteration, the method solves a linear least squares problem

with the Hessian pre-computed and constant across itera-

tions. As usual, the choice of the norm imposes a trade-off

between robustness and computational complexity. Robust

approaches typically replace the ℓ2 norm with a robust error

function [10, 11]. Such methods solve a re-weighted least

squares problem, where the weights are updated at each

iteration. This additional computation makes them much

slower. For example, replacing the ℓ2 norm with a robust

function within the inverse compositional framework, re-

quires the re-computation of the Hessian at each iteration,

resulting in a less efficient algorithm [11].

In this paper, we propose a new cost function for gradient

ascend face alignment: the maximization of the correlation

of image gradient orientations. The use of this correlation

coefficient has been motivated by the recent success of FFT-

based gradient correlation methods for the robust estimation

of translational displacements [15–17]. More specifically,

we use a correlation coefficient which takes the form of the

sum of cosines of gradient orientation differences. The use

of gradient orientation differences is the key to the robust-

ness of the proposed scheme. As it is was shown in [15,18],

local orientation mismatches caused by outliers can be well-

described by a uniform distribution which, under a number



of mild assumptions, is canceled out by applying the cosine

kernel. Thus, image regions corrupted by outliers result in

approximately zero correlation and therefore do not bias the

estimation of the transformation parameters significantly.

To maximize the gradient correlation coefficient, we for-

mulate and solve a continuous optimization problem. The

proposed methodology results in a computationally efficient

and robust alignment algorithm. In particular, our algo-

rithm is as efficient as ℓ2 norm-based algorithms, can be ex-

tended within the inverse compositional framework (with-

out the need for Hessian re-computation) and is robust to

outliers caused by occlusions and non-uniform illumination

changes. To the best of our knowledge, no other algorithm

has been previously proposed having all three features.

To evaluate the performance of our scheme, we consid-

ered the problem of face alignment in the presence of oc-

clusions and non-uniform illumination changes using hun-

dreds of real face pairs taken from the AR [19] and Yale

B [20] databases. Our results show that, unlike previously

proposed schemes, our algorithm can cope with such cum-

bersome problems.

Summarizing our contributions, in this paper

• We propose the maximization of the correlation of im-

age gradient orientations as a new cost function for ro-

bust gradient ascent face alignment.

• We formulate and solve the continuous optimization

problems which result in the forward additive and in-

verse compositional versions of our algorithm.

• We present results for very challenging alignment

cases which have not been previously examined. Ta-

ble 1 presents a comparison between our experiments

and the ones reported in related alignment papers. The

code that reproduces the results of our paper can be

found at http://ibug.doc.ic.ac.uk/resources.

2. Gradient-based correlation coefficient

Assume that we are given the image-based representa-

tions of two objects Ii ∈ ℜ
m1×m2 , i = 1, 2. We define the

complex representation which combines the magnitude and

the orientation of image gradients as Gi = Gi,x + jGi,y ,

where j =
√

( − 1),Gi,x = Fx ⋆ Ii, Gi,y = Fy ⋆ Ii and

Fx,Fy are filters used to approximate the ideal differenti-

ation operator along the image horizontal and vertical di-

rection respectively. We also denote by P the set of indices

corresponding to the image support and by gi = gi,x+jgi,y

the N−dimensional vectors obtained by writing Gi in lex-

icographic ordering, where N is the cardinality of P . The
gradient correlation coefficient is defined as

s , ℜ{gH
1 g2}, (1)

where ℜ{.} denotes the real part of a complex number and

H denotes the conjugate transpose [15]. Using ri(k) ,
√

g2
i,x(k) + g2

i,y(k) and φi(k) , arctan
gi,y(k)
gi,x(k)

, we have

s ,
∑

k∈P

r1(k)r2(k) cos[∆φ(k)], (2)

where ∆φ , φ1 − φ2.

The magnitudes ri in (2) suppress the contribution of ar-

eas of constant intensity level which do not provide useful

features for object alignment. Note, however, that the use of

gradient magnitude does not necessarily result in robust al-

gorithms. For example, the authors in [21] have shown that

the gradient magnitude varies drastically with the change in

the direction of the light source.

