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Abstract

This paper is about estimating intensity levels of Fa-
cial Action Units (FAUs) in videos as an important step to-
ward interpreting facial expressions. As input features, we
use locations of facial landmark points detected in video
frames. To address uncertainty of input, we formulate a
generative latent tree (LT) model, its inference, and novel
algorithms for efficient learning of both LT parameters and
structure. Our structure learning iteratively builds LT by
adding either a new edge or a new hidden node to LT, start-
ing from initially independent nodes of observable features.
A graph-edit operation that increases maximally the like-
lihood and minimally the model complexity is selected as
optimal in each iteration. For FAU intensity estimation,
we derive closed-form expressions of posterior marginals of
all variables in LT, and specify an efficient bottom-up/top-
down inference. Our evaluation on the benchmark DISFA
and ShoulderPain datasets, in subject-independent setting,
demonstrate that we outperform the state of the art, even
under significant noise in facial landmarks. Effectiveness
of our structure learning is demonstrated by probabilisti-
cally sampling meaningful facial expressions from the LT.

1. Introduction
Analyzing spontaneous facial expressions in video is im-

portant for a wide range of applications in human-computer
and human-human interactions. This is because sponta-
neous expressions are an integral part of human commu-
nication, e.g., capable of conveying various attitudes and
emotions (e.g., spontaneous frowns), and revealing certain
thoughts (e.g., spontaneous eye squints and brow scowls)
[5]. While their detection in terms of presence or absence
in video has already gained traction in the literature (e.g.,
[27, 11]), there is relatively scant work on estimating their
intensities [21, 18, 22, 12]. Yet, the meaning and func-
tion of spontaneous facial expressions depends largely on
their intensity [9, 10, 17]. For example, smiles of enjoy-
ment are typically full-blown smiles [7], whereas smiles of

faked happiness or sarcasm are usually weaker in intensity
when observed in natural social settings.

In this paper, we address the problem of identifying in-
tensity levels of Facial Action Units (FAUs) as an important
step toward interpreting facial expressions. Our research is
motivated by findings of componential facial emotion the-
ory [20, 23], which suggests that in spontaneous expres-
sions (and actions) only certain parts of faces are univer-
sally displayed, and thus could be more reliably used for
inferring facial expressions than entire faces. To this end,
we use the facial action coding system (FACS) [4] that de-
fines 32 FAUs as atomic, spatially and temporally well-
contained facial movements, associated with five intensity
levels (A<B<C<D<E). Thus, given a video frame, our
goal is estimate active FAUs and score them with one of
the five intensity levels.

This problem is challenging. Spontaneous expressions
are generally characterized by subtle, minimal facial move-
ments and large out-of-plane head movements [16]. Both
are very difficult to track, leading to higher error rates in
FAU inference. Also, certain FAU intensity levels could be
modulated by the social environment or inner human ex-
periences (e.g., chronic vs. acute pain) [26]. This makes
subject-independent FAU intensity estimation difficult.

1.1. Overview of Approach and Contributions

To address the aforementioned challenges, we consider
a Bayesian generative framework. We formalize our prob-
lem as that of jointly predicting multiple FAU targets,
T = {x1, ...,xT }, given a set of image features, F =
{xT+1, ...,xT+F }. Every target xm ∈ T can be defined
as a vector of various attributes associated with mth FAU,
and in a special case for our problem as FAU intensities.
Image features xm ∈ F are defined as local descriptors of
the face, which can be appearance based (e.g., patches) or
locations of facial landmarks detected in a video frame.

We specify a graphical model for representing the joint
distribution of targets and features, p(T,F), and use the
Bayes’ rule to derive an elegant solution to FAU intensity
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estimation as

T̂ = max
T

p(T,F)∑
T′ p(T′,F)

. 1 (1)

Our formulation has a number of advantages over existing
approaches [21, 18, 22, 12]. They typically adopt the dis-
criminative framework for directly predicting FAU inten-
sities given the features, e.g., using Support Vector Clas-
sification (SVC) [18], Relevance Vector Machine (RVM)
[12], AdaBoost [25], or ordinal Conditional Random Fields
(CRF) [21]. While discriminative approaches are generally
robust, we experimentally demonstrate in this paper that
they underperform under the aforementioned challenges.
In particular, due to frequent partial occlusions of the face
or large out-of-plane head movements in non-staged video,
some input features might be missing or very unreliable.
Our results show that our model can robustly handle miss-
ing input features by marginalizing them out, unlike the
competing discriminative approaches. Also, our model is
less likely to overfit to training human subjects, due to the
joint modeling of all FAUs T and features F.

