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Abstract. Facial-expression data often appear in multiple views either due to
head-movements or the camera position. Existing methods for multi-view facial
expression recognition perform classification of the target expressions either by
using classifiers learned separately for each view or by using a single classifier
learned for all views. However, these approaches do not explore the fact that
multi-view facial expression data are different manifestations of the same facial-
expression-related latent content. To this end, we propose a Shared Gaussian Pro-
cess Latent Variable Model (SGPLVM) for classification of multi-view facial ex-
pression data. In this model, we first learn a discriminative manifold shared by
multiple views of facial expressions, and then apply a (single) facial expression
classifier, based on k-Nearest-Neighbours (kNN), to the shared manifold. In our
experiments on the MultiPIE database, containing real images of facial expres-
sions in multiple views, we show that the proposed model outperforms the state-
of-the-art models for multi-view facial expression recognition.

1 Introduction

Facial expression recognition has attracted significant research attention because of
its usefulness in many applications, such as human-computer interaction, security and
analysis of social interactions [1, 2]. Most existing methods deal with imagery in which
the depicted persons are relatively still and exhibit posed expressions in a nearly frontal
pose [3]. However, most real-world applications relate to spontaneous interactions (e.g.,
meeting summarization, political debates analysis, etc.), in which the assumption of
having immovable subjects is unrealistic. This calls for a joint analysis of facial expres-
sions and head-poses. Nonetheless, this remains a significant research challenge mainly
due to the large variation in appearance of facial expressions in different poses, and
difficulty in decoupling these two sources of variation.

To date, only a few works that deal with multi-view facial expression data have been
proposed. These methods can be divided into three groups depending on how they deal
with the variation in head pose of the subjects depicted in the images. In what follows,
we review the existing models. The first group of the methods perform pose-wise facial
expression recognition. In [4], the authors used Local Binary Patterns (LBP) [5] (and
its variants) to perform a two-step facial expression classification. In the first step, they
select the closest head-pose to the (discrete) training pose by using the SVM classifier.
Once the pose is known, they apply the pose-specific SVM to perform facial-expression
classification in the selected pose. In [6], different appearance features (SIFT, HoG,
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LBP) are extracted around the locations of characteristic facial points, and used to train
various pose-specific classifiers. Similarly, [7] used pose-wise 2D AAMs [8] to locate
a set of characteristic facial points, which then were used as the input features for the
classifiers in each pose. Another group of approaches ([9, 10]) first perform head-pose
normalization, and then apply facial expression classification in the canonical pose,
usually chosen to be the frontal. The main downside of all these approaches is that they
ignore correlations across different poses, which makes them suboptimal for the target
task. Furthermore, by learning separate classifiers for each view, the pose-wise methods
may give inconsistent classification of facial expressions across the views. As shown by
[4, 6], recognition of some facial expressions can be performed better in certain poses.
Hence, finding a joint feature space for multi-view facial expression recognition may
improve overall performance of the model. This is in part explored in [11, 12], where
the authors learn a single classifier for data from multiple poses. Specifically, [11] use
variants of dense SIFT [13] features extracted from multi-view facial expression im-
ages, an attempt to align the data from different poses during the feature extraction
step. Likewise, [12] used the Generic Sparse Coding scheme ([14]) to learn a dictionary
that sparsely encodes the SIFT features extracted from facial images in different views.
However, high variation in facial features extracted from different views increases the
complexity of the learned classifier significantly since it attempts to simultaneously deal
with variation in head-pose and facial expressions.

Note that none of the works mentioned above explores the fact that the multi-view
data are usually different manifestations of the same (latent) facial-expression-specific
content. To this end, in this paper we propose a discriminative Shared Gaussian Process
Latent Variable Model (DS-GPLVM) for multi-view facial expression recognition. In
the proposed model, we learn a joint low-dimensional facial-expression manifold of the
expression data from multiple views. To attain good classification of the target facial
expressions in the shared space, we place a discriminative prior informed by the ex-
pression labels over the manifold. This model is based on the discriminative GPLVM
(D-GPLVM) [15], proposed for non-linear dimensionality reduction and classification
of data from a single observation space. We generalize this model so that it can simulta-
neously handle multiple observation spaces. Although the proposed model is applicable
to a variety of learning tasks (multi-view classification, multiple-feature fusion, etc.), in
this paper we limit our consideration to multi-view facial expression recognition. The
outline of the proposed model is given in Fig. 1.

