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Abstract We present LSM — a 3D Morphable Model (3DMM)
automatically constructed from 9,663 distinct facial identi-
ties. To the best of our knowledge LSM is the largest-scale
Morphable Model ever constructed, containing statistical in-
formation from a huge variety of the human population. To
build such a large model we introduce a novel fully auto-
mated and robust Morphable Model construction pipeline,
informed by an evaluation of state-of-the-art dense corre-
spondence techniques. The dataset that LSM is trained on
includes rich demographic information about each subject,
allowing for the construction of not only a global 3DMM
model but also models tailored for specific age, gender or
ethnicity groups. We utilize the proposed model to perform
age classification from 3D shape alone and to reconstruct
noisy out-of-sample data in the low-dimensional model space.
Furthermore, we perform a systematic analysis of the con-
structed 3DMM models that showcases their quality and de-
scriptive power. The presented extensive qualitative and quan-
titative evaluations reveal that the proposed 3DMM achieves
state-of-the-art results, outperforming existing models by a
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Fig. 1: The sheer number of facial meshes used in training
LSM produces a 3D Morphable Model with an unprece-
dented range of human identity in a compact linear model.

large margin. Finally, for the benefit of the research com-
munity, we make publicly available the source code of the
proposed automatic 3DMM construction pipeline, as well
as the constructed global 3DMM and a variety of bespoke
models tailored by age, gender and ethnicity.

Keywords 3D Morphable Models · Dense Correspon-
dence · Demographic-specific models
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1 Introduction

3D Morphable Models (3DMMs) are powerful 3D statisti-
cal models of the shape and texture of the human face 1. In
the original formulation, as presented by the seminal work
of Blanz and Vetter [6], a 3DMM used in an analysis-by-
synthesis framework was shown to be capable of inferring
a full 3D facial surface from a single image of a person.
3DMMs have since been widely applied in numerous areas
in computer vision, human behavioral analysis, computer
graphics, craniofacial surgery and large-scale facial pheno-
typing [7,2,1,36,22].

A 3DMM is constructed by performing some form of di-
mensionality reduction, typically Principal Component Anal-
ysis (PCA), on a training set of facial meshes. This is fea-
sible if and only if each mesh is first re-parametrised into a
consistent form where the number of vertices, the triangu-
lation, and the anatomical meaning of each vertex are made
consistent across all meshes. For example, if the vertex with
index i in one mesh corresponds to the nose tip it is required
that the vertex with the same index in every mesh corre-
spond to the nose tip too. Meshes satisfying the above prop-
erties are said to be in dense correspondence with one an-
other. Whilst this correspondence problem is easy to state,
it is challenging to solve accurately and robustly between
highly variable facial meshes. Worst still, the very defini-
tion of anatomical meaning can be challenging to define for
smooth regions of the face like the forehead or cheek, mak-
ing objective measurement of correspondence quality diffi-
cult.

Once built, 3DMMs provide two functions. Firstly, 3DMMs
are powerful priors on 3D face shape and texture that can be
leveraged in fitting algorithms to reconstruct accurate and
complete 3D representations of faces from data deficient
sources like in-the-wild 2D images or noisy 3D depth scan
data. Secondly, 3DMMs provide a mechanism to encode any
3D face in a low dimensional feature space, a compact repre-
sentation that makes tractable many 3D facial analysis prob-
lems.

1.1 A note on terminology

For the sake of clarity, we note that here we explicitly de-
fine a 3D Morphable Model as a statistical basis of shape
and texture. A 3DMM is a data structure — a flexible repre-
sentation of the 3D human face that can be persisted to disk
and reused in a number of different contexts, both 2D and
3D in nature. We make this note as there is some flexibility
in the literature as to whether a 3DMM refers to a statistical

1 Apart from soft-tissue facial shape, 3D morphable models have
also been successfully applied in the modelling of human skull shape,
see e.g. [33,20,36].

model, (a data structure, the view we take), or an algorithm
for performing 3D reconstruction from a single image.

This confusion arrises from the fact that, as previously
mentioned, the initial application of such models was in this
one narrow application. However the usages of these mod-
els have expanded massively into new fields over the last
15 years. With emerging applications such as Virtual Real-
ity (VR), autonomous vehicles, and depth-camera equipped
consumer robotics, it is not hard to image a future where 3D
applications of 3DMMs are more obvious and widespread
than the initial application to 2D images. With this forward
looking view, in this paper we are concerned with construct-
ing a reusable statistical models that may be used in a myriad
of applications.

1.2 The challenges of large-scale 3DMMs

In this paper we revisit 3DMMs under a new context — that
we have access to a database of around 10,000 high qual-
ity 3D facial scans, with a wide variation of age, gender, and
ethnicity represented amongst the subjects. Furthermore, for
each individual we have detailed demographics including
the subject’s age, gender, and ethnic background. Our goal is
to leverage this data in order to build an anatomically accu-
rate 3D Morphable Model that can be used in a wide variety
of applications. This context brings with it a number of new
challenges for 3DMM construction.

Firstly, the sheer scale of the data takes into uncharted
territory. As we will motivate in Section 2, previous works
have only worked with smaller datasets (generally two or-
ders of magnitude smaller), where it is tractable to perform
manual work in preprocessing meshes as part of the con-
struction process. Furthermore, construction algorithms in
the past have only been proven on datasets containing small
variation in age and ethnicity (typically, dominated by adult
caucasian subjects).

Secondly, we maintain a tight focus on producing an
anatomically accurate 3D Morphable Model — by this we
mean that the dense correspondence we seek to establish
should optimally reflect the underlying anatomical structure
of the human face. This means we actively avoid any align-
ment based on ‘skin-deep’ facial features, perhaps the most
obvious of which would be eyebrows, as aligning such fea-
tures would disrupt the alignment of the underlying facial
structure. This is a subtle but important distinction. Perusing
this goal opens up the use of 3DMM in applications where
an accurate model of the underlying facial structure is key
like craniofacial surgery planning and assessment.

Finally, we have wholly additional per-subject informa-
tion in the form of detailed demographics, which opens up
many new avenues of possibilities in both the construction
and fitting of 3DMMs. Indeed, we will show for the first
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Fig. 2: There are two techniques used to establish dense correspondence in 3DMMs. Top: Correspondence is established
in a UV space — typically a cylindrical projection of the mesh shape and texture information. The UV image of each
mesh is registered to a template UV image, and subsequent sampling produces a mesh in correspondence with the template.
Bottom: Non-rigid Iterative Closest Point (NICP), guided by sparse annotations, can be employed to iteratively deform a 3D
template to match each mesh, avoiding the UV space entirely.

time clear evidence that the manifold of plausible faces is
naturally clustered by demographics like age and ethnicity,
and use this insight to devise new approaches to 3DMM con-
struction and fitting that advance on the state of art. We fur-
ther demonstrate for the first time that a large scale model
coupled with accurate demographics enables accurate age
classification from 3D shape data alone.

1.3 Paper structure

The remainder of the paper is structured as follows. In Sec-
tion 2 an overview of the Morphable Model construction
literature will be given, whilst Section 3 will provide an
overview of the contributions this paper makes to the field.
Section 4 provides a mathematical framework for 3DMM
construction. The most challenging and varied component
of construction, establishing dense correspondence, will get
its own treatment in Section 5, where we will describe and
analyze in detail three popular approaches to solving this
problem in our specific context.

Informed from this work, Section 6 will put forward our
novel pipeline for automated anatomically accurate 3D Mor-
phable Model construction. In Section 7 we will evaluate
this pipeline by applying it to the newly-introduced XL3D

dataset, to construct Large Scale Model (LSM). We exam-
ine in detail the properties of this unique model, and test its
performance in a range of applications including age pre-
diction & 3D model fitting. Finally, Section 8 will provide
some conclusions and ideas for future work in this area.