For effectively capturing statistical dependencies among
T and F, our model has hidden (latent) random variables.
Also, for ensuring modelling efficiency (e.g., few model pa-
rameters) and efficient inference of T̂, we organize the hid-
den variables in a tree structure, and hence call our model
Latent Tree (LT). In LT, leaf nodes represent T and F,
and all other nodes correspond to the hidden variables (also
called hidden nodes). Importantly, no other restrictions are
placed on the model structure beyond the tree structure, de-
fined by the total number of hidden nodes and edges.

LT structure is unknown a priori. We specify a new al-
gorithm for efficient learning of both model parameters and
model structure on training data. Our structure learning it-
eratively builds LT by introducing either new parent nodes
or new connections between existing hidden nodes, depend-
ing on the resulting increase in the joint likelihood p(T,F).
Our key contribution here is a heuristic algorithm for effi-
ciently computing the maximum likelihood increase.

For FAU intensity estimation, we derive closed-form ex-
pressions of posterior marginals of all variables in LT, and
specify an efficient inference of T̂ given F in two passes –
bottom-up and top-down.

We have evaluated LT on the benchmark DISFA [18]
and ShoulderPain [16] datasets, which provide per-frame
FAU intensity labels for spontaneous facial expressions. For
evaluation, we have used the subject-independent setting,
where different human subjects appear in training and test-
ing, as a widely adopted practice in vision and broader. This
has prevented direct comparison with certain prior work
which uses the same human subjects for both training and

1We always use the sum symbol for marginalization, even for continu-
ous variables, for simplicity.

testing. In comparison with baselines and the state-of-the-
art methods that also use the subject-independent setting,
the results demonstrate our superior performance, even un-
der significant noise introduced to facial landmark points.
We also demonstrate effectiveness of our structure learning
by probabilistically sampling locations of facial landmark
points, conditioned on a given FAU intensity. Our genera-
tive sampling produces plausible facial expressions.

1.2. Closely Related Work

The literature abounds with various formulations of gen-
erative models and their structure learning [13]. The two
unique aspects of our approach, suited to FAU intensity es-
timation (see Sec. 1.1), include tying latent FAU intensi-
ties and observable features together at the leaf level of LT,
and a novel formulation of efficient graph edits for struc-
ture learning based on the Bayesian structural Expectation-
Maximization (EM) [6].

Recent work on the Binary Latent Tree (BLT) [8] puts
the restrictive constraint on the model structure that every
non-leaf node cannot have more than two children. Our
structure learning is more efficient, and significantly dif-
fers from the way they build BLT as trading-off the Mutual
Information score and the Bayesian Information Criterion
(BIC). We experimentally demonstrate that their binary-tree
restriction leads to poor (BLT) performance in our domain.

Structural learning of latent trees can also be formulated
by grouping random variables according to their informa-
tion distance [2]. However, the space of possible grouping
combinations is very large, which leads to an inefficient al-
gorithm.

In the following, Sec. 2 specifies LT; Sec. 3 formulates
our inference; Sec. 4.1 presents our model parameter learn-
ing; Sec. 4.2 specifies our model structure learning; and
Sec. 5 presents our results.

2. Latent Tree Formulation
This section specifies our LT for modeling p(T,F),

where T and F are introduced in Sec. 1.1. Let X =
{T,F} = {x1, ...,xM}, M = T + F . To model p(X), we
use a tree that includes, in addition to X, also L hidden dis-
crete variables H = {h1, ...,hL}, each with the same num-
ber of states K. The tree is aimed at efficiently representing
joint distributions of various subsets of X as follows. Leaf
nodes of the tree correspond to every xm ∈ X, and nodes
at levels closer to the root correspond to every hl ∈ H. The
nodes are hierarchically connected in the tree to represent
that the distribution of every node xm ∈ X (or hl ∈ H)
is conditioned on its parent node in the tree hP (m) ∈ H
(or hP (l) ∈ H). Thus, the tree structure is defined by the
function P (·) which assigns the parent to each node, or the
empty set ∅ if the node is a root. A non-leaf node in the tree
may have arbitrary many children nodes.



The conditional distribution between hidden nodes hl

and hP (l) is categorical, since both nodes are discrete:

p(hl|hP (l) = k) = Cat(hl;µk,l), (2)

where k ∈ {1, ...,K}, Cat(h;µ) is the categorical distri-
bution over h ∈ {1, ...,K} with the parameter µ ∈ RK ,
∀k : µk ≥ 0, and

∑K
k=1 µk = 1. The annotated FAU

targets are discrete and thus the conditional distribution be-
tween a target xm and its parent hP (m) is categorical as
well, i.e. equivalent as in (2).