The remainder of the paper is organized as follows. We give a short overview of the
base GPLVM and the D-GPLVM in Sec. 2. In Sec. 3, we introduce the proposed Dis-
criminative Shared Gaussian Process Latent Variable Model for multi-view facial ex-
pression recognition. Sec. 4 shows the results of the experiments conducted, and Sec. 5
concludes the paper.

2 Gaussian Process Latent Variable Models (GPLVM)

In this section, we give a brief overview of the GPLVM [16], commonly used for learn-
ing complex low-dimensional data manifolds. We then introduce two types of discrimi-
native priors for the data-manifold, which are used to obtain the discriminative GPLVM.
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Fig. 1. The overview of the proposed DS-GPLVM. The discriminative shared manifold X of
facial images from different views (Yi, i = 1 . . . V ) is learned using the framework of shared
GPs (GPi). The class separation in the shared manifold is enforced by the discriminative shared
prior p(X), informed by the data labels. During inference, the facial images from different views
are projected onto the shared manifold by using the kernel-based regression, learned for each
view separately (g(Yi)). The classification of the query image is performed using the k-NN.

2.1 Gaussian Process Latent Variable Model (GPLVM)

The GPLVM [16] is a probabilistic model for non-linear dimensionality reduction. It
learns a low dimensional latent space X = [x1, . . . ,xN ]T ∈ RN×q , with q � D, cor-
responding to the high dimensional observation space Y = [y1, . . . ,yN ]T ∈ RN×D.
The mapping between the latent and observation space is modeled using the frame-
work of Gaussian Processes (GP) [17]. Specifically, by using the covariance function
k(xi,xj) of the GP, the likelihood of the observed data, given the latent coordinates, is

p(Y|X, θ) = 1√
(2π)ND|K|D

exp(−1

2
tr(K−1YYT )), (1)

where K is the kernel matrix with the elements given by the covariance function k(xi,xj).
The covariance function is usually chosen as the sum of the Radial Basis Function
(RBF) kernel, and the bias and noise terms

k(xi,xj) = θ1 exp(−
θ2
2
‖xi − xj‖2) + θ3 +

δi,j
θ4
, (2)

where δi,j is the Kronecker delta function and θ = (θ1, θ2, θ3, θ4) are the kernel param-
eters [17]. The latent spaceX is obtained by using the mean of the posterior distribution

p(X, θ|Y) ∝ p(Y|X, θ)p(X) (3)

where the flat Gaussian prior is imposed on the latent space to prevent the GPLVM
from placing the latent points infinitely apart. The learning of the latent space is accom-
plished by minimizing the negative log likelihood of the posterior in (3), w.r.t. X, and
it is given by

L =
D

2
ln |K|+ 1

2
tr(K−1YYT )− log(P (X)). (4)
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2.2 Discriminative Gaussian Process Latent Variable Model (D-GPLVM)

Note that the GPLVM is an unsupervised method for dimensionality reduction, and,
as such, it is not optimal for the classification tasks. However, due to its probabilistic
formulation, this model can easily be adapted for classification by placing a discrimi-
native prior over the latent space, instead of the flat Gaussian prior. This has been firstly
explored in [15], where a prior based on Linear Discriminant Analysis (LDA) is used.
LDA tries to maximize between-class separability and minimize within-class variability
by maximizing

J(X) = tr(S−1
w Sb), (5)

where Sw and Sb are the within- and between-class matrices:

Sw =

L∑
i=1

Ni
N

[
1

Ni

Ni∑
k=1

(x
(i)
k −Mi)(x

(i)
k −Mi)

T

]
, (6)

Sb =

L∑
i=1

Ni
N

(Mi −M0)(Mi −M0)
T (7)

where X(i) = [x
(i)
1 , . . . , x

(i)
Ni

] are the Ni training points from class i, Mi is the mean of
the elements of class i, and M0 is the mean of the training points from all the classes.
The function in (5) is then used to define a prior over the latent positions, which is given
by

p(X) =
1

Zd
exp

{
− 1

σ2
d

J−1

}
, (8)

where Zd is a normalization constant and σd represents a global scaling of the prior.
By replacing the Gaussian prior in (3) with the prior in (8) we obtain the Discrimina-
tive GPLVM [15]. The authors also proposed a non-linear version of the prior based
on Generalized Discriminant Analysis (GDA). Note, however, that in both cases, the
dimension of the latent space is at most C, where C is the number of classes (see [18]
for more details).