The key to the robustness of the proposed scheme is the

correlation of gradient orientations which takes the form

of the sum of cosines of gradient orientation differences

[15, 17]. To show this [15, 18], assume that there ex-

ists a subset Po ⊂ P corresponding to the set of pixels

corrupted by outliers. By using the normalized gradients

g̃i = g̃i,x + jg̃i,y , where g̃i,x(k) = gi,x(k)/|gi(k)| and
g̃i,y(k) = gi,y(k)/|gi(k)|, so that ri(k) = 1 ∀k, the value
of this gradient correlation coefficient in Po is

qo ,
∑

k∈Po

cos[∆φ(k)]. (3)

To compute the value of qo, we note that in Po the im-

ages are visually dissimilar/unrelated, so that locally do not

match. It is therefore not unreasonable to assume that for

any spatial location k, the difference in gradient orientation

∆φ(k) can take any value in the range [0, 2π) with equal

probability. Thus, we can assume that ∆φ is a realization

of a stationary random process u(t) which ∀t follows a uni-
form distribution U(0, 2π). Given this, it is not difficult to

show that, under some rather mild assumptions, it holds

qo =
∑

k∈Po

cos[∆φ(k)] ≃ 0. (4)

This assumption has been shown to be valid using the

Kolmogorov-Smirnoff test for more than 70.000 pairs of vi-

sually unrelated images in [18]. As an example, in Fig. 1

(a)-(b), we assume that the scarf is visually unrelated to the

face. Po here corresponds to the part of the face occluded

by the scarf defined by the red rectangle. Fig. 1 (c) plots

the distribution of ∆φ in Po, while Fig. 1 (d) shows the

histogram of uniformly distributed samples obtained with

Matlab’s rand function. As in [18], to verify that∆φ is uni-

formly distributed, we used the Kolmogorov-Smirnov test

[22] to test the null hypothesis H0 : ∀k ∈ Po, ∆φ(k) ∼
U [0, 2π). For a significance level of 0.01, the null hypothe-
sis was accepted with p-value equal to 0.254. Similarly, for



the samples obtained with Matlab’s rand function, the null

hypothesis was accepted with p = 0.48.
Overall, unlike standard correlation (i.e. the inner prod-

uct) of pixel intensities where the contribution of outliers

can be arbitrarily large, the effect of outliers is approxi-

mately canceled out in Po. Corrupted regions result in ap-

proximately zero correlation and thus do not bias the esti-

mation of the transformation parameters.
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Figure 1. (a)-(b) A pair of faces from the AR database. The re-

gion of interest is defined by the blue rectangle. The corrupted

region Po is defined by the red rectangle. (c) The distribution of

∆φ in Po. (d) The distribution of samples (uniformly distributed)

obtained with Matlab’s rand function.

3. Gradient Orientation in Face Analysis

The use of gradient orientation as useful features for

face analysis is by no means proposed for the first time

in this work. Examples of previous work can be found

in [21,23,24]. However, most prior work proposes gradient

orientations as features for achieving insensitivity in non-

uniform illumination variations. On the contrary, what is

highlighted in [15, 18] as well as in this work is why gradi-

ent orientations can be used for outlier-robust (for example

occlusion-robust) face analysis.

Regarding face alignment, perhaps what is somewhat

related to the proposed scheme is the Active Appearance

Model proposed in [24]. We underline two important differ-

ences between our algorithm and the method of [24]. First,

as [24] does employ the gradient magnitude (even for nor-

malization) for feature extraction, it is inevitably less robust

to outliers. Second, no attempt to exploit the relation be-

tween image gradients and pixel intensities is made. More

specifically, the gradient-based features in [24] are treated

just as pixel intensities which are then used for regression-

based object alignment. On the contrary, we make full use

of the relation between image gradients and pixel intensities

to formulate and solve a continuous optimization problem.

