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Abstract—Relational data arising in many domains can be
represented by networks (or graphs) with nodes capturing
entities and edges representing relationships between these en-
tities. Community detection in networks has become one of the
most important problems having a broad range of applications.
Until recently, the vast majority of papers have focused on
discovering community structures in a single network. However,
with the emergence of multi-view network data in many real-
world applications and consequently with the advent of multi-
layer graph representation, community detection in multi-layer
graphs has become a new challenge. Multi-layer graphs provide
complementary views of connectivity patterns of the same set of
vertices. Fusion of the network layers is expected to achieve better
clustering performance. In this paper, we propose two novel
methods, coined as WSSNMTF (Weighted Simultaneous Symmet-
ric Non-Negative Matrix Tri-Factorization) and NG-WSSNMTF
(Natural Gradient WSSNMTF), for fusion and clustering of
multi-layer graphs. Both methods are robust with respect to
missing edges and noise. We compare the performance of the
proposed methods with two baseline methods, as well as with
three state-of-the-art methods on synthetic and three real-world
datasets. The experimental results indicate superior performance
of the proposed methods.

I. INTRODUCTION

Networks (or graphs1) are powerful mathematical tools
to represent, model, and analyse many data types in which
entities correspond to nodes and relationships between entities
correspond to edges. Community detection in networks (also
known as graph clustering) is one of the foremost problem
in network science [1]. It aims to group densely connected
nodes into clusters (i.e., communities). Due to the abundance
of network data in many domains, community detection has
become an important task in many research areas, such as biol-
ogy, sociology, economy, physics, computer science, chemistry
etc.

However, in many domains, different experiments or mea-
surements can provide different types of relations between
entities. For example, in sociology, users in a social networks
can be related by different types of interactions (e.g., personal,
professional, social, etc.). In biology an example include a
genetic interaction network in which genes representing nodes
can interact via different types of molecular interactions.
Reducing these networks to a single type interactions is often

1we use terms graphs and network interchangeably throughout this paper

a very crude approximation that fails to capture a rich com-
plexity of the system and consequently lead to poor clustering
results. In order to encompass a multimodal nature of these
relations, a multi-layer graph representation has been proposed
[2]. Multi-layer graphs (also known as multi-view or multiplex
graphs) have recently attracted a lot of attention in network
science community. They can be represented as a set of graph
layers that share a common set of vertices, V , but a different
set of edges, Ei in each layer; that is, Gi = {V,Ei, ωi},
where ωi represents the corresponding edge weights. With the
emergence of this graph representation, community detection
in multi-layer graphs has become a new challenge [3].

Traditional single-network graph algorithms fail to properly
address the community detection problem on multi-layer net-
works. Namely, they can only be used in mining connectivity
patterns of each graph layer independently, without taking into
account the correlated information coming from other graph
layers; consequently, in terms of clustering accuracy, this often
results in under performance. Therefore, various types of meth-
ods for mining multi-layer networks have been proposed [3].
Their goal is to properly combine the connectivity information
from all layers in order to find the most consensus community
structure across different graph layers.

Recently the community detection problem in multi-layer
graph has gained an increasing attention. Thus far, a few state-
of-the-art methods have been proposed and applied in different
domains. In [4], the authors propose a framework called Co-
regularized Graph Clustering based on Non-Negative Matrix
Factorization (CGC-NMF) for multi-domain graph cluster-
ing. Within the same objective function, they factorize each
adjacency matrix (representing connectivity of each graph
layer) independently while minimizing the distance between
the low-dimensional cluster indicator matrices. In [5], the
authors introduce GraphFuse, a method for clustering multi-
layered graphs. They cluster multi-layer graphs by using tensor
decomposition. That is, they use a variant of PARAFAC
decomposition with Sparse Latent Factors (SLF) to co-cluster
nodes in different layers. In addition to matrix and tensor
factorization methods, several spectral clustering methods for
multi-layer graphs have been proposed [6]–[8]. They construct
unified graph Laplacian taking into account all the network
layers, and then apply spectral clustering algorithm.