2 Previous Work

The construction of a 3DMM usually consists of two main
steps — establishing group-wise dense correspondence be-
tween a training set of facial meshes, and then performing
some kind of statistical analysis on the registered data to
produce a low-dimensional model.

In the original formulation [6], Blanz and Vetter solved
the dense correspondence problem by representing each fa-
cial mesh in a cylindrical ‘UV’ map, flattening each 3D sur-
face down into a 2D space. This reduced establishing corre-
spondence to a well-understood image registration problem,
which was solved with a regularized form of optical flow.
Blanz and Vetter employed PCA to construct their model,
and showed that in their framework, model performance was
improved by segmenting the facial surface into regions (eyes,
nose, mouth, other), building individual models per-component,
before blending resulting segments back together. Amberg
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et al. [2] extended this approach to emotive facial shapes by
adopting an additional PCA modeling of the offsets from the
neutral pose. This resulted to a single linear model of both
identity and expression variation of 3D facial shape.

Blanz and Vetter’s correspondence technique was only
used to align the facial meshes of 200 subjects of a similar
ethnicity and age [6]. This approach was effective in such a
constrained setting, but it is fragile to large variance in facial
identity. To overcome this limitation, Patel and Smith [30]
proposed to manually annotate the cylindrical face projec-
tions with a set of sparse annotations, employing a Thin
Plate Splines (TPS) warp [11] to register the UV images
of the meshes into a common reference frame. Cosker et
al. [17] automated the procedure of landmark annotations
required for the TPS warp, for the special case of temporal
sequences of a single identity displaying emotions. Several
facial landmarks on a handful of meshes for a given tempo-
ral sequence were manually annotated and used to build a
person-specific Active Appearance Model (AAM) [16] that
was then used to automatically find sparse annotations for
each frame in the data set.

As an alternative to performing alignment in a UV space,
Paysan et al. [31] built the Basel Face Model (BFM) by us-
ing an optimal step Nonrigid ICP algorithm [3] (NICP) to
directly align scans of 200 subjects with a template. This na-
tive 3D approach was guided by manually placed landmarks
to ensure good convergence.

Brunton et al. [14] adopt wavelet bases to model inde-
pendent prior distributions at multiple scales for the 3D fa-
cial shape. This offers a natural way to represent and com-
bine localized shape variations in different facial areas.

Vlasic et al. [38] modeled the combined effect of iden-
tity and expression variation on the facial shape by using a
multilinear model. More recently, Bolkart and Wuhrer [10]
show how such a multilinear model can be estimated directly
from the training 3D scans by a joint optimization over the
model parameters and the groupwise registration of the 3D
scans.

For the case where a temporal sequence of meshes is
available, Bolkart and Wuhrer [9] fit a multilinear model
and estimate a 4D sequence parametrization. This can be
used to animate a single 3D scan with a specific facial ex-
pression. Another alternative to modeling emotive faces is
the blendshape model, which was used by Salazar et al. [35]
to place into correspondence emotive faces in a fully auto-
mated way. For more details on 3D facial shape modeling,
we refer the interested reader to the recent extensive review
article of Brunton et al. [15] and the references therein.

Due to the costly manual effort currently required to
construct 3DMMs from 3D data, recent efforts in the field
have also focused on trying to build models from other data
sources. Kemelmacher recently presented a technique that
attempts to learn a full 3D facial model automatically from

thousands of images [26]. Whilst impressive given the input
data, such techniques cannot currently hope to produce mod-
els comparable in resolution and detail to techniques that
natively process 3D input data.

All the aforementioned works do not use more than 300
training facial scans. In this paper we show that such a size
of training set is far from adequate to describe the full vari-
ability of human faces. On top of that, all existing works use
training sets with a very limited diversity in the ethnic origin
(mostly European/Caucasian) as well as in the age (mostly
young and middle adulthood) of the subjects.

Due to this kind of limitations of the training sets adopted,
no existing work so far, to the best of our knowledge, has de-
veloped demographically-specific 3DMM models, i.e. 3DMM
models tailored for specific age, gender or ethnicity groups.
The above issues pose severe limitations in the descriptive
power of the resultant Morphable Models.

At the same time, there is strong experimental evidence
that the 3D facial shapes of disparate gender and ethnicity
are significantly separable. Toderici et al. [37] perform an
accurate estimation of gender and ethnicity based purely on
the 3D facial shapes, without using any associated texture or
photographic information. Their proposed method achieves
around 99% accuracy for race and 94% for gender recogni-
tion.

It is also evident from the prior art that demographically-
specific modelling is able to achieve substantial improve-
ments on 3D face recognition performance. Heo and Sav-
vides [23] use demographically-specific models in the case
of Generic Elastic Modelling (GEM), which is a much coarser
modelling of 3D shape variation than 3DMMs. The authors
are solely based on 2D training images and a depth-based
representation of facial variation. In their extensive experi-
mental evaluation, they show that the demographically-specific
models achieve significantly better 3D reconstruction as well
as face recognition performance across different views, as
compared to the corresponding global models.

There currently exists only three publicly available 3D
Morphable Models. Firstly, a University of Basel website 2

provides the BFM model [31]. Secondly, Bolkart, Brunton,
Salazar and Wuhrer have a website 3 where they provide
3DMMs constructed by their recent works, modelling 3D
face shapes of different subjects in neutral expression [15]
as well as 3D shapes of different subjects in different ex-
pressions [13,9]. Finally, a University of Surrey website 4

provides a range of 3D facial shape models of varying reso-
lutions [24].

2 http://faces.cs.unibas.ch/bfm/
3 http://statistical-face-models.mmci.

uni-saarland.de/
4 http://cvssp.org/faceweb/3dmm/facemodels/
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3 Contributions

Our goal is to make it trivial to build 3D Morphable Mod-
els automatically from large collections of 3D scans. We
believe that our automated pipeline significantly lowers the
barrier to entry for facial Morphable Model construction, to
the point where there is no need to choose a trade off be-
tween automation and model quality. We are able to do this
by capitalising on the powerful, person independent, facial
landmark localisation frameworks that have been recently
introduced [29].

Our contributions in this paper are three fold.
Firstly, we quantitatively compare the three most popu-

lar techniques for establishing dense correspondence in 3DMM
construction — NICP, and two UV based interpolations, UV-
TPS & UV-Optical Flow (UV-OF). We perform this analysis
in the context of automatic model construction, the first time
such an comparison has been presented to the community.

Secondly, informed by our in-depth comparison of dense
correspondence methods, we introduce a novel robust pipeline
for 3DMM construction that is completely automated. More
precisely, we develop a novel and robust approach to 3D
landmark localization, followed by dense correspondence
estimation using the NICP algorithm. Then, we propose an
approach to automatically detect and exclude the relatively
few cases of failures of dense correspondence, followed by
PCA to construct the deformation basis. We pay particular
attention to the efficiency and scalability of all the afore-
mentioned steps. We make the source code of this pipeline
publicly available, for the benefit of the community5.

Finally, we use our pipeline on a 3D facial database of
9,663 subjects to construct LSM, the largest and most information-
rich 3DMM of face shapes in neutral expression produced to
date.

LSM is built from two orders of magnitude more iden-
tity variation than current state-of-the-art models. We con-
duct extensive experimental evaluations that show that this
additional training data leads to significant improvements in
the characteristics of our 3D Morphable Model, and demon-
strate that LSM outperforms existing models by a wide mar-
gin. We also present experiments that study the effect of us-
ing larger datasets and more varied demographics in model
construction. These experiments provide for the first time a
comprehensive answer to the question of how much train-
ing data is needed for 3DMMs before effects of diminishing
returns set in.

