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Abstract—Facial expression is one of the most important
non-verbal behavioural cues in social signals. Constructing an
effective face representation from images is an essential step
for successful facial behaviour analysis. Most existing face de-
scriptors operate on the same scale, and do not leverage coarse
v.s. fine methods such as image pyramids. In this work, we
propose the sparse appearance descriptors Block-based Pyra-
mid Local Binary Pattern (B-PLBP) and Block-based Pyramid
Local Phase Quantisation (B-PLPQ). The effectiveness of our
proposed descriptors is evaluated by a real-time facial action
recognition system. The performance of B-PLBP and B-PLPQ
is also compared with Block-based Local Binary Patterns (B-
LBP) and Block-based Local Phase Quantisation (B-LPQ) .
The system proposed here enables detection a much larger
range of facial behaviour by detecting 22 facial muscle actions
(Action Units, AUs), which can be practically applied for social
behaviour analysis and synthesis. Results show that our proposed
descriptor B-PLPQ outperforms all other tested methods for the
problem of FACS Action Unit analysis and that systems which
utilise a pyramid representation outperform those that use basic
appearance descriptors.

I. INTRODUCTION

Traditional computer interfaces usually emphasise the trans-
mission of explicit messages whilst ignoring implicit infor-
mation about the user. Thus the interaction could be forced
and unnatural. The next generation of Human-Computer In-
teraction (HCI) and Interface will be able to perceive and
understand human user’s intentions and emotions as com-
municated by social and affective signals. Social signals are
manifested through a multiplicity of non-verbal behavioural
cues including facial expressions, body postures and gestures,
vocal outbursts etc [12]. Therefore, automated analysis of non-
verbal behaviour, and especially of expressive facial behaviour,
is increasingly attracting attention.

The Facial Action Coding System (FACS) is the best
known and most commonly used system developed for human
observers to describe facial activities. The coding system de-
fines atomic facial muscle actions called Action Units (AUs).
With FACS, every possible facial expression (emotional or
otherwise) can be described as a combination of AUs. For
instance, an expression typically associated with happiness
contains AU6 and AU 12 and sadness contains AU1, AU4
and AU15. As AUs are independent of interpretation, they can
be used for any higher order decision making process such as
cognitive states like interest and puzzlement, social behaviours
like agreement and disagreement, social signals like status,
trustworthiness and so on. Researchers have employed FACS

to study everything from deception detection to data-driven
for avatars. Recently, FACS has been adopted by computer
animators in commercials.

A major factor which impedes the widespread use of FACS
is the time required both to train human experts and to
manually score the video tape [3]. An automatic Facial Action
Recognition System (FARS) could vastly increase the amount
of data a psychologist could analyse. As a tool for building an
advanced user-interface, real-time performance is an essential
property. Long delays make the interaction desynchronised
and less efficient [12]. Hence it is crucial to find a trade-off
between accuracy and efficiency. Though much progress has
been made, robust real-time facial expression analysis remains
difficult due to its subtlety, complexity, and variability [14].

Constructing an effective facial representation from face
images is an essential step for successful facial expression
recognition. Traditionally the feature extraction approaches
may be divided into two streams: geometric feature-based
methods and appearance-based methods. Geometric feature
based methods employ the geometrical properties of a face.
On the other hand, changes in image texture such as those
created by wrinkles, bulges, and changes in feature shapes
are captured by appearance based features. Typical examples
include Gabor filters and Haar-like filters.