We propose two novel methods for network fusion and com-



munity extraction from multiple network layers. Both methods
are based on Symmetric Non-negative Matrix Tri-Factorization
(SNMTF) [9], [10], in which an adjacency matrix, represent-
ing a graph, is decomposed into a product of three low-
dimensional non-negative latent feature matrices. We extend
this approach on multiple graph layers, and we introduce
our methods Weighted Simultaneous SNMTF (WSSNMTF)
and WSSNMTF with Natural Gradient (NG-WSSNMTF). Both
methods simultaneously factorize adjacency matrices repre-
senting different network layers by using SNMTF, while
keeping the low-dimensional latent feature matrices shared
across the decomposition; this enables the potential correla-
tions between graph layers to be taken into account during
decomposition. Furthermore, both methods take into account
the missing values in each matrix (i.e., the missing links in
each network layer). To this end, for each layer, we introduce
a symmetric weight matrix, in which the entries are equal to
one for the observed edges and zero for the missing ones.
Thus, we formulate the objective function to factorize only
observed values. Furthermore, we impose sparsity penalties to
our learned low-dimensional latent feature matrices by adding
`1 norm regularization terms to our objective function. This
will make the learned matrices more robust to noise and
outliers, which is the case for many incomplete graph layers.
Consequently, this leads to much stable clustering results. To
the best of our knowledge, these are the first methods for
multi-layer community detection that consider missing and
incomplete network layers. While WSSNMTF uses regular
gradient, NG-WSSNMTF uses natural gradient to optimize
the objective function by imposing the low-dimensional latent
feature matrices to be orthonormal, and thus, leading to better
clustering results.

The rest of the paper is organized as follows. In Section
II, we mathematically formulate the proposed two methods
and provide the corresponding algorithms. In Section III,
we introduce synthetic and real-world multi-layer networks
and give a brief description of methods used for comparison
with our proposed methods. Concluding remarks are given in
Section IV.

II. WEIGHTED SIMULTANEOUS SNMTF (WSSNMTF)

A. Formulation of the problem

A multi-layer graph of N layers can be represented by a set
of binary, symmetric adjacency matrices, A(i) ∈ {0, 1}n×n,
where i = {1, . . . , N}. The method can also be applied
to weighted graphs where instead of binary entries in the
adjacency matrix we have some real values. Each A(i) is
constructed over the same number of nodes n. For some
network layers, this may result in A(i) having zero rows and
columns. Therefore, to treat this as missing values properly,
for each network layer we define a weight matrix, W(i),
introduces in the following way:

∀i, W
(i)
ab =

{
1 if a is connected with b in layer i,
0 otherwise

(1)
In analogy with the SNMTF, we tri-factorize each symmet-

ric matrix A(i) into a product of three non-negative matrices
in the following way:

A(i) ≈ HS(i)HT , where, S(i) ≥ 0, H ≥ 0

Note that matrix H, also called soft cluster indicator matrix,
is shared across the decompositions. To factorize only the
observed entries in matrices (i.e., the observed links) we
formulate the following objective function:

L =

N∑
i=1

‖W(i) ◦ (A(i) −HS(i)HT ) ‖2F +

N∑
i=1

ηi ‖ S(i) ‖1

(2)
where ◦ denotes Hadamard product of matrices; `1 norm of
the second terms imposes sparsity constraint to S(i) matrices.
Parameters ηi for i ∈ {1, . . . , N} are trade-off parameters for
balancing the influence between the two terms.

B. Optimization with ordinary gradient

We minimize the objective function shown in (2) under
the following constraints: H ≥ 0 and S(i) ≥ 0 for ∀i ∈
{1, . . . , N}. We derive the update rules for minimizing the ob-
jective function following the procedure from the constrained
optimization theory [11]. Since the objective function is not
jointly convex in both H and S(i), we present an alternating
procedure to find a local optimal solution. That is, we optimize
the objective function with respect to one variable while fixing
others. The procedure is repeated until convergence.

We follow the strategy employed in the derivation of NMF
[12] to obtain the multiplicative update rules for both S(i) and
H matrices that can be used for finding a local minimum of
the optimization problem (2).

The derivative of the objective function with respect to S(i)

is as follows2:

∇S(i)L = −

[∇
S(i)L]−︷ ︸︸ ︷

2HT (W(i) ◦A(i))H

+

[∇
S(i)L]+︷ ︸︸ ︷

2HT (W(i) ◦HS(i)HT )H + 2
1

2
ηi

= [∇S(i)L]+ − [∇S(i)L]−

where, [∇S(i)L]+ ≥ 0, [∇S(i)L]− ≥ 0 are non-negative terms.
Using the Karush-Kuhn-Tucker (KKT) complementarity

condition [11] for the non-negative constraint on S(i), S(i) ←
2In the derivation procedure we use the following mathematical properties:

Tr(ABC) = Tr(BCA) = Tr(CAB); Tr(AT ) = Tr(A) and ‖ A ‖2F=
Tr(AAT ); if A ≥ 0 then ‖ A ‖1= Tr(1TA);Tr((WT ◦ AT )(W ◦
B)) = Tr(AT (W ◦W ◦B))



S(i) ◦
(

[∇
S(i)L]−

[∇
S(i)L]+

) 1
2

, we obtain the following multiplicative

update rule for each S(i) matrix:

S(i) ← S(i) ◦

√
HT (W(i) ◦A(i))H

HT (W(i) ◦HS(i)HT )H + 1
2ηi

(3)

The derivative of the objective function with respect to H
is as follows:

∇HL = −

[∇HL]−︷ ︸︸ ︷
N∑
i=1

4(W(i) ◦A(i))HS(i)

+

N∑
i=1

4(W(i) ◦HS(i)HT )HS(i)

︸ ︷︷ ︸
[∇HL]+

Again, from the Karush-Kuhn-Tucker (KKT) complemen-
tarity condition [11] for the non-negative constraint on H,

H ← H ◦
(

[∇HL]−

[∇HL]+

) 1
4

, we obtain the following update rule

for H matrix:

H← H ◦

( ∑N
i=1(W(i) ◦A(i))HS(i)∑N

i=1(W(i) ◦HS(i)HT )HS(i)

) 1
4

(4)

Given randomly initialized non-negative matrices H and
S(i), we use multiplicative update rules (3) and (4) to find
a local minimum of the optimization problem (2).

C. Optimization with natural gradient

Ding et al. [10] have proved that the orthonormality con-
straint imposed on non-negative low-dimensional latent feature
matrix, H, in SNMTF leads to a more rigorous clustering
interpretation. Moreover, under this constraint, they showed
the equivalence between NMF and k-means clustering [10].
We adopt the same idea in our optimization problem (2) by
imposing the orthonormality constraint on the low-dimensional
non-negative latent feature matrix H: HTH = I. On the
other hand, it can be shown that columns of H matrix span
a vector subspace known as Grassmann manifold G(k, n),
i.e., span(H) ∈ G(k, n) [13]. Moreover, Amari in [14] has
showed that when an optimization problem is defined over a
Grassmann manifold, the ordinary gradient of the optimization
function does not represent its steepest direction, but natural
gradient does.

Therefore, we define a natural gradient to optimize our
objective function (2) under the orthornormality constraint.
Following Panagakis et al. [13], we introduce a tangent vector,
∆ ∈ Rn×k at H that satisfies: HT∆ = 0. The projection onto
the tangent space can be given as: ΠH = I−HHT . By fixing

Si and using the projection, we can define a natural gradient
of L(H) on Grassmann manifold at H in the following way:

∇̃HL = ΠH∇HL = ∇HL −HHT∇HL

where, ∇HL is the ordinary gradient, computed as in II-B.
Following the Karush-Kuhn-Tucker (KKT) complementar-

ity condition [11] and preserving the non-negativity of H,
we re-write the update rule for H matrix using the natural

gradient: H← H ◦
(

[∇̃HL]−

[∇̃HL]+

) 1
4

, where ∇̃HL can be written

in the following way:

∇̃HL = [∇HL]+ − [∇HL]−

−HHT [∇HL]+ + HHT [∇HL]−

The multiplicative update rule for H is:

H← H ◦

(
[∇HL]− + HHT [∇HL]+

[∇HL]+ + HHT [∇HL]−

) 1
4

(5)

The update rule for S stays the same as in (3).

Fig. 1. Spy-plots of three random synthetic multi-layer networks with
three layers. (top) SYNT-1 is composed of three complementary layers with
communities of different connectivity probabilities and fixed probability of
noise between communities. (middle) SYNT-2 is composed of three layers
with different levels of noise between communities and fixed connectivity
probability of communities. (bottom) SYNT-MIX is composed of three layers
generated by combining approaches from SYNT-1 and SYNT-2.

III. EXPERIMENTS

In this section, we evaluate the performance of our proposed
algorithms WSSNMTF and NG-WSSNMTF on several syn-
thetic and real world multi-layer networks. First, we describe
the multi-layer networks that we use for clustering evaluation,
and then provide a brief description of algorithms that we use



for clustering comparison. Finally, we present the results in
terms of the three different clustering evaluation measures.