This results in a dramatic performance improvement as Sec-

tion 5 illustrates.

4. Robust and efficient object alignment

Parametric object alignment methods assume that I1 and

I2 are related by a parametric transformation, i.e.

I1(xk) = I2(W(xk;p)), ∀k ∈ P, (5)

where W(xk;p) is the parametric transformation with re-

spect to the image coordinates xk = [x1(k),x2(k)]
T and

p = [p(1), . . . ,p(n)]T is the vector of the unknown pa-

rameters. Next, p is estimated by minimizing an objective

function which is typically the ℓ2 norm of the difference

E = I1 − I2. The minimization is performed in an iterative

fashion after making a first or second order Taylor approxi-

mation to either I1 or I2.

4.1. The quantity maximized

In this section, we propose the maximization of the cor-

relation of image gradient orientations as a new cost func-

tion for robust gradient descent face alignment. In particu-

lar, to estimate p, we wish to maximize

q =
∑

k∈P

cos[∆φ(k)]. (6)

By using the normalized gradients g̃i, simple calculations

show that (6) is equivalent to

q =
∑

k∈P

g̃1,x(k)g̃2,x(k) + g̃1,y(k)g̃2,y(k). (7)

Note, however, that a first order Taylor expansion of g̃1

or g̃2 with respect to ∆p yields a linear function of ∆p

which is maximized as ∆p → ∞. To alleviate this prob-

lem without resorting to the second order Taylor expansion

as in [25], we follow an approach similar to [14]. To pro-

ceed, we note that as ||g̃2(k)||2 = 1, ∀k ∈ P , the proposed
cost function is exactly equal to

q =

∑

k∈P
g̃1,x(k)g̃2,x(k) + g̃1,y(k)g̃2,y(k)
√

∑

k∈P
g̃2
2,x(k) + g̃2

2,y(k)
, (8)

but if we linearize g̃2 in the above expression, the denomi-

nator will not be equal to 1 and q will become a non-linear

function of ∆p. Finally, using vector notation, our cost

function becomes

q =
g̃T
1,xg̃2,x + g̃T

1,yg̃2,y
√

g̃T
2,xg̃2,x + g̃T

2,yg̃2,y

. (9)



To maximize q with respect to p, we first make the de-

pendence of g̃2(k) on p explicit by writing g̃2[p](k). Then,
we maximize iteratively by assuming that the current esti-

mate of p is known and by looking for an increment ∆p

which maximizes our objective function in (9) with respect

to∆p.

4.2. The forward­additive gradient correlation al­
gorithm

In this section, we describe how to maximize the pro-

posed cost function in (9) using the forward-additive max-

imization procedure. In this framework [1, 5], at each iter-

ation, we maximize (9) with respect to ∆p where g2 ←−
g2[p + ∆p]. Once we obtain ∆p, we update the param-

eter vector in an additive fashion p ←− p + ∆p and use

this new value of p to obtain the updated warped image

I2(W(x;p)).
We start by noting that g2[p](k) is the complex gradient

of I2(W(x;p)) with respect to the original coordinate sys-
tem evaluated at x = xk. This gradient is different from

the gradient of I2 calculated at the first iteration and then

evaluated atW(xk;p), which, for convenience, we will de-
note by h2[p](k). That is, h2[p] = h2,x[p] + jh2,y[p] is
obtained by writingG2,x(W(x;p)) + jG2,y(W(x;p)) in
lexicographic ordering, where G2 = G2,x + jG2,y is as-

sumed to be computed at the first iteration. In a similar fash-

ion, we denote by h2,xx[p], h2,yy[p] and h2,xy[p], the vec-
tors obtained by writing in lexicographic ordering the sec-

ond partial derivatives of I2,G2,xx,G2,yy andG2,xy , com-

puted at the first iteration and, then, evaluated at W(x;p).
Let us also write W(x;p) = [w1(x;p),w2(x;p)]

T , so

that the matrix derivative with respect to a vector a =
[a(1), . . . ,a(m)]T is given by