Local Binary Pattern (LBP) and Local Phase Quantisa-
tion (LPQ) are effective appearance descriptors which have
been successfully applied in texture classification and face
analysis. They are local appearance descriptors, which means
they are able to capture subtle appearance changes. This
is vital in facial expression recognition. Moreover, LBP is
tolerant to illumination changes and efficient to compute,
and LPQ is blur-invariant. These are desirable properties for
real-time applications. The feasibility of LBP and LPQ for
facial expression recognition has been shown in many existing
works. Shan et al. [14] demonstrated promising performance in
compressed low-resolution video sequences captured in real-
world environments by using LBP. LBPs are also used to
study multi-view facial expression recognition by Moore and
Bowden [8]. Yang and Bhanu [17] won the Facial Recognition
and Analysis challenge (FERA2011) - Emotion recognition
sub-challenge - by using both LBP and LPQ features. LBP
and LPQ have previously been applied to AU detection by the
authors of this paper [6].

Pyramid transform is an effective multi-resolution analysis
approach. There are a number of works extending the conven-



tional descriptors to the pyramid transform domain. Yang et
al. [4] proposed a new pyramid Gabor features for emotion
recognition. The work from [2] applied a pyramid Histogram
of Oriented Gradients (PHOG) for smile recognition. Recently,
Qian et al. [13] extended the conventional LBP to the pyramid
transform domain called Pyramid Local Binary Pattern (PLBP)
for texture classification and face recognition, which showed
satisfactory performances with low computational costs.

However, as the PLBP descriptor is effectively a histogram
of the PLBP patterns taken over the entire face image, it
only captures global appearance statistics, thus removing all
information regarding shape. To re-introduce a measure of
shape in our appearance descriptor while maintaining its shift
and scale robustness, we present an adapted version of PLBP
called Block-based PLBP (B-PLBP), which we applied to the
problem of AU detection. Similarly, B-PLPQ is proposed to
investigate the merits of this representation.

The effectiveness of these descriptors is evaluated by a fully
automatic AU detection system and tested on the expression
data which are collected from the MMI database[15]. Fig. 1
shows an overview of the proposed system. In order to detect
the upper and lower face AUs, we adopted Support Vector
Machine (SVM) classifiers, one for each AU, which are trained
on a subset of the most informative features selected by
GentleBoost. To extract these appearance features, we first find
the face in the input static image using an adapted version of
the Viola and Jones face detector [16]. The C++ code of the
face detector runs at about 500 Hz on a 3.2-GHz Pentium
4. Next the detected face images are registered to remove
head rotations and scale variations by using the OpenCV
implementation of an object detector to locate the eyes. Based
on that, the face image is scaled to fix the distance between
the eye locations, and then cropped to be 200 by 200 pixels.
After that, the registered image is divided into small blocks
and the B-LBP, B-LPQ, B-PLBP and B-PLPQ features are
extracted. The histograms from all blocks are concatenated to
form a single feature vector.

Our key contributions are threefold. First, we propose block-
based pyramid local binary pattern and local phase quantisa-
tion (B-PLBP, B-PLPQ). Secondly, the proposed appearance
descriptors are applied to AU detection. Finally, the experi-
mental results show that B-PLPQ outperforms the three other
descriptors for FACS AU analysis in terms of recognition
accuracy.

The remainder of this paper is organised as follows. Section
II briefly describes the basic principle of static appearance
descriptors LBP, LPQ, and our proposed extensions B-PLBP
and B-PLPQ. Section III presents the classification technique
used in this work and the different kernels tested, while the
evaluation procedures and test results are given in Section IV.
Section V provides the conclusions of our research.

II. FEATURE EXTRACTION

Recognising facial expressions from static images is a more
challenging problem than from image sequences, as less
information about expressive actions is available. For example,

Fig. 1. The outline of our proposed system

without a neutral reference frame, it is impossible to tell from
a still image whether the appearance of the eyebrows indicates
a neutral expression, or that the brows are slightly raised. Still,
often a single image can provide enough information for AU
detection. In this section we explain how we combine the
pyramid transform with a sub-division of the image space to
derive our Block-based pyramid features.