A. Datasets

a) Synthetic data generation: We generate three syn-
thetic multi-layer graphs each with Nl = 3 different layers
(see Fig. 1) by using the planted partition model approach
described in [5]. For each multi-layer network, we choose
N = 400 nodes partitioned into three communities with
N1 = 150, N2 = 50 and N3 = 200 nodes respectively in
each community. For each layer, we split the corresponding
adjacency matrix into blocks defined by the partition. Entries
in each diagonal block, are filled with ones randomly, with
probability pii, representing the edge connectivity probability;
it is also referred as community’s edge density. We also add
random noise between each pair of blocks, ij, with probability
pij , representing links between communities. The larger the
values of pij are the harder the clustering is. Similarly, the
smaller the values of pii are the harder the clustering is.

To demonstrate the ability of WSSNMTF and NG-
WSSNMTF to efficiently integrate complementary network
layers and to demonstrate their robustness against different
levels of noise we generate three different synthetic random
multi-layer networks. SYNT-1 (Fig. 1, top) has three layers
with different community connectivity and fixed noise be-
tween communities. Connectivity probabilities of communities
in each layer correspond to one cyclic permutation of the
following probabilities: p11 = 0.4, p22 = 0.2, p33 = 0.1.
Noise between communities is p12 = p13 = p23 = 0.05
and it is the same in all layers. In that way, in each layer
we have only one community that is fully represented, while
other two are partially represented. SYNT-2 (Fig. 1, middle)
has fixed probabilities of communities’ connectivities (i.e.,
p11 = 0.4, p22 = 0.2, p33 = 0.1) but noise between blocks
in each layer corresponds to one cyclic permutation of the
following probabilities: p12 = 0.05, p13 = 0.03, p23 = 0.01.
SYNT-MIX corresponds to the mixture of SYNT-1 and SYNT-2
and it is generated by permuting both pii and pij probabilities
when generating different layers.

b) Real data description: We use three different real
data multi-layer networks. Two of them are constructed from
bibliographic datasets, and the third one is a mobile phone
dataset. The first dataset is CiteSeer 3 dataset, consisting of
3312 papers belonging to 6 different research categories. We
consider these categories as the ground truth classes. We
construct two layers: citation layer, representing the citation
relations between papers extracted from the paper citation
records; and the paper similarity layer, constructed by ex-
tracting a vector of 3703 most frequent and unique words for
each paper, and then computing the cosine similarity between
each pair of papers. The spy plots of the adjacency matrices
of these layers are represented in Fig. 2 (top). The second
dataset is a subset of CoRA dataset [15] consisting of 1662
Machine Learning papers grouped into 3 different research

3http://linqs.umiacs.umd.edu/projects//projects/lbc/

categories. Namely, Genetic Algorithms, Neural Networks and
Probabilistic Methods. We use the same approach as for
CiteSeer dataset to construct the citation and similarity layers.
The spy plots of the adjacency matrices of these layers are
represented in Fig. 2 (bottom). The third dataset we adopt is
the MIT Reality Mining Dataset (not shown), which consists
of 87 mobile phone users on the MIT campus. The network
consist of three layers constructed based on the three types
of information: physical location, bluetooth scans and phone
calls [7].

B. Algorithms for clustering multi-layer networks

We adopt two baseline approaches, SNMTF(e) and SN-
MTF(l), that are based on SNMTF algorithm. Since SNMTF
is a single network method, in order to apply it on multi-layer
networks, we consider the early and late fusion of network
layers respectively. In addition to that, we also consider three
state-of-the art techniques, namely Co-regularized Graph Clus-
tering based on NMF (CGC-NMF) [4], tensor factorization
approach based on PARAFAC decomposition with sparse
latent factors (GraphFuse) [5] and a spectral method based
on the subspace representation of multi-layer graphs (SC-ML)
[8]. Below we briefly explain each of the method and provide
the implementation details:

SNMTF(e): we first merge all the network layers into a
single network described by the following adjacency matrix:
A = 1

N

∑N
i=1 A(i). Then we apply SNMTF on A. To initialize

cluster indicator matrix, we use SVD approach for SNMTF
[16]. To extract clusters from the obtained cluster indicator
matrix, H, we applied Ncut algorithm [17] on the similarity
matrix HHT .

SNMTF(l): we first apply SNMTF on each network layer,
A(i), separately, and obtain clustering assignment. Then we
merge obtained individual clustering assignments into a con-
sensus clustering assignment. We use the same strategy for
initialization and clustering extraction as in the case of SN-
MTF(e).