The conditional distribution for continuous features
x(cont.)
m is Gaussian:

p(xm|hP (m) = k) = N (xm;µk,m,Σk,m), (3)

with the mean vector µ ∈ Rd and covariance matrix Σ ∈
Rd

+ × Rd
+, where d is the dimensionality of xm. The tree

root hr has no parent, and thus is not conditioned on another
node. Its distribution is defined as a prior:

p(hr|hP (r)) = p(hr|∅) = Cat(hr;µr). (4)

From (3)–(4), the joint distribution of all variables can be
expressed as

p(X,H) =
∏

m,l p(xm|hP (m))p(hl|hP (l)). (5)

We use (5) to define the marginal log-likelihood of a given
set of data points {X(1), ...,X(N)} as

L =
∑N

n=1 ln
∑

H p(X(n),H). (6)

To learn LT parameters and structure, we maximizeL, given
by (6), on training data using an EM algorithm. As infer-
ence is an integral part of learning, in the sequel, we first
specify our inference in Sec. 3, and then present our learn-
ing of LT parameters in Sec. 4.1 and LT structure in Sec. 4.2.

3. Bottom-up/Top-down Inference on LT
We use the MAP criterion, given by (1), to predict dis-

crete FAU intensities T̂ = {x̂m : m = 1, ..., T}, given all
input features F. From our specification of LT, presented in
Sec. 2, the MAP estimation of (1) can be decomposed for
every individual target xm ∈ T as

x̂m = maxxm

∑
hP (m)

p(xm|hP (m))p(hP (m)|F). (7)

From (7), our inference problem amounts to finding the pos-
terior p(hP (m)|F).

In the following, we explain how to compute the
marginal posteriors p(hl|S) for all hidden nodes hl ∈ H us-
ing the standard bottom-up/top-down inference (a.k.a., the
inside-outside algorithm) on trees [13], where S can be an

arbitrary subset of {T,F}. The resulting posteriors of par-
ents of leaf nodes in LT can then be used for FAU intensity
estimation in (7).

The bottom-up/top-down inference on LT efficiently
computes the marginal posteriors p(hl|S) in two passes –
bottom-up and top-down, as illustrated in Fig. 1. In par-
ticular, for every hl, the algorithm defines the set of inside
variables xin(l) = {xm : xm ∈ S is descendant of hl},
and the set of outside variables xout(l) = {xm : xm ∈
S is not descendant of hl}, and their distributions

βl = p(xin(l)|hl), αl = p(hl|xout(l)). (8)

From (8), it is straightforward to derive that for all hl ∈ H:

p(hl|S) = βlαl∑
hl

βlαl
. (9)

Bottom-up. The algorithm first computes the likeli-
hoods βl in the bottom-up pass starting from the leaves as

βl =
∏

c(
∑

hc
βcp(hc|hl)), (10)

where {hc} are children of hl. Note: If some xm are un-
observed, i.e. if S is a strict subset of {T,F}, then the
unobserved βm are uniform.

Top-down. Then, the algorithm computes the distribu-
tions αl starting from the root as

αl =
∑

hP (l)
p(hl|hP (l))αP (l)

∏
s

(∑
hs

βsp(hs|hP (l))
)
,

(11)
where {hs : hP (l)=hP (s),hs 6=hl} are the siblings of hl.

In summary, for FAU intensity estimation, we first run
the upward pass (10) and then the downward pass (11) to
compute the distributions of inside and outside variables,
βl and αl, for all hidden variables hl ∈ H, and then esti-
mate the specific marginal posterior p(hP (m)|F) as in (9)
required for estimating the FAU intensity x̂m as in (7).

As explained in the sequel, we also use the bottom-
up/top-down inference algorithm as an integral part of
learning model parameters. For this learning, we will be
required to compute both marginal posteriors p(hl|X) and
pairwise posterior marginals p(hl,hP (l)|X). Fortunately,
due to the tree structure of our model, they can be computed
exactly as in (9), and as

p(hl,hP (l)|X) ∼ βlp(hl|hP (l))
∏
s

(
∑
hs

βsp(hs|hP (l)))αP (l),

(12)
where {hs} are the siblings of hl.

4. Learning LT
Given a set of training data {X(1), ...,X(N)}, we learn

LT parameters and LT structure by maximizing L, given by
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Figure 1. The inside-outside algorithm for computing the marginal
posterior of node hl (red) with parent hp, children {hc1,hc2,hc3}
and siblings {hs1,hs2}. xin(l) and xout(l) are two complemen-
tary sets of leaf nodes, where xin(l) consists of descendants of hl.