A. Local Binary Patterns

Local Binary Patterns (LBP) were first introduced by Ojala
et al. in [9], and proved to be a powerful means of texture
description. The operator labels each pixel by thresholding a
3× 3 neighbourhood of each pixel with respect to the centre
value. Converting the 8-bit pattern to a decimal number, a
256-bin histogram of the LBP labels computed over a region
is used as a texture descriptor.

A LBP is called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the binary string
is considered circular [10]. Using only uniform LBPs greatly
reduces the length of the feature vector. The number of
possible patterns for a neighbourhood of 8 pixels is 256 for
the basic LBP but only 59 for uniform LBP. Hence, in this
work we adopt uniform LBPs.

The occurrence of the uniform patterns over a region is
recorded by a histogram. After applying the LBP operator to
an image, a histogram of the labelled image f(x, y) can be
defined as

Hi =
∑
x,y

I(f(x, y) = i), i = 0, ..., n− 1 (1)

where n is the maximum label number produced by the LBP
operator and I(A) is the indicator function, which returns 1
if A is true, and 0 otherwise.

For B-LBP, a face is divided into m×n local regions, from
which LBP histograms are extracted and then concatenated
into a single, spatially enhanced feature histogram. Many
extensions are made for conventional LBP descriptors. Refer
to [5] for an extensive overview of LBP-based descriptors.



B. Local Phase Quantisation

The Local Phase Quantisation (LPQ) operator was origi-
nally proposed by Ojansivu and Heikkila as a texture descrip-
tor that is robust to image blurring [11]. The descriptor uses
local phase information extracted using the 2-D DFT or, more
precisely, a short-term Fourier transform (STFT) computed
over a rectangular M-by-M neighbourhood Nx at each pixel
position x of the image f(x) defined by

F (u, x) =
∑

y∈Nx

f(x-y)e−j2πuT y = wTu fx (2)

where wu is the basis vector of the 2-D DFT at frequency u,
and fx is the vector containing all M2 samples from Nx.

The STFT is efficiently evaluated for all image positions
x ∈ {x1, ..., xN} using simply 1-D convolutions for the
rows and columns successively. The local Fourier coeffi-
cients are computed at four frequency points: u1 = [a, 0]T ,
u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where
a is a sufficiently small scalar (a = 1/M in our exper-
iments). For each pixel position this results in a vector
Fx = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)]. The phase in-
formation in the Fourier coefficients is recorded by examining
the signs of the real and imaginary parts of each component
in Fx. This is done by using a simple scalar quantiser

qj =

{
1 if gj ≥ 0 is true
0 otherwise (3)

where gj(x) is the jth component of the vector Gx =
[Re{Fx}, Im{Fx}]. The resulting eight bit binary coefficients
gj(x) are represented as integers using binary coding:

fLPQ(x) =

8∑
j=1

qj2
j−1. (4)

As a result, a histogram of these values from all positions
is composed and used as a 256-dimensional feature vector in
classification.

It can be shown that in quantisation the information is
maximally preserved if the samples to be quantised are
statistically independent [11]. In practice, the neighbouring
pixels are highly correlated in real images, which will lead
to dependency between the Fourier coefficients gj which are
quantized in LPQ. Therefore Ojansivu et al. [11] improve LPQ
by introducing a simple de-correlation mechanism. This is
what we adopted in this work. For more details, please refer
to [11]. The B-LPQ features are extracted in a similar way
to LBP histograms from non-overlapping rectangular regions
and concatenated into a feature vector.

C. Block-based pyramid representation

The block-based representation of local texture descriptors
was first proposed by Ahonen et al. [1]. They divided face
images into m×n local regions, from which LBP histograms
can be extracted, and then concatenated them into a histogram.
The resulting histogram encodes both the local texture and
global shape of face images [5]. Also it is more robust to shift.

Fig. 2. The block-based pyramid representation

This scheme has been adopted in most existing studies for face
representation (e.g. [6], [14]). However, some researchers are
critical of this approach, suggesting that the subregions are not
necessarily well aligned with facial features and the resulting
facial description depends on the chosen window size and the
position of these subregions [5].