∂W

∂a
=

[

∂w1

∂a(1) . . . ∂w1

∂a(m)
∂w2

∂a(1) . . . ∂w2

∂a(m)

]

. (10)

By definition we have

g2[p](k) , [g2,x[p](k) g2,y[p](k)]

,
∂I2(W(x;p))

∂x

∣

∣

∣

∣

x=xk

= ∇WI2[p](k)
∂W

∂x

∣

∣

∣

∣

x=xk

, (11)

where ∇WI2[p](k) , [h2,x[p](k) h2,y[p](k)]. By apply-

ing the chain rule and noticing that ∇W
∂W
∂x

= 0, we also
have
[

∂g2,x[p](k)
∂p

∂g2,y[p](k)
∂p

]

=

(

∂W

∂x

∣

∣

∣

∣

x=xk

)T

×

[

h2,xx[p](k) h2,xy[p](k)
h2,yx[p](k) h2,yy[p](k)

]

∂W

∂p
.

(12)

We assume that the current estimate of p is known.

The key point to make derivations tractable is to recall that

g̃2,x[p](k) ≡ cosφ2[p](k) and g̃2,y[p](k) ≡ sinφ2[p](k)
where

φ2[p](k) = arctan
g2,y[p](k)

g2,x[p](k)
. (13)

By performing a first order Taylor expansion on g̃2,x[p +
∆p](k), we get

g̃2,x[p+∆p](k) ≈ cosφ2[p](k) +
∂ cosφ2[p](k)

∂p
∆p.

(14)

By repeatedly applying the chain rule, we get

∂ cosφ2[p](k)

∂p
= − sinφ2[p](k)j[p](k), (15)

where j[p](k) is a 1× n vector given by

j[p](k) =
cosφ2[p](k)

∂g2,y [p](k)
∂p

− sinφ2[p](k)
∂g2,x[p](k)

∂p
√

g2
2,x[p](k) + g2

2,y[p](k)
.

(16)

Using vector notation, we can write

g̃2,x[p+∆p] ≈ cosφ2[p]− Sφ[p]⊙ J[p]∆p, (17)

where Sφ[p] is the N × n matrix whose k−th row has n
elements all equal to sinφ2[p](k), J[p] is the N × n Jaco-

bian matrix whose k−th row has n elements corresponding

to j[p](k) and ⊙ denotes the Hadamard product. Very sim-

ilarly, we can derive

g̃2,y[p+∆p] ≈ sinφ2[p] +Cφ[p]⊙ J[p]∆p, (18)

where Cφ[p] is the N × n matrix whose k−th row has n
elements all equal to cosφ2[p](k).

Let us denote by S∆φ[p] the N × 1 vector whose k−th
element is equal to sin(φ1(k)− φ2[p](k)). Then, by plug-

ging (17) and (18) into (9), and after some calculations, our

cost function becomes

q(∆p) =
qp + ST

∆φJ∆p
√

N +∆pTJTJ∆p
, (19)

where qp = cosφT
1 cosφ2+sinφT

1 sinφ2 is the correlation

of gradient orientations between I1 and I2(W(x;p)), and
we have dropped the dependence of the quantities on p for

notational simplicity. Finally, the maximization of (19) with

respect to ∆p can be obtained by applying the results of

[14]. In particular, the maximum value is attained for

∆p = λ(JTJ)−1JTS∆φ, (20)

where λ = 1
q̃
and q̃ = qp/N denotes the normalized corre-

lation (such that |q̃| ≤ 1) Thus, λ has a very intuitive inter-

pretation. As q̃ is small (large) in the first (last) iterations, a

large (small) λ is used as a weight in (20).