(6). This maximization is conducted iteratively by alternat-
ing two steps. First, for a given current estimate of LT struc-
ture, we compute the updates of model parameters. Second,
for a given current estimate of LT parameters, we conduct
graph-edits for revising the LT structure. The two steps are
iterated untilL stops increasing, or the maximum number of
iterations is reached. In the following, we first describe our
parameter learning, and then specify our structure learning.

4.1. Learning LT Parameters

During learning of model parameters, {µ,Σ}, defined in
Sec. 2, we assume that the LT structure is given. Maximiz-
ing L does not lend itself to a closed-form solution, because
the sum over H appears inside the logarithm in (6). There-
fore, we resort to an EM algorithm, which iteratively es-
timates the joint posterior q(n) = p(h1, ...,hL|X(n)), and
uses q(n) to update the model parameters by maximizing
expected log-likelihood with respect to q(n) as

(µ,Σ)new = arg max
(µ,Σ)

∑N
n=1 Eq(n) [ln p(X(n),H)]. (13)

Following the standard steps of finding a derivative of the
expectation term in (13) with respect to each model param-
eter gives the well-known update equations for the Gaussian
and categorial distributions of LT, presented in great detail,
e.g., in [14, 3]. For completeness, we provide these model-
parameter update formulas in the supplemental material.

Importantly, the update equations of parameters associ-
ated with the hidden nodes hl can be expressed in terms
of pairwise posterior marginals p(hl,hP (l)|X(n)). Also, in
case of the root hr and leaf nodes xm, the parameter up-
date equations are expressed in terms of posterior marginals
p(hr|X(n)) and p(hP (m)|X(n)), respectively. These pos-
teriors can be computed exactly in (9) and (12) using the

bottom-up/top-down inference algorithm.

4.2. Learning LT Structure

Given an estimate of LT parameters, our goal is to find an
optimal tree structure that would maximize L, given by (6).
Finding an optimal tree in the space of all possible trees is
intractable. Therefore, we specify a heuristic algorithm for
structure learning. A common approach is to start from a
trivial initial tree which has no connections between nodes
and no hidden nodes. From there, the tree is successively
altered according to an optimization criterion, e.g., using
Mutual Information (MI) [8] or information distance [2],
until convergence. Rather than adopting a new information-
theoretic criterion for structure learning, we use the very
same log-likelihood L for learning the tree as when learning
model parameters. Our unified framework of parameter and
structure learning allows us to derive an efficient algorithm
for revising the tree so as to maximize log-likelihood gains.

Another common issue in structure learning is regular-
ization of model complexity, typically addressed by using
the Bayesian information criterion (BIC) [8]. As one of
our contributions, we regularize our tree learning by fa-
voring those structure changes that: 1) Minimally increase
model complexity, while at the same time 2) Maximally in-
crease the gain in the conditional likelihood of all descen-
dant nodes under the introduced structural change. The lat-
ter regularization condition is motivated by the generative
properties of our model: if we add a new child to a node,
then we require that the conditional likelihoods of all its
siblings be improved – not only the overall joint likelihood.
This effectively means that the newly added child needs to
contribute information to all its siblings.

Algorithm. Our structure learning iteratively revises
candidate trees, starting from the initial forest of trivial trees
wherein all xm ∈ X are independent, and paired with the
corresponding hidden root, hr. In this initial forest, the joint
log-likelihood of X is equal to the sum of the tree specific
log-likelihoods. Our structure learning then proceeds by in-
troducing either a new edge in the tree, or a new hidden
node and appropriately connecting it to the existing ones. In
particular, we consider two types of graph-edit operations:

1. Add new edge between two existing nodes hl′ and hl;
2. Add new parent hl′ to existing nodes hl1 ,hl2 .

The graph-edit operations (1) and (2) yield changes in
log-likelihood, ∆. Our goal is to identify the operation
that produces the highest ∆ and simultaneously meets the
regularization constraints. One constraint is to maintain
the tree structure. Another is the regularization constraint
that requires, for all siblings {hs} of the newly added
node hl′ , that the difference in the conditional likelihood
p(xin(s)|xout(s)) must be greater than a threshold. The
structure learning terminates if there are no graph revisions
to perform, i.e., when the tree becomes rooted at a sin-



gle root, or all possible graph-edits would lead to a log-
likelihood decrease.