The limitation of the above-defined discriminative prior is overcome in the GP La-
tent Random Field (GPLRF) model [18], where the authors proposed a prior based
on Gaussian Markov Random Field (GMRF) [19]. Specifically, an undirected graph
G = (V, E) is constructed, where V = {V1, V2, . . . , VN} is the node set, with node Vi
corresponding to a training example xi. E = {Vi, Vj}i,j=1...N is the edge set with xi
and xj belonging to the same class, and i 6= j. By pairing each node with the random
vector X∗k = (X1k,X2k, . . . ,XNk)

T (for k = 1, 2, . . . , q), we obtain a Markov ran-
dom field over the latent space. We next associate each edge with a weight 1 to build a
weight matrix

Wij =

{
1 if xi and xj , i 6= j, belong to the same class
0 otherwise.

(9)

The graph Laplacian matrix [20] is then defined as L = D−W, where D is a diagonal
matrix with Dii =

∑
jWij . Finally, using L, the discriminative GMRF prior is defined
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as

p(X) =

q∏
k=1

p(X∗k) =
1

Zq
exp

[
−β
2

tr(XTLX)

]
, (10)

where Zq is a normalization constant and β > 0 is a scaling parameter. The term
tr(XTLX) in the discriminative prior in (10) reflects the sum of the distances between
the latent points from the same class, resulting in the latent points from the same class
having higher p(X). Thus, with the GMRF prior in (3) we penalize more the latent
spaces that are less discriminative in terms of the target classes.

3 Discriminative Shared GPLVM (DS-GPLVM)

The D-GPLVM from the previous section is applicable only to a single observation
space. In this section, we generalize the D-GPLVM so that it can simultaneously learn
a discriminative manifold of multiple observation spaces. This is attained by using the
framework for learning the shared manifold of multiple observation spaces ([21, 22]),
and by introducing a multi-view discriminative prior for the shared manifold. We as-
sume in our approach that the multiple observation spaces are dependent, so that a
single discriminative shared manifold can be used for their reconstruction. In the case
of multi-view facial expression data, we expect this assumption to hold, since the ap-
pearance of facial expressions captured at different views changes mainly because of
the view variation. Thus, the goal of learning their shared manifold is to perform the
simultaneous alignment of facial-expression-related features from different views.

3.1 Shared-GPLVM

Recently, the Shared-GPLVM [21–23] has been proposed for learning a shared latent
representation X that captures the correlations among different sets of corresponding
features Y = {Y1, . . . ,YV }, where V is the number of different feature sets (in our
case, different views). This is achieved by modifying the standard GPLVM so that it can
learn V Gaussian Processes, each generating one observation space from the shared la-
tent space. Specifically, the joint marginal likelihood of the set of the observation spaces
is given by

p(Y1, . . . ,YV |X, θs) = p(Y1|X, θY1
) . . . p(YV |X, θYV

), (11)

where θs = {θY1 , . . . , θYV
} are the kernel parameters for each observation space, and

the kernel function is defined as in (2). The shared latent space X is then found by min-
imizing the joint negative log-likelihood penalized with the prior placed over the shared
manifold, and is given by

Ls =
∑
v

L(v) − log(P (X)) (12)

where L(v) is the negative log-likelihood of each of the observation spaces and is given
by

L(v) =
D

2
ln |Kv|+

1

2
tr(K−1

v YvY
T
v ) +

ND

2
ln 2π, (13)
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where Kv is the kernel matrix associated with the input data Yv . As in GPLVM model,
Shared-GPLVM uses the flat Gaussian prior for the latent positions.