Apart from building LSM using the commonly-used global
PCA, we also build a collection of PCA models tailored
by age, gender and ethnicity, capitalizing on the rich demo-
graphic information of the used database. We present quanti-
tative experimental evidence of why and when such tailored
models should be preferred over the global PCA.

5 https://github.com/menpo/lsfm

Using the demographic information, we are also able to
analyze for the first time the distribution of faces on the low-
dimensional manifold produced by the global PCA. We vi-
sualize the manifold of faces using t-distributed stochastic
neighbor embedding (t-SNE) [28], and report on clear age
and ethnic clustering that can be observed. As an applica-
tion example, we utilize the proposed model to perform age
classification, achieving particularly accurate results.

The global LSM model as well as the models broken
down by demographics will be made publicly available from
this work6. It is worth mentioning that current progress in
Computer Vision would not be possible without the col-
lection of large and comprehensive datasets e.g. [21,34,25,
19], and we believe that our publicly available models con-
tributes towards this effort.

4 Background

4.1 Data representation

The geometry of a 3D facial mesh is defined by the vector
X = [xT1 ,x

T
2 , . . . ,x

T
n ]
T ∈ R3n, where n is the number of

vertices and xi = [xix, x
i
y, x

i
z]
T ∈ R3 describes the X,Y and

Z coordinates of the i-th vertex.
The topology of a mesh is encoded in a triangle list T =

[tT1 , t
T
2 , . . . , t

T
m] ∈ R3×m, where m is the number of trian-

gles and ti = [ti1, t
i
2, t

i
3] is the index triplet that defines the

i-th triangle. Note that the indices tij ∈ {Z+ | tij ≤ n}
correspond to vertices of the mesh.

Texture information is given as a per-vertex color vector
C = [cT1 , c

T
2 , . . . , c

T
n ]
T where ci = [Ri, Gi, Bi] ∈ R3.

A triangle mesh M = {X,T} is thus comprised of n
vertices and m triangles. If the mesh is textured, the defini-
tion is augmented to include the per vertex color informa-
tion: Mt = {X,T,C}.

4.2 3D face database overview

The collected database, which we refer to as XL3D, contains
approximately 12,000 3D facial scans captured over a period
of 4 months. A 3dMDTM photometric stereo capture device
was utilized, creating a 3D triangular surface for each sub-
ject composed of approximately 60,000 vertices joined into
approximately 120,000 triangles, along with a high resolu-
tion texture map. Furthermore, 9,663 subjects also provided
metadata about themselves, including their gender, age and
ethnicity. This information allows for the construction of
models for targeted populations, such as within a defined age
range or from a particular ethnic background. The dataset
covers a wide variety of age (see Figure 7), gender (48%

6 http://www.ibug.doc.ic.ac.uk/resources/lsfm
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Fig. 3: Visualisation of the shape model of LSM-global: Mean shape (µ) and first five principal components, each visualized
as additions and subtractions away from the mean shape. In more detail, the top (bottom) row corresponds to deviating from
µ in the direction of the corresponding shape eigenvector, with a weight of 3σi (-3σi), where σi is the standard deviation of
the corresponding component.

male, 52% female), and ethnicity (82% White, 9% Asian,
5% Mixed Heritage, 3% Black and 1% other).

4.3 3DMM construction

The input to a 3DMM construction algorithm is a set of k
meshes {M1,M2, . . . ,Mk}. Each input mesh has its own
number of vertices and triangles, and a particular ordering
to its topology.

The construction of a 3DMM happens in two distinct
stages. First, a state of dense correspondence needs to be
established between the training set meshes. Following this,
a statistical analysis step on the correspondng meshes yields
linear models of shape and texture.

4.3.1 Dense correspondence

In this procedure, a collection of meshes are re-parameterized
into a form where each mesh has the same number of ver-
tices joined into a triangulation that is shared across all meshes.
Furthermore, the semantic or anatomical meaning of each
vertex is shared across the collection. Meshes satisfying the
above conditions are said to be in dense correspondence
with one another. Given such a collection of meshes, the
dense correspondences among them are typically found through
the registration of every mesh with a template. Landmark
annotations are used as additional priors that guide the regis-
tration process in the corresponding sparse locations. Dense
correspondence can be seen as a generalization of non-rigid
image registration to triangular meshes.

Of particular interest to us in 3DMM construction is the
case where multiple meshes share the same topology T,
which as we will see is a necessary consequence of meshes

being in dense correspondence. In such cases we can dis-
pense with concerning ourselves with the mathematically
clumsy definition of M and directly work with the vectors
of shape X and texture C, bearing in mind that we assume
an implicit shared triangulation T.

Note that we will explore mechanisms for establishing
dense correspondence in some depth in Section 5.

4.3.2 Similarity alignment & statistical modelling

Given a set of meshes in dense correspondence, we now
wish to build a statistical model of shape and texture.

The collection of meshes in dense correspondence are
subjected to Procrustes Analysis to remove similarity ef-
fects, leaving only shape information. The processed meshes
are statistically analysed, typically with Principal Compo-
nent Analysis [18], generating a 3D deformable model as
a linear basis of shapes. This allows for the generation of
novel shape instances:

X∗ = X̄ +

kα∑
i=1

αiUi = X̄ + Uα (1)

where X̄ ∈ R3n is the mean shape and U = [U1 · · ·Ud] ∈
R3n×d is the orthonormal basis matrix whose columns con-
tain the shape eigenvectors U i. Also, α = [α1, . . . , αd] ∈
Rd is the shape vector that contains the parameters (coef-
ficients) αd that define a specific shape instance under the
given deformable model. The degrees of freedom of this
model are given by the number of principal components d,
which is much smaller than the dimensionality 3n of the
original space of 3D shapes. Note that this model is com-
bined with the fixed triangle topology that was yielded from
the stage of dense correspondences estimation.
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Interpolating color values from nearby vertices with a
barycentric weighting allows for the construction of a or-
thonormal texture model with the same formulation as above:

C∗ = C̄ +

kβ∑
i=1

βiCi = C̄ + Vβ (2)

Where C̄ ∈ R3n is the mean texture sample and V =

[V 1 · · ·V d] ∈ R3n×d is the orthonormal basis matrix whose
columns contain the texture eigenvectors V i. Also, β =

[β1, . . . , βd] ∈ Rd
Any input 3D mesh X can be projected on the model

subspace by finding the shape vectorα that generates a shape
instance (1) that is as close as possible to X. The optimum
shape vector and the corresponding projection P (X) on the
model subspace are given by [18]:

α = UT (X− X̄) , P (X) = X̄ + UUT (X− X̄) (3)

5 Dense correspondence approaches

Having now considered an overview of how 3D Morphable
Models are constructed we focus in on the most challenging
and variable aspect of the procedure — establishing dense
correspondence.

All dense correspondence algorithms typically take as
input a template and a target mesh that have been landmarked
with sparse annotations. Establishing dense correspondence
can thus be thought of as an interpolation problem; a known
correspondence for a small subset of vertices needs to be
extended to all vertices in the template. In Section 6.1 we
explain our novel approach for automatically finding anno-
tations, for now we assume landmarks can be reliably found
and examine the dense correspondence methods in isolation.

5.1 UV-space-based Dense Correspondences

The first technique proposed for establishing dense corre-
spondence in 3DMM construction defined a 2D ‘UV’ space
for each mesh — a contiguous flattened atlas in which the
3D surface of the face can be embedded (see top of Fig-
ure 2). Such a UV space is associated with its corresponding
3D surface through a bijective mapping, and so it follows
that establishing dense correspondence between two UV im-
ages implicitly establishes a 3D-to-3D correspondence for
the mapped mesh. The key assumption in this case is that
it is possible to create UV mappings that accurately rep-
resent the 3D facial surfaces. This technique is popular as
it reduces the challenging 3D correspondence problem to a
well-studied 2D image non-rigid alignment one. It also may
be seen as the most natural way to register laser scanned 3D
meshes as it takes place in the native domain of the scanning

device. For other 3D capture devices, Booth [12] outlined
how a UV style space can be synthetically created from the
raw capture data through simple spherical or cylindrical pro-
jections of the data. Each UV map is an image — each pixel
encoding both spatial information (X, Y, Z) and texture in-
formation (R, G, B).