Qian et al. [13] extended the conventional LBP to the
pyramid transform domain. By cascading the LBP informa-
tion obtains from a hierarchical spatial pyramid, PLBP takes
texture resolution variations into account. They comprehen-
sively compared PLBP with other LBP extensions for texture
classification. They claimed that PLBP combines satisfactory
performance with low computational cost. Different from tex-
ture analysis, the face can be seen as a composition of micro-
patterns. However, a histogram computed over the whole
image represents only the global distribution of the patterns
thus the local information has been ignored.

Motivated by these ideas and in order to find a trade-off
between robustness and sensitivity, we propose two novel
descriptors B-PLBP and B-PLPQ which capture pixel-level,
region-level and structure-level information for face represen-
tation. The face image is represented in an image pyramid by
different spatial resolutions, e.g. 200 × 200, 100 × 100 and
50 × 50. Each pixel in the higher spatial pyramid levels is
obtained by down sampling from its adjacent low-pass filtered
high resolution image. Hence in the low resolution images, a
pixel corresponds to a region in its high-resolution equivalent.
For each pyramid level, the image is divided into regions.
The dense appearance descriptor features extracted from each
region, and each level of the pyramid, are concatenated into
a single, spatially enhanced feature histogram (see Fig. 2).
The final histogram is used as a feature vector to represent
face image. A fixed size of window has been used. As shown
in Fig. 2, the blocks in each level encodes different spatial
information.

We have considered two ways of dividing regions in each
pyramid level. One is to keep the number of blocks in each
level fixed. However, that makes the block size smaller in each
layer which, and results in capturing too detailed information.
Therefore we decide to keep the size of each block constant.



In this configuration, three levels of locality are captured:
the LBP/LPQ labels for histogram contains information about
the patterns on a pixel level, the histogram computed over a
block produces regional level and concatenating histograms
from each region and each level encodes global and structural
information.

In our experiments, a three level pyramid model and a
region size of 25 × 25 pixels is used. That is, the different
resolution face images are divided into 8 × 8, 4 × 4, 2 × 2
blocks respectively (see Fig. 2).

III. CLASSIFICATION

A previous successful technique to facial expression classi-
fication is Support Vector Machine (SVM). In this work, we
adopted SVM as classifiers for AU detection. Given a training
set of labelled examples {(xi, yi), i = 1, ..., l}, where xi ∈ Rn
and yi ∈ {1,−1}, a new test example x is classified by the
following function:

f(x) = sgn(

l∑
i=1

αiyiK(xi,x) + b) (5)

where sgn function returns the sign of y, i.e. either 1 or -1, αi
are Lagrange multipliers of a dual optimisation problem that
describe the separating hyperplane, K() is a kernel function,
and b is the threshold parameter of the hyperplane. Performing
an implicit mapping of data into a higher dimensional feature
space, which is defined by the kernel function, the training
process is achieved by finding a linear separating hyper-plane
with the maximal margin (M) to separate data in this higher
dimensional space. The most frequently used kernel functions
are the linear, polynomial, and Radial Basis Function (RBF).
Recently, Maji et.al [7] proposed a histogram intersection
kernel SVMs (IKSVMs). As our proposed descriptors are all
histogram-based, we expect that this kernel is well-suited in
our problem. To test this hypothesis, preliminary experiments
are conducted. Results will be presented in Section IV-D.

The kernels we compared are the following:
• Linear kernel: K(xi,xj) = xi · xj ;
• Polynomial kernel: K(xi,xj) = (xi · xj)d;
• RBF kernel: K(xi,xj) = exp(−‖xi−xj‖2

2σ2 );
• Histogram intersection kernel:
K(xi,xj) =

∑
kmin(Xi(k),Xj(k)).