3.2 Discriminative Shared-space Prior

To learn a discriminative shared space, we introduce a discriminative shared-space prior.
Similarly as in the GMRF prior defined in (9) for the single view, we first construct the
weight matrix W for each view but by using data-dependent weights, which are ob-
tained by applying the heat kernel to the data from each view as

W
(v)
ij =

exp
(
−t(v)‖y(v)

i − y
(v)
j ‖

2)
if yi and yj , i 6= j, belong to the same class

0 otherwise.
(14)

where y
(v)
i is the i-th sample of the Yv from the v-th view and t(v) is the correspond-

ing kernel parameter. The graph Laplacian for each observed data space is obtained as
L(v) = D(v)−W(v), where D(v) is a diagonal matrix with D

(v)
ii =

∑
jW

(v)
ij . Because

the graph Laplacians from different views vary in their scale, we use the normalized
graph Laplacian given by

L
(v)
N = D−1/2

v L(v)D−1/2
v = I−W

(v)
N , (15)

where W
(v)
N is the normalized similarity matrix defined as

W
(v)
N = D−1/2

v W(v)D−1/2
v . (16)

Since the elements of W(v)
N and L

(v)
N now have the same scale for all views, they can

be combined in the joint graph Laplacian as

L̃ = L
(1)
N + L

(2)
N + . . .+ L

(V )
N =

∑
v

L
(v)
N , (17)

With the graph Laplacian in (17), we define the discriminative shared-space prior as

p(X) =

V∏
v=1

p(X|Yv)
1
V =

1

V · Zq
exp

[
−β
2
tr(XT L̃X)

]
, (18)

where, as in (10), Zq is a normalization constant and β > 0 is a scaling parameter that
controls the penalty level incurred by the shared prior. The prior in (18) is the geomet-
ric mean of the discriminative priors for each of the target views. As a result, this prior
prefers the discriminative shared manifold that maximizes, on average, class-separation
of the data from all the views.

3.3 DS-GPLVM: Learning

The learning of the model parameters consists of minimizing the negative log-likelihood
subject to the unknown parameters. By combining (12) and (18), we arrive at the fol-
lowing minimization problem

min
X,θs

Ls = min
X,θs

∑
v

L(v) +
β

2
tr(XT L̃X), (19)



Lecture Notes in Computer Science 7

where L(v) is given by (13) for each view. To minimize Ls, we use the conjugate-
gradients algorithm [17] with the gradient of (19) w.r.t. the latent positions X given by

∂Ls
∂X

=
∑
v

∂L(v)

∂X
+ βL̃X, (20)

where we apply the chain rule to the log-likelihood of each view, i.e., ∂L
(v)

∂X = ∂L(v)

∂Kv

∂Kv

∂xij
,

and
∂L(v)

∂Kv
=
D

2
K−1
v −

1

2
K−1
v YvY

T
v K

−1
v . (21)

The gradients of (19) w.r.t. the kernel parameters θs are derived in the same way as for
the latent positions. The parameters t(v) of the heat kernel in the prior are set using a
cross-validation procedure, in order to avoid ‘filtering out’ the prior by the employed
minimization approach. Finally, the weight of the prior β is set using a cross-validation
procedure designed to optimize the classification performance of the classifier learned
in the shared manifold, as explained in Sec. 4.

3.4 DS-GPLVM: Inference

To perform the inference of a test point from view v = 1 . . . V , y(v)
i , we need first to

learn inverse mappings from the observation space Yv to the shared space X [24]. This
is attained by learning (separately for each view) the following mapping functions

xij = g
(v)
j (y

(v)
i ;a) =

N∑
m=1

a
(v)
jmk

(v)
bc (y

(v)
i − y(v)

m ), (22)

where xij is the j-th dimension of xi, and g(v)j is modeled using kernel ridge regression
over Yv for each dimension and each view. To obtain the smooth inverse mapping, we
apply the RBF kernel to each dimension of the training data as

k
(v)
bc (y

(v)
i − y(v)

m ) = exp(−γv
2
‖y(v)

i − y(v)
m ‖2), (23)

where γv are the kernel inverse width parameters for each observation space v. The
weight parameters A(v) of the kernel ridge regression are found in the closed form as

A(v) = XT (K
(v)
bc + λI)−1, v = 1 . . . V, (24)

where K
(v)
bc is the kernel matrix computed over the training data from view v. The reg-

ularization term λI helps to stabilize the inverse numerically by bounding the smallest
eigenvalues of the kernel matrix away from zero. Note that learning and inference of
the models presented in Sec. 2 can be performed following the same procedure with the
one explained in this section, using only a single view as input. Finally, once the test
sample is projected onto the shared manifold, a classification of the target facial expres-
sions can be accomplished by using different classifiers trained on the shared manifold.
In this paper, we employ the linear k-NN classifier.
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4 Experiments