UV-space-based dense correspondence techniques apply
a non-rigid image alignment between all UV maps of the
meshes and a reference UV map, registering all UV maps
into a consistent reference space. A consistent sampling of
each aligned UV space is then performed. At each sampling
site, a vertex is created by sampling from the correspond-
ing spatial information. Texture information can either be
extracted densely per-pixel, (so a single RGB colour value
is assigned per vertex) or a texture coordinate into the tex-
ture UV map can be assigned (so the texture mapping can be
of a much higher density than the spatial mapping). In our
treatment we will always use the simpler per-vertex color
sampling, but we note it is trivial to change this, with the
benefit of allowing shape and texture models to be of differ-
ing resolutions.

Since the UV space representation is effectively a 2D
image representation, each UV map of the database can be
aligned with the reference UV map by applying an image
registration algorithm. Usually, one of the following two ap-
proaches are adopted for this task:

– Thin Plate Splines (TPS) interpolation, as e.g. done in [30].
– Optical Flow (OF) estimation, as e.g. done in [6].

We refer to the corresponding dense correspondence tech-
niques as UV-TPS and UV-OF respectively.

In UV-TPS, a dense mapping between the UV maps is
estimated via a TPS interpolation of the correspondences
that are established by the sparse landmark annotations. In
UV-OF, each pair of UV maps is registered by applying op-
tical flow on the multichannel image data defined on the UV
space by the texture and the 3D cylindrical coordinates of
the face points.

5.2 Non-Rigid Iterative Closest Point (NICP)

In contrast to the UV-space-based approaches, Amberg et
al. [3] propose a natively 3D algorithm, which directly es-
tablishes 3D-to-3D correspondences. The algorithm of [3]
extends the (rigid) ICP approaches to nonrigid deformations
while retaining tractable convergence properties. It is based
on a locally affine representation of the deformations and
adopts an adjustable stiffness parameter.

In more detail, let S be the 3D shape of any of the 3D
scans of the considered database. Note that each scan could
have a different, arbitrary number of vertices. Also, let V ∈
R3n be the 3D mesh of the adopted facial template, where
n being the number of vertices of this template. The NICP
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Fig. 4: Visualisation of the texture model of LSM-global: Mean texture (µ) and first five principal components, each visual-
ized as additions and subtractions away from the mean texture. In more detail, the top (bottom) row corresponds to deviating
from µ in the direction of the corresponding texture eigenvector, with a weight of 3σi (-3σi), where σi is the standard
deviation of the corresponding component. All textures are visualized on the mean 3D shape.

method of [3] non-rigidly deforms the template V in order
to match with the input 3D scan S as accurately as possi-
ble. This deformation is over-parametrised with a collection
A = {A1, ..,An} of affine transformations, one for each
vertex of the template. Each Ai is a 3×4 affine transforma-
tion matrix that is applied on the i-th vertex of the template
vi ∈ R3, resulting to the location of the vertex after the non-
rigid deformation: v̂i = Ai(v

T
i , 1)T .

The deformation of V is based on the minimisation of
the following energy:

E(A) = Ed(A) + αEs(A) + βE`(A) (4)

where α and β are positive weights that balance the impor-
tance of the different terms.

Ed(A) is a data term that penalises the distance between
the deformed version of the template and the 3D scan S:

Ed(A) =

NF∑
i=1

dist2(Ai(v
T
i , 1)T ,S) (5)

where dist(v̂i,S) is the distance between the point v̂i and
the mesh S (with this mesh being considered as a triangu-
lated surface to effectively compute the point-to-mesh dis-
tance).

Es(A) is a stiffness term that acts as a spatial regularisa-
tion of the deformed surface, favoring spatially smooth de-
formations. It penalises the differences between affine trans-
formations that are neighbours in the mesh structure:

Es(A) =
∑

(i,j)∈E

‖(Ai −Aj)G‖2F (6)

where E is the set of edges of the template and ‖ · ‖F de-
notes the Frobenius norm. Also, G = diag(1, 1, 1, γ) is a
weighting matrix that makes this cost function be a weighted

sum of squared differences, where γ balances the impor-
tance between differences in the translational part of the de-
formations (last column of Ai) and differences in their rota-
tional and skew part (first 3 columns of Ai).

Finally, E`(A) is a sparse landmarks term that ensures
that the deformed template is in accordance with the land-
mark information on the 3D scan S:

E`(A) =

L∑
i=1

‖Aki(v
T
ki , 1)T − `i‖2 (7)

where L is the number of landmarks and `i ∈ R3 is the
location of the i-th landmark in the 3D scan S. Finally, ki
is the vertex index of the i-th landmark, with respect to the
mesh of the template.

The method of [3] proposes an efficient and accurate
minimisation of the energy (4) — we invite the interested
reader to explore this paper for more details.

5.3 Comparison of dense correspondence approaches

Having described the two popular families of dense cor-
respondence techniques, we now compare their traits, and
motivate from a theoretical standpoint why we use NICP in
our proposed pipeline. Empirical evidence supporting these
thoughts will be provided in Section 7.6, where we will see
how the different dense correspondence techniques impact
the quality of the 3DMM we are able to construct from the
XL3D dataset.

UV-based correspondence approaches are powerful in
allowing for the simple reuse of image registration tech-
niques, and are computationally efficient. As noted, they may
also operate in the native domain for some 3D capture de-
vices. However they are not without some disadvantages.



Large scale 3D Morphable Models 9

ORIGINAL NICP

UV-OFUV-TPS

Fig. 5: Example dense correspondence results from three
techniques. NICP is better able to deal with parts of the face
that don’t project to a cylindrical UV space well like the in-
terior of the nose and mouth, and is less prone to drift effects.

Principally, a UV map can preclude the mapping of intri-
cate details of face shape like the interior of the nostrils
and the interior of the mouth. Furthermore, the UV space,
which is typically a cylindrical projection of the 3D facial
surface, introduces non-linearities into the dense correspon-
dence process. For example, a uniform sampling in the UV
space would lead to evenly sized triangles and evenly spaced
vertices only in the case of a perfect cylinder. In areas of
the face that differ greatly from this (such as the sides of
the nose) the sampling will be no longer uniform. Further-
more, registering such cylindrical projections together can
also introduce errors due to this same effect. In essence, we
are relying on every face to share the same non-linearities
to ‘cancel out’ each other to have a successful registration.
When this is not the case (for instance there is a huge vari-
ation in nose shape) our registration must in some way be
compromised by such issues.

Finally, UV maps simply complicate the pipeline for 3DMM
construction, in the sense that they require a rasterizing of
the UV image and a subsequent sampling of the space to
rebuild a mesh.

On the other hand, NICP is a principled energy mini-
mization problem that avoids a number of these pitfalls. An
argument against NICP would be that is an entirely geom-
etry and topology-driven technique. The UV shape can in

general admit shape and texture information, which can be
used in driving the correspondence calculation (for instance,
aligning similar skin pigment regions together). However, in
our particular context, this behavior becomes somewhat of
a liability for two reasons. Firstly, we again are seeking to
find an anatomically relevant statistical model of the human
face. Any texture information included my bias the dense
correspondence calculation, compromising the quality of the
model. Secondly, we again point out that XL3D contains a
huge variety of ethnicity variation, which one could reason-
ably expect would affect the ability for techniques like opti-
cal flow to find good correspondences.