Efficiency. In the above algorithm, ∆ has to be calcu-
lated for all possible pairs (hl,hl′), which is quadratic in
the number of roots. We specify two mechanisms to achieve
efficiency. The first mechanism concerns our observation
that adding new nodes by graph-edit operation (2) will in-
crease model complexity more than operation (1), since (1)
adds just an edge, whereas (2) adds a node and two edges.
Therefore, we specify a heuristic procedure to first evalu-
ate the ∆’s of all possible operations of type (1), and start
considering (2) only if none of operations of type (1) meet
the above algorithm’s criteria and constraints. The second
mechanism concerns our efficient evaluation of ∆. Specif-
ically, after the structural change, we perform a single M-
step to compute only the model parameters for the newly
added connection between hl and hl′ , while using the joint
posterior q from the previous E-step, before the structural
change. It is straightforward to show that this approximate
procedure is guaranteed to increase the log-likelihood in the
M-step [14, 3].

5. Results
In order to evaluate the LT model for FAU recognition,

we design the experiments to contain local targets and lo-
cal features, so that out LT model can discover the hidden
structure that governs the dependencies of the input, which
in this application leads to a joint generative model of the
facial points and the FAUs. In the following sections, we
describe the datasets used (Sec. 5.1), how the datasets were
used for evaluation (Sec. 5.2), the models that we compare
to (Sec. 5.3), which metrics we use for evaluation (Sec. 5.4)
followed by quantitative (Sec. 5.5) and qualitative (Sec. 5.6)
results.

5.1. Data

In this study, we focus on the DISFA [18] and Shoulder-
Pain [16] datasets, since they both provide per-frame FAU
intensity labels for spontaneous facial expressions.

The DISFA dataset [18] contains spontaneous facial ex-
pressions of young adults while watching an emotion elicit-
ing video. The face of 27 subjects was recorded with a total
number of 130754 frames. Each of the frames has been an-
notated with FAU’s and their corresponding intensity on a
0-5 discrete scale by an expert FACS rater. The following
FAU’s are annotated: 1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25,
and 26 (see [18] for the FAU distribution). Additionally,
the database provides 66 active-appearance-model (AAM)
tracked facial landmark points.

The ShoulderPain data [16] consists of videos showing
faces of patients suffering from shoulder pain while moving
their arms. The videos show 200 sequences of 25 subjects,
with a total of 48398 frames. 66 tracked facial landmarks

are provided with the dataset. For each frame, the intensities
of pain related FAU’s 4, 6, 7, 9, 10, 12, 20, 25, 26, 27 and
43 are included with the database. As above, all FAUs are
annotated on a 0-5 discrete intensity scale, except for FAU
43, which is binary. We exclude FAU 27, since it is present
for 18 frames only.

In order to obtain local point features (PTS) of the face,
we follow the same procedure for both DISFA and Shoul-
derPain: the 66 tracked facial landmarks are aligned by Pro-
crustes analysis to the mean shape, which removes transla-
tions and in-plane rotations of the face. Then each of the x
and y landmark coordinates are normalized by subtracting
the mean and dividing by the standard deviation. The coor-
dinates are stacked together into the final 132 dimensional
feature vector.

Additionally we extract appearance features from the
DISFA data by first normalizing the face image using a
piece-wise affine warp to the mean shape. Then we divide
the face into 6x6 non-overlapping patches and extract lo-
cal binary pattern histograms (LBP) [19] with 59 bins from
each patch, resulting into into a 36x59 dimensional feature
vector.

Each of the shape feature dimensions is continuous and
thus modeled in the LT with a Gaussian node. The FAU
targets are discrete and thus modeled with a Categorical
node, where each category corresponds to one FAU inten-
sity level. The LBP features consist of histograms with 59
bins and therefore we model each of them with a Categor-
ical node having 59 states. For prediction, we use the ex-
pected value of the FAU intensity, given the corresponding
posterior node distribution. This means the prediction are
continuous, but restricted to the interval 0-5.

5.2. Evaluation Setting

We evaluate the model in a subject-independent setting,
i.e. different subjects were used for training than for testing.
The data is grouped into cross-validation folds with no more
than 3 subjects per fold, which leads to 9 folds for DISFA
and 8 folds for ShoulderPain.

The LT model supports the prediction of multiple FAU
targets at the same time, but in order to determine if multiple
targets improve the performance, we evaluate our model for
different settings: (1) LT-all, which includes all FAUs for
training; (2) LT-sep which trains a separate model for each
FAU; and (3) LT-single, which is limited to a single hidden
variable and trained separately per FAU as LT-sep.

Additionally to the evaluation on clean data, we create
random noise to corrupt the test features. The noise is
created with different severity levels: 50% noise features
means that for every testing instance, we randomly select
50% of the feature dimensions and replace them with a ran-
domly sampled value from a Gaussian distribution that has
the same mean and variance as the overall training dataset.



The noise is only influencing the test data, i.e. the models
are trained on clean data.