CGC-NMF: Co-regularized multi-domain Graph Clustering
based on symmetric NMF proposed in [4]. In CGC-NMF each
domain represents a single network layer. There is a set of
parameters γij ≥ 0 that balance between single-domain and
cross-domain clustering objective for each pair of layers ij.
Given that in all our experiments the relationship between node
labels for any pair of layers is one-to-one, we set γij = 1 (as in
[4]) for all pairs of layers and throughout all our experiments.
We use the result of SNMTF applied on each network layer
separately to initialize the cluster indicator matrices of network
layers in CGC-NMF.

SC-ML: Spectral clustering on Multi-Layer graphs pro-
posed in [8]. In SC-ML there is a single regularization param-
eter, α , that balances the trade-off between two terms in the
SC-ML objective function. In all our experiments we choose
the value of α that leads to the best clustering performance. In
the case of CiteSeer, CoRA and MIT, the optimal parameters
are α = 0.1, 0.1 and 0.2, respectively.



GraphFuse: Tensor factorization approach using
PARAFAC decomposition with sparse latent factors proposed
in [5]. The single parameter, sparsity penalty factor λ, is
chosen to lead to the best clustering performance (λ = 0.10,
0.01 and 1, 000 for CiteSeer, CoRA and MIT, respectively.

WSSNMTF and NG-WSSNMTF: we use the same strat-
egy for matrix initialization and extraction of clusters as
described in SNMTF(e). The maximum number of iterations,
max iter = 100, has been proven sufficient for reaching
the convergence in all our experiments. The sparsity penalty
parameter, η, for both methods, is chosen to lead to the best
clustering performance (WSSNMTF: η = 1.0, 0.01 and 1.0);
NG-WSSNMTF: η = 1.0, 10.0 and 1, 000 for CiteSeer, CoRA
and MIT, respectively.

C. Clustering accuracy

To evaluate and compare the performance of our proposed
methods with above described methods we use the following
three widely used clustering accuracy measures: Purity, Nor-
malized Mutual Information (NMI) and Adjusted Rand Index
(ARI). All three measures provide a quantitative way to com-
pare the computed clusters Ω = {ω1, . . . , ωk} with respect to
the ground truth classes: C = {c1, . . . , ck}. Purity represents
percentage of the total number of nodes classified correctly,
and it is defined as: Purity(Ω, C) = 1

N

∑
k maxj |ωk ∩ cj |

[18], where N is the total number of objects, and |ωk ∩ cj |
represents the number of nodes in the intersection of ωk

and cj . To trade-off the quality of the clustering against
the number of clusters we use NMI. NMI is defined as:
NMI(Ω, C) = I(Ω;C)

|H(Ω)+H(C)|/2 [19], where I is the mutual
information between node clusters Ω and classes C, while
H(Ω) and H(C) represent the entropy of clusters and classes
respectively. Finally, Rand Index represents percentage of true
positive (TP ) and true negative (TN ) decisions assigns that
are correct (i.e., accuracy). It is defined as: RI(Ω, C) =

TP+TN
TP+FP+FN+TN , where, FP and FN represent false positive
and false negative decisions, respectively. ARI is defined to be
scaled in range [0, 1] [19]. All three measures are in the range
[0, 1], and the higher their value, the better clustering quality
is.

Fig. 2. (top) CiteSeer multi-layer network of 3312 papers. Two layers
represent citation connections between papers and similarity of papers’ 3703
most frequent words, respectively. (bottom) CoRA multi-layer network of
1662 papers. Two layers represent citation connections between papers and
similarity of papers’ 1443 most frequent words, respectively.

D. Results and discussion

The clustering accuracy of the described methods applied
on synthetic multi-layer network is shown in Table I, with
each column representing a different method. The results are
shown in terms of the above described clustering evaluation
measures. For each of the three synthetic network, the best
result is highlighted in bold. We observe that both WSSNMTF
and NG-WSSNMTF outperform other methods when applied
on SYNT-1. Recall that SYNT-1 is designed to have comple-
mentary layers; that is, one community is more present in
one layer than in other layers. Given that, we can observe
that both of our proposed methods are capable of successfully
utilising complementary information contained in all layers
and achieving the highest clustering results. Performance of
our proposed methods on SYNT-2, with layers having different
levels of nosy links, is also better than the performance of other
factorization methods, and comparable to the performance of
SC-ML spectral clustering method. On the other hand, baseline
methods and other factorization methods are characterized
with significantly lower clustering performance. The clustering
result on the last synthetic network, SYNT-MIX, as being the
hardest one to cluster, indicate the best performance of our
NG-WSSNMTF. Comparable results are obtained when using
WSSNMTF and SC-ML methods.