6 Proposed Pipeline

Let us consider the scenario that, as with XL3D database,
one has a large-scale database of 3D facial scans and wants
to apply a technique to construct a high-quality 3DMM. Such
a large database raises some unique scalability challenges.
We believe that it is highly beneficial to have a fully auto-
mated technique that would not require any kind of manual
annotation. It is also very important that this technique is ef-
ficient in terms of both runtimes and memory requirements.

We introduce a 3DMM construction pipeline that meets
all the aforementioned specifications, see Figure 6. It starts
with a novel and robust approach to 3D landmark local-
ization. The 3D landmarks are then employed as soft con-
straints in NICP to place all meshes in correspondence with
a template facial surface. With such a large cohort of data,
there will be some convergence failures from either land-
marking error or NICP. We propose a refinement post-processing
step that weeds out problematic subjects automatically, guar-
anteeing that the LSM models are only constructed from
training data for which we have a high confidence of suc-
cessful processing.

6.1 Automatic annotation

Image landmark localization is a well studied field. Our pro-
posed technique allows us to bring to bear the huge expertise
developed in image landmark localization to 3D landmark
localization, allowing us to leverage the extensive datasets
and state of the art techniques that are now readily avail-
able in this domain [29]. This approach is similar to the
work of [17] which was shown to be successful for tem-
poral person-specific sequences, but here we pay particular
attention to mesh sets with highly variable identity.

We do this by rendering each mesh from a number of
virtual cameras positioned around the subject. Each virtual
camera, which has a realistic perspective projection camera
matrix, records an RGB texture image and an XYZ shape
image. The texture view is a typical image of a face with a
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2D

0° +90°-90°

3D

3D GLOBAL PCA MODEL 
(INITIAL ESTIMATION)

NICP dense correspondence

Automatic pruning

Auto landmarking LSM-BESPOKE PCALSM-GLOBAL PCA

Fig. 6: Our fully automated pipeline for constructing large scale 3DMMs. (1) Automatic landmarking based on synthetically
rendered views. The rendered views have per-pixel shape information registered with them, and so the 2D landmarks can be
projected reliably back to the 3D surface. (2) Guided by the automatic landmarks, the 3D template is iteratively deformed to
exactly match every 3D facial mesh of the dataset. (3) A initial global PCA is constructed, and (4) erroneous correspondences
are automatically removed. (5) LSM models are constructed from the remaining clean data.

known pose, and so we are able to use a HOG Active Ap-
pearance Model, a state-of-the-art image landmark localiza-
tion technique [4], initialized from a state-of-the-art face de-
tector [27,29], in order to robustly locate a set of 68 sparse
annotations in the view. The HOG AAM was trained on the
diverse Labelled Face Parts in the Wild (LFPW) dataset [5],
and so is highly robust to pose, ethnicity, and emotive varia-
tion.

We train pose-specific landmark localization models for
each view rendered, and use the shape images to project the
fitting to the 3D surface, compositing the resulting 3D land-
marks found into a master annotation set. Figure 6 (a) graph-
ically shows our landmark localisation technique.

6.2 Dense Correspondences

Following the analysis in Section 5.3, and motivated by the
empirical evidence we will put forward in Section 7.6, we
choose to adopt the most effective correspondence approach,
namely the NICP method. This method needs the specifica-
tion of a template mesh and our choice is the mean face of
the BFM model [31].

Each mesh is individually placed in correspondence with
the template mesh. In more detail, we first use the automat-
ically extracted landmarks to perform an optimal similarity
alignment between the mesh in question and the (annotated)
template, adopting Procrustes analysis. We then use NICP
to deform the template so that it takes the shape of the input
mesh, with the automatic landmarks acting as a soft con-
straint. The resulting deformed templates are re-parameterized

versions of each subject which are correspondence with one
another.

6.3 Automatic error pruning

With such a large number of subjects there will be some
failure cases at this stage. This is an unavoidable byprod-
uct of the fact that both landmark localization and NICP are
non-convex optimization problems that are sensitive to ini-
tialization. Our approach embraces this, seeking to weed out
the small number of failure cases given the huge amount of
data available for processing.

To remove outliers, we first construct an initial global
PCA from all fittings. This PCA model of shape variation is
expressed by Eq.(1). Adopting a commonly-used probabilis-
tic interpretation of this model, we assume that the shape pa-
rameters α1, . . . , αd are independent random variables and
that each αi follows a Gaussian distribution with zero mean
and variance λi, where λi is the i-th PCA eigenvalue (i.e. the
i-th eigenvalue of the training data covariance matrix) [18].

Therefore, the normalized shape parameters α1√
λ1
, . . . , αd√

λd
are independent and identically distributed following a zero-
mean and unit-variance Gaussian distribution and their squared
sum, which can be written as:

F (α) =

d∑
i=1

α2
i

λd
(8)

follows a chi-square distribution with d degrees of freedom
[30]. The above sum is actually a weighted norm of the
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Fig. 7: Distribution of ages of subjects included in the XL3D
dataset.

shape vector α and yields a squared Mahalanobis distance
between the current shape and the mean shape. This can be
used as a measure of plausibility of the shape with shape
parameters α, under the current PCA model.

Based on the aforementioned remarks, for every training
face mesh that has been put in correspondence using NICP
and afterwards subjected in Procrustes alignment, we find its
shape parameters α by projecting on the initial global PCA
model. Then, we use the squared norm F (α) as the criterion
to detect failures of the dense correspondence estimation.
This is due to the fact that these failures behave as outliers
of the Gaussian distribution.

We classify as outliers all shape vectorsαwith a squared
norm F (α) above a threshold θf . This threshold is selected
so that F (α) is expected to be less than θf with a very
high probability pf (e.g. 99%), under the assumed Gaus-
sian distribution. Consequently, θf is specified by the evalu-
ation of the chi-square inverse cumulative distribution func-
tion at the probability pf . Note that the set of shape vec-
tors α with F (α) < θf corresponds to a hyper-ellipse in
the d-dimensional space of shape parameters. Following the
aforementioned procedure, we find that less than 1% of the
training meshes are classified as outliers.

Finally, we derive the LSM models by applying PCA
again on the corresponding training sets, after excluding the
shape vectors that have been classified as outliers.

7 Experiments

In this section we will analyze in detail the pipeline put for-
ward in Section 6. We will be applying the methodology to
the newly introduced XL3D database, and reporting on the
performance of the resultant 3DMM against three state of
the art 3DMMs.

7.1 Global LSM model

We derive our global LSM model (hereafter referred to as
LSM-global) by applying the proposed construction pipeline
on the XL3D dataset. Figure 3 visualizes the shape com-
ponent of LSM-global by showing the mean shape along
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Fig. 8: t-SNE embedding of the high dimensional face mani-
fold in two dimensions. Left: a clear trend of increasing age
can be seen. Right: the two smaller structures are explained
largely as ethnic variations.

with the top five principal components of shape variation.
We observe that the principal modes of variation capture
trends of facial shape deformation due to gender, age, eth-
nicity and other variability in a particularly plausible way,
yielding high-quality 3D facial shapes. Similarly, Figure 4
visualizes LSM-global by showing the mean texture along
with the top five principal components of texture variation,
all visualized on the mean shape and again clear variations
in ethnicity, gender and age are visible. We observe that the
textures corresponding to the mean texture and the principal
components are highly-detailed and correspond to a plausi-
ble representation of texture in human faces.

An additional visualization of LSM-global is provided
by Figure 1, which shows synthetic facial shapes generated
by the model. More precisely, the shapes are synthesized us-
ing equation (1) with shape parameters αi that are randomly
sampled, assuming statistical independence and zero-mean
gaussian distribution for each parameter, with variance given
by the corresponding PCA eigenvalue. It can be seen that
all synthetic faces exhibit a high degree of realism, includ-
ing fine details in the facial structures. Furthermore, we ob-
serve that the statistical distribution of LSM-global succeeds
in capturing a plethora of demographic characteristics (age,
gender and ethnicity).