5.3. Baseline Methods

We compare our method to Support Vector Classifica-
tion (SVC), Support Vector Regression (SVR) (both using
LIBSVM [1]) and Binary Latent Trees (BLT) [8].

SVC has been used for the baselines of DISFA [18] and
ShoulderPain [16], by treating each of the intensity levels
as a separate class and applying the one-vs-one approach.
SVR is similar, but it treats all target intensities on a con-
tinuous scale, rather than separate categories. We apply the
Gaussian kernel to SVC and SVR and optimize all hyper-
parameters, by a grid search. SVC and SVR support only a
single target, therefore we train a separate model per FAU.

BLT has not been used in a supervised context, but the in-
ference step can infer the unobserved targets given observed
features. Furthermore, BLT allows only categorical nodes,
therefore we first apply k-means clustering with K = 10 to
each of the continuous feature dimensions and then use the
assigned cluster as categorical feature.

5.4. Metrics

The goal is FAU intensity prediction and therefore we
measure the performance by several continuous metrics: the
Pearson correlation coefficient (CORR), the mean squared
error (MSE) and the Intra-Class Correlation Coefficient
ICC(3,1) [24]. The former two are common within the
machine learning community and measure relative (CORR)
and absolute (MSE) differences between target and predic-
tion, while the latter ICC comes from behavioral sciences
and measures agreement between raters. Additionally we
compare our LT-all model to all other methods by the pair-
wise Student’s t-test with a p-value of 0.05 and mark all
significantly different results with ‘*’.

5.5. Quantitative Results

First, the DISFA results for different feature combina-
tions are shown, followed by detailed shape feature results
on the DISFA and ShoulderPain databases.

DISFA Data. Tab. 1 shows the average CORR over all
FAUs on the DISFA data for different feature combinations.
The models have been evaluated using point (PTS), appear-
ance (LBP) and the combination of both (PTS+LBP). The
reported results for LBP are consistently lower than the ones
for PTS. This can be explained with the nature of LBPs:
since they aggregate information within a histogram, the
locality of the data is lost and thus it is difficult for our
model to learn local distributions, represented by branches
of the tree. Combining LBP and PTS gives no improvement
over PTS alone, therefore all following results are shown
for PTS features only. We were not able to obtain LBP and

PTS+LBP results for BLT, since the algorithm did not ter-
minate after running for 72 hours due to the high dimen-
sionality of the data.

Feature PTS LBP PTS+LBP

LT-all 0.43 0.14 0.43
LT-sep 0.41 0.10 0.40
LT-single 0.33 0.12 0.33
SVC 0.23 0.21 0.28
SVR 0.43 0.34 0.43

Table 1. Average results over all FAU targets measured by the cor-
relation coefficient (CORR) on DISFA data for different features.
We compare facial landmark points (PTS) with local binary pattern
(LBP) features and also show the combined results (PTS+LBP).

Tab. 2 shows the results on the DISFA dataset for PTS
features. LT-all is on average the best for all measures and
the results for LT-sep are slightly lower, which shows that it
is beneficial to learn all FAUs together. SVC is significantly
inferior than LT-all in almost all cases. This is probably
due the discriminative nature of the SVC approach, which is
better suited for binary classification. LT-all is significantly
better than SVR regarding most measures for the FAUs 5,
12, and 25 and LT-all is significantly worse than SVR re-
garding the most measures for the FAUs 9 and 15. This
can be explained by the fact that FAUs 5, 12, and 25 are
pronounced in the localized model, since they elicit large
local variation in the points which is more difficult to be
captured by the SVR that uses a kernel over all dimensions.
In contrast to that, FAUs 9 and 15 are barely recognizable
with facial landmarks since they induce very little move-
ment over a larger set of points, which is not captured in
our generative model. BLT is significantly inferior to LT-all
in most cases, because it creates a tree with more hidden
nodes, and thus the features and targets are farther apart in
the tree, which leads to lower dependence. Often BLT will
not connect all data input nodes, which leaves a forest with
mutual independent sets of variables. In contrast to that, the
LT nodes are fully connected and each hidden node has on
average 3.39 children and cardinality K=10 (K is optimized
by a grid search). A typical tree has a relatively deep struc-
ture.