IV. EVALUATION

A. Training data selection

In [6], the authors proposed a heuristic approach to select
data for training. It is noted that when more than one AU is
activated, facial actions can appear very different from when
they occur in isolation. For example, AU1 and AU2 pull the
brow up, whereas AU4 pulls the brows together and down
using primarily the corrugators muscle at the bridge of the
nose. The appearance of AU4 changes dramatically depending
on whether it occurs alone or in combination with AU1 and
AU2. In order to capture the appearance of each action unit
as fully as possible and thus build a richer data space, the

Fig. 3. The criterion of static data selection. The shaded areas are included
in the dataset

Fig. 4. The (normalised) percentage of feature selected from each pyramid
level, trained on the entire MMI database (the level 1 has the highest
resolution)

heuristic approach takes in every video the first apex frames
of each target AU, and all the apex frames where any other
upper face AUs are in onset or offset (see Fig. 3). The shaded
parts are the frames selected.

B. Feature selection

In order to select the most informative features, the Gentle-
Boost algorithm is employed as a feature selector preceding
each classifier. At each stage a weak classifier is trained on a
subset of the data consisting of a single feature and iteratively
boosted to a strong classifier of higher accuracy. At each
iteration, the weak classifier which minimises the weighted
error rate is selected, and the feature that this weak classifier
represents is added to the list of selected features.

Fig. 4 illustrates the distribution of feature selected from
each pyramid level. As we expected, most features are selected
from the level with most detail and fewer features from the
low resolution images. This can be explained in two ways:
the higher resolution images result in more candidate features
(as shown in the normalised distribution) , and they potentially
capture more detail. Still, there are features selected even from
the highest pyramid level for all tested AUs.

C. Comparison Setup

We evaluated the four appearance descriptors on 442 videos
taken from the MMI database. In order to compare different
approaches, the same evaluation process is performed. As this
is a user independent system for FACS AU detection, the eval-
uation is done in a subject independent manner. Generalisation
to new subjects is tested using 10-fold cross validation, where
all videos are divided into ten subsets without mixing subjects.



Fig. 5. The mean and standard deviation of the 2AFC scores over
upper face AUs by using different block sizes tested on the MMI
database. The number above each bar indicates the dimensionality of
the features

At each iteration, nine of them are used to create training set
and one is testing set used for testing. Hence no data from a
subject appears in both the training and testing set.

The performance measure used in this work is the area under
the ROC curve. By using the signed distance of each sample to
the SVM hyper-plan and varying a decision threshold, we plot
the hit rate (true positives) against the false alarm rate (false
positives). The area under this curve is equivalent to percent
correct in a 2-alternative forced task (2AFC) [3], which can
be computed efficiently.

For each AU, we use only features extracted from either
the upper or lower face, depending on whether the target AU
causes appearance changes in the upper or lower face.

D. Experimental results

1) Block size optimisation: We conducted preliminary ex-
periments to optimise the block size for B-LBP and B-LPQ.
As shown in Fig 5, grid sizes of 4×4, 8×8 and 10×10 were
tested. Unsurprisingly, for B-LBP, better results are attained
when employing smaller block sizes. This is because subtle
changes can be captured. This trend contrasts sharply with
that of LPQ, where fewer grids produce better results. The
reason for that lies in the way the LPQ features are extracted.
As opposed to LBP, the local phase information is extracted
after applying a Fourier Transform which means that even in
a large region, the local information is still preserved.

2) Kernel functions: Fig 6 shows the average 2AFC scores
performed with LBP based on different SVM kernels as
discussed in Section III. The same selected B-LBP features
were used for each kernel, and we used the heuristic approach
training instance selection method. For all kernels, the pa-
rameters are optimised using cross-validation on the training
set. Overall, the best results were reached with the histogram
intersection kernel. This is to be expected as all the features
used in this work are histogram-based. It is also worth pointing
out the computational simplicity of IKSVM. In [7], the authors
have shown IKSVM gives comparable accuracy while being
50× faster and requiring 200× less memory than the standard
SVM implementation in their experiments.