7.2 LSM-global facial manifold visualisation

Here, we explore the properties of the LSM-global manifold.
After establishing dense correspondences with our pipeline
and excluding the outliers, every retained training sample
X is projected on the LSM-global model and represented
by the vector of shape parameters α that yields the closest
shape within the model subspace, see Eq. (3). We then ap-
ply t-SNE [28] to the shape vectors from all training samples
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Demographic Count
Black 40 (20 male & 20 female)

Chinese 40 (20 male & 20 female)
White-under7 80 (40 male & 40 female)
White-7-to-18 80 (40 male & 40 female)

White-18-to-50 80 (40 male & 40 female)
White-over-50 80 (40 male & 40 female)

Table 1: Proportions of each demographic group represented
in the XL3D test set.

to visualize the manifold of training shapes, as represented
in the d-dimensional model subspace. Leveraging the per-
subject demographic data we have, we are able to label sam-
ples in this space by their age, see Fig. 8 (left). Interestingly,
a clear trend of increasing age across the bulk of the man-
ifold can be seen, suggesting that the facial manifold has
age-related structure.

Furthermore, we visualize the space by ethnicity, Fig. 8
(right). Note that we chose three ethnic groups for which the
number of samples in the used dataset was sufficient for our
analysis. We observe that t-SNE has produced a nonlinear
2D embedding that dedicates the largest area for the White
ethnic group, which is not surprising, given the fact that this
ethnic group is over-represented in the XL3D database (82%

of the samples). What is particularly interesting is the fact
that the clusters that are clearly separable from the main
manifold are actually specific ethnic groups.

7.3 Bespoke demographic models

These visualizations provide insight into how different re-
gions of the high-dimensional space of human face shape
and texture are naturally related to different demographic
characteristics. We use this insight to define specific bespoke
models that are trained on dedicated subsets of the full XL3D
training population. Taking also into account the demograph-
ics of the training data available (see Section 4.2), we de-
fine the following groups: Black (all ages), Chinese (all
ages) and White ethnic group, which due to large availabil-
ity of training samples, is further clustered into four age
groups: under 7 years old (White-under7), 7 to 18 years
old (White-7to18), 18 to 50 years old (White-18-50) and
over 50 years old (White-over50). The mean and most sig-
nificant 5 shape components of the 6 demographic-specific
models are given in Figure 9. Likewise, Figure 10 shows
the mean and most significant 5 texture components of the 6
demographic-specific models visualized on the mean shape.

We combine these bespoke models in a large mixture
model, which we call LSM-bespoke. The intrinsic charac-
teristics of both LSM-global and LSM-bespoke will be eval-
uated in the next section.

7.4 Training and Test Sets

For all the subsequent experiments, XL3D dataset was split
into a training set and a test set. In more detail, a set of 400
meshes of XL3D was excluded from the original training
set to form a test set. This test set was randomly chosen
within demographic constraints to ensure a gender, ethnic
and age diversity. Table 1 shows the makeup of the test set.
Despite the fact that this test set does not capture the full
range of diversity present in the demographics of humans,
its diversity is still a huge step up from existing datasets used
in testing 3DMMs. Note that for the sake of fairness of the
following evaluations, LSM-global and LSM-bespoke mod-
els were re-trained using the resultant training set. This is
slightly smaller than the original training set, which included
the whole XL3D.

7.5 Intrinsic Evaluation of LSM models

Following common practice in the literature of statistical
shape models, we evaluate the intrinsic characteristics of
LSM-global and LSM-bespoke using compactness, gener-
alization and specificity, see e.g. [18,15,10]. We consider
the 3D shapes of XL3D dataset after establishing dense cor-
respondences, using our pipeline.

Figure 11 shows the compactness plots for the LSM
models. Compactness measures the percentage of variance
of the training data that is explained by a model when cer-
tain number of principal components are retained. Note that
in the case of the bespoke models, the training samples of
the corresponding demographic group are only considered,
which means that the total variance is different for every
model. We observe that all trained models exhibit similar
traits in the variance captured, although this naturally varies
with the size of the training set in each case of the tailored
models. Both global and bespoke LSM models can be con-
sidered sufficiently compact; for example for all the models,
as few as 40 principal components are able to explain more
than 90% of the variance in the training set.

Figure 12 presents plots of model generalization, which
measures the ability of a model to represent novel instances
of face shapes that are unseen during training. To compute
the generalization error of a model for a given number of
principal components retained, we compute the per-vertex
Euclidean distance between every sample of the test set X
and its corresponding model projection P (X), Eq. (3), and
then take the average value over all vertices and all test sam-
ples. In order to derive an overall generalization measure
for LSM-bespoke, for every test sample we use its demo-
graphic information and project on the subspace of the cor-
responding bespoke model and then compute an overall av-
erage error. The number of components retained in the case
of the LSM-bespoke model is the number of components
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Fig. 9: Bespoke shape models produced for specific subsets of the XL3D dataset. For each bespoke model, the Figure shows
the mean shape µ as well as the first five shape eigenvectors, each visualized as additions and subtractions away from the
mean. In more detail, the top (bottom) row corresponds to deviating from µ in the direction of the corresponding shape
eigenvector, with a weight of 3σi (-3σi), where σi is the standard deviation of the corresponding component.
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Fig. 10: Bespoke texture models produced for specific subsets of the XL3D dataset. For each bespoke model, the Figure
shows the mean texture µ as well as the first five texture eigenvectors, each visualized as additions and subtractions away
from the mean. In more detail, the top (bottom) row corresponds to deviating from µ in the direction of the corresponding
texture eigenvector, with a weight of 3σi (-3σi), where σi is the standard deviation of the corresponding component. All
textures are visualized on the mean 3D shape.
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Fig. 11: Compactness of the LSM models.
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Fig. 12: Generalization of the LSM models.

retained for the demographically-matching bespoke model
for a given training sample. We plot the generalization er-
rors with respect to both the number of principal compo-
nents (Fig. 12a) and percentage of total variance retained
(Fig. 12b). We observe that both LSM-global and LSM-
bespoke are able to generalize well, since for even low num-
ber of components and total variance retained, they yield
particularly low generalization errors. Interestingly, we see
in Fig. 12a that LSM-bespoke achieves superior generaliza-
tion measures when compared to LSM-global for an equiv-
alent number of components for fewer than 60 components.
After this stage the global model starts to outperform the
specific models, which might attributed to the fact that many
of the specific models are built from smaller cohorts of train-
ing data, and so run out of interesting statistical variance
at an earlier stage. When changing the visualization to one
based on retained variance (Fig. 12b), we observe that the
demographic-specific LSM-bespoke model achieves better
generalization performance for the vast majority of values
of retained variance.