The last two columns of Tab. 2 show the average results
for 10% (a[10]) and 20% (a[20]) added noise. Although
the CORR of LT-all and SVR is on par for 0% noise, the
LT-model does better as the noise increases. This effect is
even more pronounced in Fig. 3, which shows the results
for the average CORR and selected FAUs as the noise level
varies. The result at 0% noise is the same value as in Tab. 2
and the performance deteriorates as the noise increases. The
performance drop of our LT model is slower than the other
models, and it is even possible to beat other models as the
noise increases, see FAU17: at about 50% noise, out perfor-



FAU 1 2 4 5 6 9 12 15 17 20 25 26 a[0] a[10] a[20]

C
O

R
R

LT-all .41 .44 .50 .29 .55 .32 .76 .11 .31 .16 .82 .49 .43 .40 .36
LT-sep .41 .44 .47 .34* .55 .27 .77 .09 .18 .10 .82 .47 .41
LT-single .30* .29* .27* .12* .56 .21* .74 .09 .16 .12 .76* .39* .33
SVC .19* .19* .33* .01* .10* .12* .60* .02* .14* .04 .71* .33* .23* .20* .17*
SVR .42 .44 .53 .15* .47 .43* .70* .21* .32 .21 .76* .51 .43 .39 .34
BLT .04* .05* .20* .00* .55 .18 .73 .01* .04* .02 .82 .26* .24* .23* .22*

M
SE

LT-all .44 .39 .96 .07 .41 .31 .40 .17 .33 .16 .61 .46 .39 .42 .46
LT-sep .41 .37 1.00 .07 .40 .31 .39 .16 .33 .15 .58 .46 .39
LT-single .47 .41 1.21* .07 .41 .32 .44 .16 .32 .15 .76* .50 .43
SVC .51 .43 1.21 .08 .65* .34 .65* .18 .35 .16 .99* .56* .51* .53* .55*
SVR .42 .35 .87 .07 .45 .27* .50* .15* .29* .15 .76* .41* .39 .42 .46
BLT .53* .45 1.27* .07 .40 .31 .47 .16 .33 .15 .63 .56* .45* .45 .47

IC
C

LT-all .32 .37 .41 .18 .46 .23 .73 .07 .23 .09 .80 .39 .36 .33 .31
LT-sep .26* .29* .39 .15 .44 .18 .73 .06 .11 .03 .80 .39 .32
LT-single .15* .15* .17* .04* .45 .12* .70 .04 .07* .06 .74* .30* .25*
SVC .12* .11* .31 .00* .09* .08* .58* .01* .11* .02 .70* .28* .20* .17* .14*
SVR .28 .30* .44 .09* .36 .29 .62* .13* .23 .12 .71* .42 .33 .28* .23*
BLT .03* .03* .12* .00* .45 .08* .68* .00* .01* .00 .80 .17* .20* .19* .19*

Table 2. Results on the DISFA data for different FAU targets and PTS features. Different
LT models are compared to SVC, SVR and BLT. The table shows CORR, MSE and ICC
measures. The best results per FAU and per measure are marked in bold. The results
that are statistically different to LT-all are marked with *. Additionally we show the
average performance over all FAUs (a[0]), as well as the average performance for 10%
and 20% added noise (a[10] and a[20]).
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Figure 2. Results on the DISFA data while training
our LT-all model on different number of training
samples. Shown is the CORR performance, the
log-likelihood and the number of latent variables
of the trained model, as well as the training time.

mance is better than SVR, although SVR has the better per-
formance on clean data. This is due to our generative model,
which is able to ignore noisy data that is not consistent with
the clean dimensions. This effect is also pronounced with
the BLT model: BLT has the same average performance on
clean data as SVM. However, with increasing noise, BLT
performs clearly better than SVM.
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Figure 3. Results on the DISFA data for different FAU targets.
The LT-all model is compared to SVC, SVR and BLT. Each graph
shows the correlation (CORR) as the percentage of noise feature
varies.

ShoulderPain Data. Tab. 3 shows the results for the
ShoulderPain data for different FAU targets. The LT model

does best in most of the cases, except for FAU 7 and 26.
The appearance of these FAUs is only barely present within
the points and thus a generative model will assume the-
ses changes to be noise, whereas discriminative models can
learn them. The recognition results are in general lower
than for the DISFA data, which is due to less frequent FAU
occurrences in the data and larger head movements.

FAU 4 6 7 9 10 12 20 25 26 43 avg

C
O

R
R LT-all .03 .60 .11 .10 .15 .60 .09 .18 .01 .44 .23

SVC .04 .45 .25 .02 .06 .45 .00 .13 .07 .30 .18
SVR .05 .48 .26 .09 .10 .44 .03 .17 .10 .44 .22
BLT .03 .55 .06 .05 .05 .55 .00 .07 .06 .21 .16

M
SE

LT-all .51 1.06 1.19 .27 .28 1.12 .19 .72 .50 .14 .60
SVC .76 1.74* 1.59 .48 .32 1.54 .36 1.24 .56 .17 .88
SVR .65 1.44 1.40 .40 .36 1.35 .30 .76 .76 .15 .76
BLT .48 1.15 1.29 .27 .31 1.17 .19 .66 .41 .18 .61

Table 3. Results on the ShoulderPain data for different FAU tar-
gets. The L-all model is compared to SVC, SVR and BLT. The ta-
ble shows the correlation (CORR) and mean squared error (MSE).
The best results per FAU and per measure are marked in bold. The
results that are statistically different to LT-all are marked with *.