Fig. 6. The 2AFC (%) over all videos based on different SVM kernels,
tested on the MMI database

3) Appearance descriptors: Fig. 7 presents the 10-fold
cross-validation results using LBP, LPQ, PLBP, B-PLBP and
B-PLPQ for 23 upper and lower face AUs. These 23 AUs are
targeted because they have more than 10 sequences activated
in the dataset. Note that in the manual labelling of the dataset,
AU46 (wink) has been split up into 46L and 46R as the
appearance differs greatly depending on whether using left
or right eye. Hence it is treated as two separate AUs in our
experiments.

To report the best performance of all systems, the histogram
intersection kernel SVM is adopted in these experiments.
We can see that, overall speaking, B-PLPQ produces best
results among these four descriptors and the systems that
utilise pyramid representation outperform those using basic
appearance descriptors. The merit of pyramid representation is
more obvious in the lower face AUs. One possible explanation
is that the mouth movement usually causes a larger area of
appearance changes in the lower face. For example, AU15 is
lip corner depressor. It does not only change the shape of lips,
but also produce appearance changes below the lip corners and
on the chin boss. In this case, the spatial relation is essential.
This is also true for AU14 (dimpler), AU20 (lip stretcher),
and AU26 (jaw drop), which benefit most from the pyramid
representation. On opposite to that, for instance, AU18 (lip
pucker) and AU43 (eye closure), the appearance changes are
more centralised around the mouth and eye area respectively.
Thus local features are enough to capture all the changes.

4) Computational complexity: We also consider the com-
putational complexity of the tested descriptors. All the algo-
rithms are run in MATLAB environment on a PC (intel(R),
core(TM)i7, CPU Q870 with 2.93 GHz, 8GB RAM). The
average computational cost of B-LBP, B-LPQ, B-PLBP and
B-PLPQ is 0.135s, 0.1526s, 0.412s and 0.453s respectively in
computing an image of 200 × 200. The grid size is 25 × 25
for all descriptors and the pyramid level is 3.

This is not a fair comparison as it largely depends on the
implementation. So Instead of comparing their computational
time directly, we also analyse their complexity level. For an
image of size N × N , the complexity for LBP is O(N2).
As we know, LPQ employs 2D STFT. The computational



Fig. 7. The 2AFC (%) over all videos from the MMI database by using B-LBP, B-LPQ, B-PLBP and B-PLPQ

complexity of 1D FFT is O(N2lgN). Hence to compute LPQ
features from a N×N image, the computational complexity is
O(N4lgN). Hence LBP and LPQ are both in the same com-
plexity class P . For their pyramid representation, by summing
the computational cost from each pyramid level, assuming
the number of levels is infinite, let C be the complexity
of LBP/LPQ, then the complexity of a block-based pyramid
descriptor is O(C/1 − q), where q is the common ratio of
number of blocks between two successive levels (0 < q < 1)
and 1− q is a constant. So the pyramid versions of LBP/LPQ
do not change the complexity level of the original descriptor.

V. CONCLUSIONS
We successfully implemented a robust and real-time AU

detection system, based on the appearance descriptors B-
LBP, B-LPQ and their pyramid extensions B-PLBP and B-
PLPQ. Results show that systems based on LPQ generally
achieve higher accuracy rate than those based on LBPs, and
that systems that utilise a pyramid representation outperform
those that don’t. Although the family of block-based pyramid
descriptors are more computationally expensive than the basic
ones, they attain a higher recognition performance. All in
all, the experimental results clearly show that our proposed
descriptor B-PLPQ outperforms all other tested methods for
the problem of FACS Action Unit analysis. The fastest of the
systems described in this work, i.e. the LBP-based AU detec-
tor, is freely available as part of the SEMAINE framework,
which can be downloaded from http://semaine.opendfki.de/.
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