Figure 13 presents the specificity of the introduced mod-
els, which evaluate the validity of synthetic faces generated
by a model. To measure this, we randomly synthesize 10,000
faces from each model for a fixed number of components
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(a) Specificity and standard devia-
tion for global model

0 10 20 30 40 50 60 70 80

Principal components

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
e
ci

fi
ci

ty
 E

rr
o
r 

(m
m

)

Black

Chinese

White under 7 yrs

White 7-18 yrs

White 18-50 yrs

White over 50 yrs

(b) Specificity for the tailored mod-
els

Fig. 13: Specificity for each of the tailored models.

and measure how close they are to the real faces of the test
set. More precisely, for every random synthetic face, we
find its nearest neighbor in the test set, in terms of mini-
mum (over all samples of the test set) of the average (over
all vertices) per-vertex distance. We record the mean of this
distance over all samples as the specificity error. Figure 13a
contains the specificity plot for LSM-global (mean value as
well as standard deviation bars), whereas Figure 13b con-
tains the specificity plots for all models of LSM-bespoke
(mean values only; the standard deviation bars have been
omitted for the sake of visualization clarity). We observe
that in all the cases, the specificity errors attain particularly
low values, in the range of 1 to 1.6 mm, even for a rela-
tively large number of principal components. This is a quan-
titative evidence that the synthetic faces generated by both
global and bespoke LSM models are realistic, which com-
plements the qualitative observations of Section 7.1. Inter-
estingly, Figure 13b suggests that specificity error is larger
for models trained from smaller populations, as e.g. in the
case of Black model. Apart from the lack of sufficient rep-
resentative training data, this might also be attributed to the
fact that the space of such models is more sparsely populated
by training samples, so the nearest neighbor error tends to be
larger, as compared to other models with more training data.
Furthermore, it can be seen that the lowest specificity error
comes from the White-7-18 model, which is trained on a
large number of samples that lie on a smaller cluster of the
space, leading to a highly specific model.

7.6 Comparison of dense correspondence methods

We now repeat select studies from the previous sections (us-
ing the same parameters as before), only now we vary the
dense correspondence algorithm employed (all models are
built using data from the global XL3D dataset). With this
work, we will empirically motivate our choice of NICP for
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Fig. 14: (a) Compactness for LSM models built with differ-
ing dense correspondence methods. (b) Mean dense point-
to-point reconstruction error when reconstructing out-of-
sample faces (drawn from BU3D-FE) in the LSM shape
models.

providing dense correspondences in our method over the al-
ternatives (UV-OF, UV-TPS).

Note that for UV-OF, we used the Improved TV-L1 al-
gorithm [39], which is a relatively recent state-of-the-art op-
tical flow algorithm. This algorithm demonstrates improved
robustness and accuracy, as compared to traditional optical
flow methods.

Figure 5 shows an example dense correspondence result
for NICP, UV-TPS and UV-OF. Most striking is that NICP
is better able to deal with a larger region of the facial sur-
face. The UV-based techniques cannot interpolate well for
broader regions of the head as areas like the underside of the
chin and the interior of the mouth are not well mapped onto
a cylinder. Furthermore, NICP has some hole filling capa-
bility, where the natural result of the optimization problem
leads to missing regions of the target being replaced by in-
terpolated values drawn from the corresponding part of the
template (we refer the interested reader to [3] for details).
In this example this infilling can be seen to successfully re-
cover the chin region, which is entirely missing in the origi-
nal scan.

Figure 14a shows how NICP-based correspondences gen-
erate a model with a superior compactness quality. Figure 14b
reports the mean dense reconstruction error for out-of-sample
BU3D-FE faces with the different dense correspondence tech-
niques for varying retained parameters. This is perhaps the
most direct measure we have presented so far of 3DMM per-
formance, and in this experiment we see that NICP has pro-
duced a far more useful basis in our particular context.

7.7 Fitting Application

In order to gauge the quality of the LSM-global model in
comparison with the state-of-the-art, we evaluate the per-

formance of the models in a real-world fitting scenario. We
compare with three publicly available Morphable Models of
human faces in neutral expression, namely the BFM model [31,
32], the PCA model of [15,8], which will be hereafter re-
ferred to as Brunton et al. model, and the Surrey Face Model [24].
Note that for the sake of fairness towards the existing mod-
els, we do not consider the bespoke LSM models in the fit-
ting experiment, since these models use additional informa-
tion related to demographics.

Note that for all versions of LSM-global evaluated here-
after, we choose the number of principal components, so
as to explain 99.5% of the training set variance. For BFM,
Brunton et al. and Surrey models, we use all the principal
components, as given by the publicly available versions of
these models.

To evaluate the fitting performance of every tested model,
every mesh in the adopted test set is automatically annotated
with facial landmarks using our technique outlined in Sec-
tion 6.1. The same set of landmarks is manually placed on
the mean faces of every model, and subsequently used to
similarity-align them with every mesh of the test set. Simi-
larly to [15,40], a simple model fitting is employed, which
consists of

1. Search for the nearest vertex in the test mesh to establish
correspondences between that mesh and the model

2. Project the test mesh onto the model using Eq. (3).

The per-vertex fitting error is then computed as the dis-
tance between every vertex of the test mesh and the nearest-
neighbor vertex of the corresponding model-based fitting.
Note that we use a simple fitting strategy to provide an ap-
propriate mechanism to benchmark models against one an-
other fairly — the fitting algorithm itself is not under test
here, but rather the models themselves.

We evaluate a dense surface error for vertices of the raw
XL3D scans of the test set, to remain fair across the differ-
ent model densities. Furthermore we only consider the ver-
tices within a central region of the face, which is certainly
present in all models under evaluation. This means that any
differences present between different models (throat, ears,
inner mouth) do not come into play. Given that we evaluate
on raw scans without considering any dense correspondence
estimation, we lack the dense semantic understanding of the
face. In the absence of this, we chose the vertices that we
evaluate on by using a fixed radial distance from the (an-
notated) nosetip of each XL3D scan in the test set. Only
vertices within this region, which is a tight crop of the inner
facial features, are considered in our error metric.

Figure 16 compares the fitting performance of LSM-
global against BFM, Brunton et al. and Surrey models, in
terms of cumulative error distribution (CED) curves of per-
vertex fitting errors. We observe that LSM-global achieves
exceptionally improved accuracy and robustness, as com-
pared to the other two models. This is attributed to the larger
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Fig. 15: Four examples of reconstructions performed using the LSM-global model on individuals from the BU3D-FE
database. For each individual, A is the original scan, and B is the reconstruction attained.
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Fig. 16: Cumulative error distributions of the per-vertex fit-
ting error for the publicly-available models under test.

training sample used, the increased demographic range, and
the quality of the XL3D scans. We will explore the dimor-
phic and quantity effects on the model performance in Sec-
tion 7.8. We also note that this is the first time that ex-
isting models are evaluated against a dataset containing a

large variation in ethnicity and age. The significantly larger
variability in the training set of LSM-global allows it to
generalize well to a much wider variety of faces than the
more narrowly-focused existing models. We provide visual-
izations of fittings for four subjects from BU3D-FE from the
LSM-global model in Figure 15.

7.8 Effect of Demographics and Training Set Size

XL3D is simultaneously the largest and most variable 3D
facial dataset that has existed to date. To provide greater in-
sight into how demographic variability and training set size
impact the performance of 3D Morphable Models, we now
explore in detail the impact of these two factors on the in-
trinsics and fitting application of our model.

7.8.1 Demographics-specific Analysis of 3D Model
Comparisons

In this section, we present a more detailed view of the 3D
model fitting comparisons of Section 7.7. We report per-
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Fig. 17: Two examples of out of sample reconstructions
from BU3D-FE using LSM models trained from 200, 1000,
and 8000 subjects.

formance measures of the compared models on every con-
sidered demographic group separately. Figure 18 presents
the CED curves of per-vertex fitting error of all compared
models for each considered demographic group. Interest-
ingly, Brunton et al. model outperforms BFM in all groups
except for the group White-over50, where the situation is
clearly reversed. Also, Surrey Model performs worse than
BFM on the groups of White ethnicity, but on contrary it has
a clear advantage over BFM on Black and Chinese groups.
Finally, LSM-global clearly outperforms all other models in
all groups, even in groups that are very similar to the demo-
graphics of the training data that the other models have built
upon, such as the group White-18-50.