We evaluate the performance of the proposed DS-GPLVM on real-world images from
the MultiPIE [25] dataset. We use facial images of 270 subjects displaying facial ex-
pressions of Neutral (NE), Disgust (DI), Surprise (SU), Smile (SM), Scream (SC) and
Squint (SQ) captured at pan angles −30◦, −15◦, 0◦, 15◦ and 30◦, resulting in 1500
images per pose. For every image we picked the flash from the view of the correspond-
ing camera in order to always have the same illumination. The images were cropped to
have equal size 140×150, and annotations of the locations of 68 facial landmark points
were provided by [26], which were used to align the facial images in each pose. From
each aligned facial image, we extracted LBPs, with radius 2, resulting in 59 bins. We
use LBPs since they have been shown to perform well in facial expression recognition
tasks [6]. For the experiments, we used the following three sets of features: (I) facial
landmarks (the 68 landmark points), (II) full appearance features (LBPs extracted from
the whole face image), and (III) part-based appearance features (LBPs extracted from
the facial patches (of size 15× 15)) extracted around the facial landmarks.

To reduce the dimensionality of the input features, we applied PCA, resulting in
20 and 70 dimensional inputs for feature sets (I) and (II-III), respectively. Throughout
the experiments, we fix the size of the latent space of the tested models to the value
for which we obtained the best performance (we used 5D space for the proposed DS-
GPLVM). For the kernel methods, we used the RBF kernel with the width parameter
set using a validation procedure, as done in [15]. The optimal weight for the prior β
was found by another validation procedure, as done in [15]. To report the accuracy of
facial expression recognition, we use the classification rate, where the classification is
performed using 1-NN classifier for all the tested methods. In all our experiments, we
applied 5-fold subject-independent cross-validation procedure.

We compared the DS-GPLVM to the state-of-the-art single- and multi-view meth-
ods. The baseline methods include: 1-nearest neighbor (1-NN) classifier trained/tested
in the original feature space, LDA, supervised LPP, and their kernel counterparts, the
D-GPLVM [15] with the GDA-based prior, and the GPLRF [18]. These are well-known
methods for supervised dimensionality reduction applicable to single observation space.
We also compared DS-GPLVM to the state-of-the-art methods for multi-view learning,
the multi-view extensions of LDA (GMLDA), and LPP (GMLPP) [27].

The evaluation of the tested models is conducted using the data from all poses for
training, while testing is performed ‘pose-wise’, i.e., by using the data from each pose
separately. The same strategy was used for evaluation of the multi-view techniques i.e.,
GMLDA and GMLPP. Table 1 summarises the results for the three sets of features, av-
eraged across the poses. Interestingly, LDA and LPP achieve high performance on the
feature set (I). We attribute this to the fact that when points are used as the inputs, suffi-
ciently discriminative pose-wise manifolds can be learned using the linear models. This
is because the facial points of different subjects are well aligned, and subject-specific
factors, that are present in the texture features, are filtered out. Furthermore, these mod-
els outperform (on average) their kernel counterparts (D-GPLVM and GPLRF), and
their multi-view extensions (GMLDA and GMLPP) possibly due to the overfitting of
these models. Yet, the proposed DS-GPLVM outperforms its ‘single-view’ counterpart
(i.e., GPLRF), which we ascribe to its learning of the shared manifold, that, evidently,
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Table 1. Pose-wise FER. Average classification accuracy across all views on MultiPIE database
for the three different type of features. DS-GPLVM was trained across all available views and
the presented results correspond to back projections from each view to the shared latent space.
LDA and LPP are linear models, and they perform well on the facial points. However, they are
outperformed by the kernel methods on the appearance features, with the proposed model per-
forming similarly or better than the other kernel-based models. The reported standard deviation
is computed from the average results for each view.