Fig. 4 shows the CORR results on ShoulderPain for vary-
ing feature noise. Again, the LT model can handle the noise
well and stays above the competing methods in the most
cases. The advantage is less pronounced than in the DISFA
data, which can be due to the less descriptive clean data, i.e.
the facial movements are less pronounced than in DISFA.
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Figure 4. Results on the ShoulderPain data for different FAU tar-
gets. The LT-all model is compared to SVC, SVR and BLT. Each
graph shows the correlation (CORR) as the percentage of noise
feature varies.

Fig. 2 shows the CORR, likelihood, number of latent
variables and the training time for our LT-all model as the
number of training samples varies. The CORR starts to
level out after 4000 samples. The likelihood and the number
of latent variables both decrease when the training samples
increase. This shows that the model overfits with few exam-
ples, i.e. it has a high likelihood and many latent variables.
However, with increasing number of training samples, the
overfitting vanishes and thus the likelihood decreases. The
training time shows a clear linear trend. Furthermore, the
LT inference time for recognizing all 12 FAUs in 14,535
testing samples is 17.9 sec, where SVR takes 106.2 sec for
the same task.

5.6. Qualitative Results

Fig. 5 shows the face model generated by LT on the
DISFA data. Given that the LT model gets all FAUs zero
as input (i.e. the neutral face), we plot the inferred mean
of the model output distribution in black. Then we overlay
in red the changed landmark means if the models gets the
maximum FAU intensity as input. We can clearly see the
correspondence between the mean differences and the facial
regions influenced by the related FAU, e.g. FAUs 1 mainly
influences the eyebrow landmarks while FAU 12 mainly in-
fluences the landmarks around the mouth. The landmarks
for FAU15 have almost no difference to the neutral face,
which shows that the model was not able to learn the sub-
tle movements. This explains the low results in Tab. 2 for
FAU15.

5.7. Comparison with prior work

Several previous publications have already addressed the
FAU intensity estimation problem within the DISFA and
ShoulderPain databases.

FAU1 FAU12 FAU15

Figure 5. Landmark locations generated from an LT model trained
on the DISFA data. Shown are the landmark means for the gener-
ated neutral face (in black) and the changed mean locations for the
face with activated FAU (in red).

A dynamic ordinal regression framework is developed in
[21], which reaches an average ICC of 0.58 on the DISFA
and 0.62 on the ShoulderPain data. However, the model
is evaluated on pre-segmented video sequences that both
start and end with a neutral face Thus the results cannot
directly compete within our setting, which does per-frame
FAU recognition without prior knowledge.

The work of [22] estimates the FAU intensities by SVR
and as a second step models the dependencies between
FAUs by a Markov random field. This work also evalu-
ates the performance of a tree structure, reaching an average
CORR result of 0.34 for the FAUs 1, 2, 4, 5, 6 and 9, where
our average is 0.42.

Furthermore, [18, 15] learn a manifold of facial features
and use SVC [18] or DBN [15] on the manifold to classify
different FAU intensities, reaching an average ICC of 0.77.
However the comparison to our method is not fair, since
the supervised FAU specific manifold learning includes the
FAU targets of the test subjects and thus the methods are not
subject-independent.

Different features and relevance vector regression is used
within [12] on the ShoulderPain data, reaching an aver-
age CORR of 0.36 by fusing different appearance features.
However the points alone, which is equivalent to our setting,
reach only an average CORR of 0.17.

6. Conclusion

We formulated a novel latent tree (LT) model for FAU
intensity estimation in videos based on locations of facial
landmark points in each frame. For learning LT structure,
we specified an efficient algorithm that iteratively max-
imizes log-likelihood of training data while maintaining
model complexity low. In our comparison with discrimina-
tive approaches on the benchmark DISFA and ShoulderPain
datasets, LT produced superior results, especially in realis-
tic settings of noisy detections of facial landmark points.
Probabilistic sampling from LT generated meaningful fa-
cial expressions, demonstrating good generalization capa-
bilities of LT and effectiveness of our structure learning al-
gorithm in capturing higher-order dependencies among the
high-dimensional input features and target FAU intensities.
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