4.3. The inverse­compositional gradient correlation
algorithm

In this section, we show how to maximize the proposed

cost function in (9) using the inverse-compositional maxi-

mization procedure. In this framework [4, 5], a change of

variables is made to switch the roles of I1 and I2 and the

updated warp is obtained in a compositional (rather than

additive) fashion. Thus, our cost function becomes

q =
(g̃2,x[p])

T (g̃1,x[∆p]) + (g̃2,y[p])
T (g̃1,y[∆p])

√

(g̃1,x[∆p])T (g̃1,x[∆p]) + (g̃1,y[∆p])T (g̃1,y[∆p])
(21)

with respect to∆p and, at each iteration, I2 is updated using

W(x;p)←−W(x;p) ◦ (W(x; ∆p))−1, where ◦ denotes
composition.

Similarly to [5], we assume that W(x;0) = x. This,

in turn, implies g1[∆p] ≡ h1[∆p] which greatly simplifies

the derivations. As before, we perform a Taylor approxima-

tion to g̃1,x[p], but this time around zero. This gives

g̃1,x[∆p] ≈ cosφ1[0]− Sφ[0]⊙ J[0]∆p, (22)

where Sφ[0] is theN × n matrix whose k−th row has n el-

ements all equal to sinφ1[0](k) and J[0] is theN×n Jaco-

bian matrix whose k−th row has n elements corresponding

to the 1× n vector

j[0](k) =
cosφ1[0](k)

∂g1,y [0](k)
∂p

− sinφ1[0](k)
∂g1,x[0](k)

∂p
√

g2
1,x[0](k) + g2

1,y[0](k)

(23)

and

[

∂g1,x[0](k)
∂p

∂g1,y[0](k)
∂p

]

=

[

g1,xx[0](k) g1,xy[0](k)
g1,yx[0](k) g1,yy[0](k)

]

∂W

∂p

∣

∣

∣

∣

p=0

.

Similarly, for g̃1,y[∆p], we get

g̃1,y[∆p] ≈ sinφ1[0] +Cφ[0]⊙ J[0]∆p, (24)

whereCφ[0] is theN×nmatrix whose k−th row has n ele-

ments all equal to cosφ1[0](k). Notice that all terms in (22)

and (24) do not depend on p and, thus, are pre-computed

and constant across iterations.

Let us denote by S∆φ[p] the N × 1 vector whose k−th
element is equal to sin(φ2[p](k)− φ1(k)). Then, by drop-

ping the dependence of the above quantities on p and 0,

our objective function will be again given by (19) while the

optimum ∆p will be given by (20).

4.4. Computational complexity

A simple inspection of our algorithms shows that the

most computationally expensive step is the calculation of

JTJ in (19) which requires O(n2N) operations. The cost

of all other steps is at most O(nN) (since N ≫ n). In the

inverse compositional maximization procedure, JTJ and

its inverse is pre-computed and, therefore, the complexity

per iteration is O(nN). Finally, an un-optimized MATLAB

version of our algorithm takes about 0.03-0.04 seconds per

iteration while the original inverse compositional algorithm

takes about 0.02-0.03 seconds per iteration. We note that

an optimized version of the original inverse compositional

algorithm, as the core part of Active Appearance Model fit-

ting, has been shown to track faces faster than 200 fps [7].

Figure 2. Examples of images used in our experiments (prior to

the application of an affine transformation). The blue rectangle

defines the region of interest.

5. Face alignment experiments

We assessed the performance of our algorithms, which

we coin GradientCorr-FA and GradientCorr-IC, using the

performance evaluation framework proposed in [5] which

has now become the standard evaluation procedure [9, 12–

14]. We present results and comparison with previous work

for very challenging alignment cases which have not been

previously examined. Table 1 presents a comparison be-

tween our experiments and the ones reported in object align-

ment papers which also adopt the evaluation framework

of [5]. In addition to the standard “Takeo” experiment, we

considered, for the first time (to the best of our knowledge),

the problem of face alignment in the presence of real oc-

clusions and non-uniform illumination changes using hun-

dreds of real faces taken from the AR [19] and Yale B [20]

databases.

The evaluation in [5] is as follows. We selected a region

of interest and three canonical points in this region. We

perturbed these points using Gaussian noise of standard de-

viation σ and computed the initial RMS error between the

canonical and perturbed points. Using the affine warp that

the original and perturbed points defined, we generated the

affine distorted image. Given a warp estimate, we computed

the destination of the three canonical points and, then, the fi-

nal RMS error between the estimated and correct locations.