With respect to the real multi-layer networks, shown in Ta-
ble II, both of our methods perform better than other methods
on both CoRA and CiteSeer multi-layer networks. Specifically,
performance of NG-WSSNMTF on CiteSeer dataset is slightly
better than the performance of WSSNMTF and SC-ML, but it is
significantly better than the performance of other factorization
methods. As for MIT multi-layer networks, performance of
both WSSNMTF is somehow disappointing in comparison to
methods. However, performance of NG-WSSNMTF is signifi-
cantly better than the performance of other methods. On the
other hand, note that unlike CoRA and CiteSeer networks,
clustering MIT networks is more challenging due to the
approximative groundtruth information that is obtained by
manual annotation [7].

IV. CONCLUSION

In this paper we address the problem of community detec-
tion in multi-layer networks by proposing two novel meth-
ods, WSSNMTF and NG-WSSNMTF, based on the symmetric
non-negative matrix factorization. Both methods work by
simultaneously decomposing adjacency matrices representing
graph layers while keeping the low-dimensional latent factor
matrices the same across the decomposition. In this way both
methods ensure to take into account the correlated effect
and shared information between network layers. Moreover,
both methods are designed to take into account both missing,
as well as, noisy links. In terms of clustering accuracy,
we demonstrate the superior performance of both of our
methods over some baseline and state-of-the-art methods on
synthetic data. We show that simple averaging of adjacency
matrices representing network layers usually leads to the worst



TABLE I
CLUSTERING ACCURACY MEASURES FOR THREE SYNTHETICALLY GENERATED MULTI-LAYER NETWORKS: SYNT-1 (TOP), SYNT-2 (MIDDLE) AND

SYNT-MIX (BOTTOM).

SNMtF (e) SNMtF (l) CGC-NMF SC-ML GraphFuse WSSNMTF NG-WSSNMTF
SY

N
T-

1 Purity 0.878 0.645 0.798 0.993 0.912 1.000 1.000
NMI 0.698 0.166 0.434 0.961 0.717 1.000 1.000
ARI 0.705 0.150 0.435 0.983 0.709 1.000 1.000

SY
N

T-
2 Purity 0.937 0.893 0.892 1.000 0.950 1.000 1.000

NMI 0.810 0.692 0.699 1.000 0.872 1.000 1.000
ARI 0.798 0.696 0.674 1.000 0.866 1.000 1.000

SY
N

T-
M Purity 0.963 0.623 0.663 0.993 0.912 0.998 1.000

NMI 0.885 0.171 0.240 0.966 0.728 0.993 1.000
ARI 0.891 0.178 0.247 0.985 0.707 0.996 1.000

TABLE II
CLUSTERING ACCURACY MEASURES FOR THREE REAL WORLD MULTI-LAYER NETWORKS: CiteSeer (TOP), CoRA (MIDDLE) AND MIT (BOTTOM).

SNMtF (e) SNMtF (l) CGC-NMF SC-ML GraphFuse WSSNMTF NG-WSSNMTF

C
ite

Se
er Purity 0.558 0.212 0.566 0.630 0.446 0.629 0.639

NMI 0.280 0.014 0.275 0.330 0.159 0.331 0.337
ARI 0.249 0.000 0.248 0.308 0.107 0.316 0.329

C
oR

A Purity 0.662 0.492 0.687 0.794 0.645 0.796 0.809
NMI 0.345 0.009 0.388 0.496 0.193 0.497 0.519
ARI 0.264 0.001 0.303 0.495 0.187 0.498 0.526

M
IT

Purity 0.656 0.437 0.663 0.678 0.655 0.575 0.689
NMI 0.440 0.184 0.443 0.460 0.463 0.281 0.491
ARI 0.270 0.037 0.276 0.347 0.316 0.149 0.395

clustering performance. While our first method utilizes ordi-
nary gradient to optimize the objective function, the second
method uses natural gradient which forces the common low-
dimensional latent matrix factors to be orthonormal which
ultimately leads to better clustering results. This has been
clearly indicated by significantly better clustering performance
on real-world multi-layer networks.
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