Methods
Features

I II III
kNN 77.22 ± 5.18 61.46 ± 4.09 81.25 ± 2.62
LDA 88.47 ± 8.38 72.28 ± 3.99 85.47 ± 3.07
LPP 88.40 ± 7.99 71.94 ± 4.21 85.51 ± 3.04

D-GPLVM 84.98 ± 5.48 73.64 ± 4.90 84.27 ± 2.43
GPLRF 87.58 ± 5.02 76.89 ± 4.26 86.91 ± 2.81

GMLDA 83.25 ± 6.64 70.89 ± 5.25 84.73 ± 3.09
GMLPP 80.07 ± 3.89 66.28 ± 3.62 82.03 ± 2.45

DS-GPLVM 88.83 ± 5.30 77.32 ± 3.42 87.51 ± 2.02

enhances the classification across all poses. It also performs similarly to the linear mod-
els on the feature set (I) but with significantly lower standard deviation, meaning that
it achieves more consistent recognition across views. When appearance features are
used, learning of the discriminative low-dimensional manifolds is more challenging, as
mentioned above. However, the proposed DS-GPLVM achieves similar or better accu-
racy compared to other single- and multi-view methods due to its successful unraveling
of the non-linear manifold shared across different views. Although for these features
the results of DS-GPLVM are slightly better than those obtained by GPLRF, the latter
learns separate classifiers for each view, in contrast to the DS-GPLVM that uses a single
classifier. Note also that the DS-GPLVM retains relatively small variance across poses
and feature sets, which makes it more reliable for multi-view recognition.

From Table 1, the feature set (I) achieves slightly better results than feature set (III),
however, it is less stable since it results in high standard deviation by all tested mod-
els. Considering this, and since we want to test the effectiveness of the proposed model
on handling non-linear correlations across the views, we proceed with the experiments
on the feature set (III). Table 2 shows the performance of the tested models across all
poses for feature set (III). It is evident that in this scenario the proposed DS-GPLVM
performs consistently better than the other models across most of the views. It is im-
portant to note that although GPLRF slightly outperforms DS-GPLVM in ±30◦ pose,
the DS-GPLVM significantly outperforms the GPLRF model in the frontal pose, which
is the most difficult for expression classification. Again, we attribute this to the fact that
DS-GPLVM performs classification in the shared manifold, which, evidently, augments
the classification in the frontal pose by using information learned from the other poses.

Finally, we compare on MultiPIE the DS-GPLVM to the sate-of-the-art methods for
multi-view facial expression recognition. The results of [4] are obtained from the cor-
responding paper. To compare our method with [12], we extracted dense SIFT features
from the same images we used from MultiPIE. The resulting features were then fed
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Table 2. Pose-wise FER. Classification accuracy for the MultiPIE dataset across all views for the
best feature set, (III). DS-GPLVM was trained using data from all the views. The results are for
the back-projections from each view to the shared latent space. The reported standard deviation
is across the 5 folds.

Methods
Poses

−30◦ −15◦ 0◦ 15◦ 30◦

kNN 82.82 ± 0.019 82.43 ± 0.017 76.59 ± 0.034 82.06 ± 0.017 82.37 ± 0.017
LDA 86.62 ± 0.014 87.42 ± 0.015 80.03 ± 0.014 87.11 ± 0.015 86.17 ± 0.012
LPP 86.81 ± 0.014 87.35 ± 0.013 80.09 ± 0.018 86.86 ± 0.017 86.43 ± 0.011

D-GPLVM 84.67 ± 0.017 86.61 ± 0.020 80.36 ± 0.017 85.89 ± 0.019 83.86 ± 0.017
GPLRF 87.73 ± 0.026 88.87 ± 0.020 81.94 ± 0.025 88.16 ± 0.022 87.83 ± 0.025

GMLDA 86.03 ± 0.019 86.57 ± 0.016 79.23 ± 0.021 86.16 ± 0.011 85.68 ± 0.018
GMLPP 81.65 ± 0.036 84.61 ± 0.038 78.52 ± 0.034 84.14 ± 0.034 81.25 ± 0.029