We used the average rate of convergence for a fixed σ and

the average frequency of convergence for σ = [1, 10] as the
performance evaluation measures. An algorithm was con-



Methods Number of Real image Transformation Illumination Occlusion AWGN Compared

image pairs pair Affine/ with

considered Homography

[5] 4 (Takeo+3) No Yes/Yes No No Yes [5]

[11] 6 (Takeo) No Yes/No No Yes (synthetic) No [5, 11]

[12] 3 Yes Yes/No Yes (natural) No No [5]

[14] 1 (Takeo) No Yes/No Yes (synthetic) No Yes [5, 6]

[13] NA (Multi-Pie [26]) Yes Yes/No Yes (natural) No No [5]

[9] 11 No Yes/No Yes (synthetic) No Yes [5]

Proposed 182 (Takeo + Yale +AR) Yes Yes/No Yes (natural) Yes (real) Yes [5, 11, 13, 14]

Table 1. Comparison between the experimental settings reported in object alignment papers following the evaluation framework of [5].
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Figure 3. Frequency of Convergence vs Point Standard Deviation for Takeo image [5]. (a) No Smoothing, No Noise (b) Smoothing, No

Noise (c) Smoothing, Noise. LK-fa: black-x. LK-IC: black-♦ . GradientCorr-fa: blue-◦. GradientCorr-IC: blue-�.
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Figure 4. Average Frequency of Convergence vs Point Standard Deviation for Yale and AR databases. No smoothing was used. (a)

Yale (b) AR-Occlusion (c) AR-Occlusion+illumination. LK-IC: black-♦. ECC-IC: yellow-△. IRLS-IC: cyan-x. GaborFourier-IC: red-*.

GradientImages-IC: green-△. GradientCorr-IC: blue-�.

sidered to have converged if the final RMS point error was

less than n1 pixels after 30 iterations. We obtained these

averages using, for each σ, n2 randomly generated warps.

5.1. Experiments using the Takeo image

We started by reproducing to some extend the exper-

imental setting of [5] using the Takeo image. We used

n1 = 1 pixel and, for each σ, n2 = 1000 randomly gener-

ated warps. We assessed the performance of the forward ad-

ditive and inverse compositional versions of our algorithm

and the LK algorithm. We considered 3 cases. The first

case was with no Gaussian smoothing prior to the calcula-

tion of image derivatives and no AWGN (Additive White

Gaussian Noise). The second case was with smoothing but

no AWGN. Finally, the third case was with both smooth-

ing and AWGN of variance equal to 10 added to both the

template and the target image. Fig. 3 shows the obtained

average frequency of convergence.

As Fig. 3 (a) shows, for this experiment, the LK algo-

rithms outperform the proposed methods. This is not un-
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Figure 5. Average Frequency of Convergence vs Point Standard Deviation for Yale and AR databases. Smoothing was used. (a) Yale

(b) AR-Occlusion (c) AR-Occlusion+illumination. LK-IC: black-♦. ECC-IC: yellow-△. IRLS-IC: cyan-x. GaborFourier-IC: red-*.

GradientImages-IC: green-△. GradientCorr-IC: blue-�.

reasonable, as the affine distorted image was generated di-

rectly from the original image. In this case, there are no

outliers, and as our algorithms remove some amount of in-

formation (most importantly the gradient magnitude), they

inevitably perform worse. As Fig. 3 (b) illustrates, Gaus-

sian smoothing improves the performance of all methods

by providing a larger region of attraction. The performance

gap between the LK and the proposed methods is now sig-

nificantly smaller. Finally, as Fig. 3 (c) shows, if smoothing

is used, none of the methods is affected too much by the

AWGN even for a large noise variance (In fact, the perfor-

mance of the LK methods is not affected at all). However,

as next section shows, smoothing will not increase the ro-

bustness of methods which are not designed to be robust.