Intuition suggests that bespoke facial models have value
in providing a tailored, more compact model to fit out of
sample data. To explore this is indeed the case quantitatively,
we construct a model from one demographic group (Black)
and perform the a fitting against (a) an ethnicity matched test
set and (b) a non-ethnicity matched test set (combination
of all White test sets). Figure 19 shows the result of this
test. The same model can clearly be seen to perform better
on the demographically matched test set, demonstrating the
significance of demographics in 3D facial modelling, and
the value of bespoke demographic facial models.

7.8.2 Effect of Training Set Size

Given the fact that XL3D dataset is so much larger than ex-
isting training data sets, it is natural to question the effect of
varying the size of the training set on the performance of the
constructed 3DMM. To explore this, we repeat the intrinsic
evaluation of Section 7.5 as well as the fitting experiment of
Section 7.7 for different versions of the LSM-global model,
trained from varying numbers of samples.

The results are visualized in the plots of Figure 20. Re-
garding the intrinsic evaluation, we first of all observe that
the compactness curve goes down as the training size is in-
creased. This is an expected artifact because the compact-
ness measure gives a negative bias to the cases of larger
training sets, since the total variance increases significantly.
However, this does not mean that the real compactness of
the model becomes worse. In addition, we observe that the
generalization error decreases significantly as the training
size increases. This is attributed to the fact that the statisti-
cal model can generalize better when it has been learnt from
more training samples. In addition, it is interesting to notice
that the specificity measures do not exhibit any statistically
significant change with the size of the training set, with the
corresponding curves being very close with each other. This
means that according to that measure, the faces synthesized
by the model retain their degree of realism as the training
size increases. But in the same time, they seem to be able to
represent a wider variety of human faces, as the aforemen-
tioned results on generalization suggest.

Regarding the model fitting performance (Fig. 20d), we
can see clear improvements for around one order of mag-
nitude more data than is currently used, albeit with dimin-
ishing returns beyond a few thousand samples. We also note
that even with only 100 samples, LSM-global matches the
performance of the BFM, which was trained on 200 sam-
ples. This can be attributed to the larger variability of the
LSM training set, demonstrating how crucial this is for build-
ing effective 3DMMs.

Finally, Figure 17 visually shows the effect on two BU3D-
FE subject reconstructions for models trained from vary-
ing numbers of samples. As the training size increases, the
model stops overfitting to noise present in the raw scans,
and starts to capture the actual shape of the individual more
accurately.

7.8.3 Limiting both the Demographics Variability and the
Training Size

In the extensive experiments of the previous sections, we
have seen that our model yields a significantly improved per-
formance as compared to the existing publicly available 3D
face models, both in terms of quantitative and qualitative
evaluation. However, it has not been clear until now what is
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Fig. 18: Fitting results broken down by different demographic groups.
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Fig. 19: In this experiment, a model trained from samples
purely drawn from a black ethnic group is fitted to both a
demographically similar black test set and to an ethnically
different white database. The performance is optimal when
the demographics of the model match that of the test set.

the merit of our 3DMM construction pipeline on this suc-
cess. Therefore, in this section we evaluate our pipeline by
factoring out the advantages that our large-scale dataset of-
fers us.

In more detail, we apply our pipeline on a conventional,
small-scale dataset (200 random samples from XL3D that
correspond to the White ethnic group), which has the same
size and similar demographics to that used in the BFM model.
The resultant model, which we call SSM-200W (Small Scale
Model, built on 200 White subjects), serves only the eval-
uation purposes of this section and is obviously not to be
preferred over our LSM models.

We then compare SSM-200W with the existing models
on a test set (disjoint from the training set) that also contains
samples from the White ethnic group only. This compares
solely our model building procedure with the corresponding
procedures of the existing models. For this comparison, we
follow again the model fitting evaluation protocol that we
described in Sec.7.7. Figure 21 presents the results, in terms
of CED curves of per-vertex fitting errors. We observe that
SSM-200W clearly outperforms the existing 3D facial shape
models. This clearly shows the effectiveness and robustness
of our model building pipeline.

7.9 Age Classification from 3D shape

As a final evaluation, we use the unique traits of the XL3D
dataset to compare the descriptive power of LSM-global,



20 James Booth et al.

0 10 20 30 40 50 60

Principal components

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V
a
ri

a
n
ce

 r
e
ta

in
e
d

100

200

500

1000

3000

5000

7000

(a)

0 10 20 30 40 50 60 70

Principal components

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

G
e
n
e
ra

liz
a
ti

o
n
 e

rr
o
r 

(m
m

)

100

200

500

1000

3000

5000

7000

(b)

0 10 20 30 40 50 60 70 80

Principal components

0.8

0.9

1.0

1.1

1.2

1.3

S
p
e
ci

fi
ci

ty
 E

rr
o
r 

(m
m

)

200

500

1000

3000

5000

7000

(c)

0.0 0.5 1.0 1.5 2.0

Mean per-vertex reconstruction error (mm)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
su

b
je

ct
s

BFM

100

200

500

1000

2000

3000

4000

5000

7000

(d)

Fig. 20: Effect of training set size on model intrinsics (a) Compactness (b) Generalization (b) Specificity, and on the fitting
performance of the model (d).
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Fig. 21: In this experiment, we evaluate our model construc-
tion pipeline by applying it to a small-scale training set of
200 White subjects, similar to the one used in the train-
ing of BFM. We compare the resultant model (SSM-200W)
with the publicly available models, by fitting all models to
a test set from the White group. Cumulative error distribu-
tion curves of the per-vertex fitting error are plotted for each
tested model.

Precision Recall F-Score
LSM-global 0.74 0.61 0.60
BFM 0.71 0.54 0.51
Brunton et al. 0.68 0.53 0.52
Surrey Model 0.70 0.44 0.39

Table 2: Mean age classification scores.

BFM and Brunton et al. models in an age classification ex-
periment. In more detail, we project all the face meshes of
the training set onto each of the four models and use the cor-
responding shape vectors, α, to represent them, see Eq. (3).
Using the demographic information of XL3D dataset, we
train a Linear Support Vector Machine classifier for each
model, which maps the corresponding shape vectors to four
age classes: under 7, 7 to 18, 18 to 50, over 50.

To measure the classification accuracy, we project all
samples from the test set onto the models and then use the
classifier to predict the age bracket for the test subjects. This
provides an application-oriented evaluation of the quality of
the low-dimensional representation that each 3DMM pro-
vides for the large variety of faces present in LSM. As can
be seen in Table 2, the LSM-global model outperformed ex-
isting models in precision and recall and f-score, correctly
classifying the age of 74% of the subjects in the challenging
test set.

8 Conclusions & future work

We have presented LSM, the most powerful and statisti-
cally descriptive 3DMM ever constructed. By making both
the LSM software pipeline and models available, we help to
usher in an exciting new era of large scale 3DMMs, where
construction is radically simpler and large-scale models can
become commonplace. We have demonstrated that our au-
tomatically constructed model comfortably outperforms ex-
isting state of the art 3DMMs thanks to the sheer variety of
facial appearance it was trained on, and further reported on
how the size of 3D datasets impacts model performance. We
have explored for the very first time the structure of the high
dimensional facial manifold, revealing how it is clustered by
age and ethnicity variations, and demonstrated for the first
time accurate age prediction from 3D shape alone. The abil-
ity of the model to differentiate faces according to ethnicity
suggests that it is sensitive to subtle genetic variation. This
raises the possibility that it may be useful in future medi-
cal work, for instance providing the basis for an automated
diagnostic tool for patients with genetic conditions. In fu-
ture work we will analyze in detail the qualities of the LSM
model, exploring what it can tell us about human face varia-
tion on the large scale, as well as exploring novel statistical
methods for large-scale 3DMM construction. We will fur-
thermore explore how shape and texture information can be
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fused in dense correspondence approaches in order to max-
imise the accuracy of the registration of facial meshes.
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