DS-GPLVM 87.58 ± 0.008 89.34 ± 0.007 84.12 ± 0.013 89.07 ± 0.006 87.65 ± 0.009

into the SVM classifier, as done in [12]. We also compared our model to [9], where the
authors perform pose normalisation of the facial points, which are then classified using
the SVM classifier. Table 3 shows comparative results. Note that the methods in [4] and
[12] both fail to model correlations between different views, which results either in a
huge gap between the accuracy across poses (e.g., [4]) or in a performance bounded by
the one achieved in the frontal pose (e.g., [12]). The latter is a product of the sparsifica-
tion, since the frontal view contains more (redundant) information due to the symmetry
of the face. The method in [9] models relations between the poses through the normal-
ization to the frontal pose, however, it achieves significantly better performance in the
non-frontal poses after the alignment, an evidence which proves that the used features
are more discriminative in the non-frontal views, a fact that was also experienced in
[4]. The proposed DS-GPLVM has comparable performance and better than that of the
rest of the methods across all the views. Again, we attribute this to the shared manifold,
which augments the classification of the under-performing views (mostly in the frontal
view). Another worth mentioning fact is that the reported results for our DS-GPLVM are
attained using KNN, while for the rest methods we used the linear SVM (a more power-
ful classifier), as stated in the corresponding papers. The reason we employed KNN is to
avoid another cross-validation procedure for parameter tuning. However, our pilot study
showed that the performance of the proposed model can be improved by using the SVM.

Table 3. The comparison of tested methods on the MultiPIE database. Our DS-GPLVM, when us-
ing the feature set (III), outperforms the state-of-the-art methods for multi-view facial expression
recognition. The reported standard deviation is across 5 folds.

Methods
Poses

0◦ 15◦ 30◦

LGBP [4] 82.1 87.3 75.6
Sparse [12] 81.14 ± 0.009 79.25 ± 0.016 77.14 ± 0.019

CGP [9] 80.44 ± 0.017 86.41 ± 0.013 83.73 ± 0.019
DS-GPLVM 84.12 ± 0.013 89.07 ± 0.006 87.65 ± 0.009



Lecture Notes in Computer Science 11

67.8 2.8 0.5 6.8 21.8 0.0

1.7 92.5 0.0 3.4 1.7 0.3

0.1 0.0 98.6 0.4 0.2 0.5

3.7 6.2 0.0 87.8 1.3 0.7

16.7 1.3 0.3 2.1 79.4 0.0

0.0 0.3 0.6 3.9 0.1 94.9

DI

NE

SC

SM

SQ

SU

DI NE SC SM SQ SU

67.312.4 0.4 3.0 16.5 0.1

4.0 84.9 0.0 4.7 5.8 0.2

0.1 0.0 96.9 1.1 1.1 0.6

1.1 7.0 0.4 89.3 1.2 0.8

18.0 7.2 0.0 4.9 69.7 0.0

0.3 1.8 0.8 8.2 0.8 88.0

DI

NE

SC

SM

SQ

SU

DI NE SC SM SQ SU

73.4 6.8 1.4 4.3 13.6 0.1

2.5 89.2 0.1 5.4 1.3 1.0

1.1 0.2 94.5 1.0 0.5 2.4

3.5 8.1 0.1 85.0 1.7 1.4

27.413.7 1.0 12.245.1 0.5

2.3 6.5 6.1 6.6 0.0 78.2

DI

NE

SC

SM

SQ

SU

DI NE SC SM SQ SU

(a) DS-GPLVM (b) CGP (c) Sparse

Fig. 2. Comparative confusion matrices for facial expression recognition over all angles of view
for the (a) DS-GPLVM, (b) CGP and (c) Sparse.

In Fig. 2, we show the confusion matrices for different models trained/tested using
the feature set (III). The main source of confusion are the facial expressions of Disgust
and Squint. This is because they are characterized by similar appearance changes in the
eyes’ region. However, the proposed DS-GPLVM improves significantly the accuracy
on Squint, compared to the other models. Again, this is because the classification is
performed on the shared manifold, which topology is preserved discriminative based
on the most informative views.

5 Conclusion

The introduced DS-GPLVM learns a discriminative shared manifold optimized for clas-
sification of facial expressions from multiple views. This model is a generalization of
existing discriminative latent variable models that learn the manifold of a single obser-
vation space. As evidenced by our results on the real data from the MultiPIE dataset,
modeling the manifold shared across different views improves ‘per-view’ classifica-
tion of facial expressions. Also, the proposed approach outperforms the state-of-the-art
methods for supervised multi-view learning, as well as the state-of-the-art methods for
multi-view facial expression recognition.
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