5.2. Experiments on the Yale and AR databases

In this section, we present our performance evalua-

tion results obtained by using real image pairs (manually

aligned), taken from the Yale B [20] and AR databases [19].

Our target was to assess performance in the presence of non-

uniform illumination changes and occlusions. We used 100

different face pairs taken from the Yale database as follows.

For each of the 10 subjects of the database we selected 1

template and 10 test images corrupted by extreme illumi-

nation changes. We also used 81 different face pairs taken

from the AR database as follows. We selected 27 out of 31

subjects from the “dbf1” folder (4 subjects were discarded

due to significant pose variation). For each subject, we se-

lected 1 template image and 3 test images with sunglasses.

Fig. 2 shows examples of images used in our experiments.

We used the average frequency of convergence for σ =
[1, 10] as the performance evaluation measure. We used

n1 = 3 pixels and, for each σ, n2 = 100 randomly gener-

ated warps. Thus, for each σ, we used a total of 100 × 100
and 81× 100 warps for Yale and AR respectively.

We assessed the performance of the inverse composi-

tional versions of our algorithm (GradientCorr-IC), the LK

algorithm (LK-IC) [5], the enhanced correlation (ECC-IC)

algorithm [14], the iteratively re-weighted least squares al-

gorithm (IRLS-IC) [11], and the Gabor-Fourier LK algo-

rithm (GaborFourier-IC) recently proposed in [13]. The last

two methods as well the mutual-information LK [12] (not

considered here) are previously proposed robust methods.

The implementations of the LK-IC and IRLS-IC algorithms

are kindly provided by the authors. We implemented ECC-

IC based on the forward additive implementation of ECC

which is also kindly provided by the corresponding authors.

Finally, we implemented GaborFourier-IC based on the im-

plementation of LK-IC.

Additionally, based on the discussion in Section 3, we

propose a new method: we used the orientation-based fea-

tures of [24] and replaced regression with the inverse com-

positional algorithm. As gradients are treated exactly the

same as intensities, we call this algorithm GradientImages-

IC. We included this algorithm in our experiments to il-

lustrate the performance improvement achieved by the pro-

posed scheme which solves a continuous optimization prob-

lem based on the relation between gradients and intensities.

With the exception of GaborFourier-IC, for all methods,

we considered two cases. The first case was with no Gaus-

sian smoothing while the second one was with smoothing

prior to the calculation of the image derivatives. We did not

use smoothing for GaborFourier-IC as this is already incor-

porated in the method.

Figs. 4 and 5 show the average frequency of convergence

for all face pairs and algorithms considered for the cases

of “No Smoothing” and “Smoothing” respectively. Over-

all, the proposed GradientCorr-IC largely outperformed all

other methods resulting in the most robust and stable per-

formance. The performance improvement compared to

GradientImages-IC is also more than evident. In particu-

lar, for large σ, GradientCorr-IC converged approximately



30-40% more frequently than GradientImages-IC. As Fig.

5 shows, Gaussian smoothing improved the performance

of GradientCorr-IC and GradientImages-IC only. IRLS-IC

seems to have worked well in the presence of occlusions but

failed to converge when illumination changes were present.

Surprisingly, Gaussian smoothing reduced the algorithm’s

performance. Although the results of [13] demonstrate that

GaborFourier-IC is much more robust than the original LK-

IC algorithm, our results show that this algorithm was also

not able to cope with the extreme illumination conditions

and occlusions considered in our experiments. Finally, the

LK-IC and ECC-IC algorithms are not robust and, not too

surprisingly, diverged for almost all face pairs considered.

6. Conclusions

We presented an efficient and robust approach to gradient

ascent face alignment. Our method is based on the maxi-

mization of the gradient correlation coefficient and requires

O(nN) per iteration using the inverse compositional iter-

ative procedure. Our experimental evaluation showed that,

unlike state-of-the-art methods, our algorithm can cope with

occlusions and severe non-uniform illumination changes.

Thus, compared to state-of-the-art, the proposed scheme is

equally fast, but significantly more robust.
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