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Abstract. This paper presents a novel approach for synthesizing facial
affect, which is based on our annotating 600,000 frames of the 4DFAB
database in terms of valence and arousal. The input of this approach is
a pair of these emotional state descriptors and a neutral 2D image of a
person to whom the corresponding affect will be synthesized. Given this
target pair, a set of 3D facial meshes is selected, which is used to build
a blendshape model and generate the new facial affect. To synthesize
the affect on the 2D neutral image, 3DMM fitting is performed and the
reconstructed face is deformed to generate the target facial expressions.
Last, the new face is rendered into the original image. Both qualitative
and quantitative experimental studies illustrate the generation of realistic
images, when the neutral image is sampled from a variety of well known
databases, such as the Aff-Wild, AFEW, Multi-PIE, AFEW-VA, BU-
3DFE, Bosphorus.

Keywords: Dimensional facial affect synthesis · Valence · Arousal ·
Discretization · Blendshape models · 3DMM fitting · 4DFAB ·
Aff-Wild · AFEW · AFEW-VA · Multi-PIE · BU-3DFE · Bosphorus ·
Deep neural networks

1 Introduction

Rendering photorealistic facial expressions from single static faces while pre-
serving the identity information is an open research topic which has significant
impact on the area of affective computing. Generating faces of a specific person
with different facial expressions can be used to various applications including
face recognition [6,28], face verification [33,35], emotion prediction [19,21,22],
expression database generation, augmentation and entertainment.

This paper describes a novel approach that takes an arbitrary face image with
a neutral facial expression and synthesizes a new face image of the same person,
but with a different expression, generated according to a dimensional emotion
representation model. This problem cannot be tackled using small databases with
labeled facial expressions, because it would be really difficult to disentangle facial
expression and identity information through them. Our approach is based on the
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analysis of a large 4D facial database, the 4DFAB [8], which we appropriately
annotated and used for facial expression synthesis on a given subject’s face. A
dimensional emotion model, in terms of the continuous variables valence (i.e.,
how positive or negative is an emotion) and arousal (i.e., power of the activation
of the emotion) [31,39], has been used to annotate the large amounts of facial
images, since this model can represent, not only primary, extreme expressions,
but also subtle expressions which are met in everyday human to human, or
human to machine interactions.

Section 2 refers to related work that has been published with reference to
facial expression synthesis. Section 3 presents the proposed approach for gener-
ating facial affect. We describe the annotation and use of the 4DFAB database,
and provide the pipeline of our approach in detail. In Sect. 4, we provide an eval-
uation of the Valence - Arousal discretization and modeling procedure. Then, we
synthesize facial affect on a variety of neutral faces from ten different databases
(annotated either using a categorical or dimensional emotion model). By using
augmented data of faces from two in-the-wild databases, we train a deep neural
network to predict the valence and arousal values in these databases. Experimen-
tal results show that the proposed approach manages to synthesize photorealistic
facial affect, which can be used to improve the accuracy of valence and arousal
prediction. Conclusions and future work are presented in Sect. 5.

2 Related Work

In the past several years, facial expression synthesis has been an active research
topic. All facial expression synthesis methods that were proposed in the past
two decades were roughly split into two categories. The first category is mainly
using computer graphics techniques in order to directly warp input faces to target
expressions [42,44,47] or re-use sample patches of existing images [26]. The sec-
ond one synthesizes images with attributes that are predefined [10,34] through
the creation of generative models. For the first category, a lot of research efforts
have been devoted to finding the correspondence between the target images and
existing facial textures. Earlier approaches mostly generated new expressions by
either compositing face patches from an existing expression database [17,26],
or warping face images via optical flow [42,43] and feature correspondence [36],
or creating fully textured 3D facial models [3,30]. In particular, [44] proposed
to learn the optical flow using a variational autoencoder. Although this kind of
methods can usually produce realistic images with high resolution, the elaborated
complex processes often result in highly expensive computations. These works
have shown either how to synthesize facial expressions on virtual agents [48], or
how to transfer facial expressions between different subjects, i.e., facial reenact-
ment [37]. However, synthesizing accurately a wide variety of facial expressions
on arbitrary real faces is considered an open problem and has much room for
improvement.
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Due to this difficulty, the second category of methods has initially focused on
using deconvolutional neural networks (DeCNNs)1 or deep belief nets (DBNs)
[34], generating faces through interpolation of the facial images in their training
set. This, however, makes them inherently unsuited for facial expression genera-
tion in the case of unseen subjects. With the recent development of Generative
Adversarial Networks (GANs) [13], image editing has migrated from pixel-level
manipulations to semantic-level ones. GANs have been successfully applied to
face image editing, for modification of facial attributes [12,41], age modeling [49]
and pose adjustment [16]. These methods generally use the encoder of the GAN
to find a low-dimensional representation of the face image in a latent space,
manipulate the latent vector and then decode it to generate the new image.

Popular approaches shift the latent vector along a direction corresponding
to semantic attributes [24,44], or concatenate attribute labels with it [41,49].
Adversarial discriminator networks are used, either at the encoder to regular-
ize the latent space [25], or at the decoder to generate blur-free and realistic
images [24] or at both encoder and decoder, such as the Conditional Adversarial
Autoencoder. All of these approaches require large training databases so that
identity information can be properly disambiguated. Otherwise, when presented
with an unseen face, the network tends to generate faces which look like the
“closest” subject in the training database. It has been proposed to handle this
problem by warping images, rather than generating them from the latent vec-
tor [44]. This approach achieves a high interpolation quality, but requires that
the input expression is known and fails when generating facial expressions that
are “far apart,” e.g. angry faces from smiling ones. Moreover, it is hard to take
fine-grain control of the synthesized images, e.g., widen the smile or narrow the
eyes.

The proposed approach has quite a few novelties. First of all, it is the first
time, to the best of our knowledge, that the dimensional model of affect is taken
into account when synthesizing images. All other models are producing syn-
thesized images according to the seven basic, or a few more, expressions. Our
approach, as verified in the experimental section of this paper, produces a large
number of different expressions given a valence and arousal pair of values in the
continuous 2D domain. Also, it is the first time that a 4D face database is anno-
tated in terms of valence and arousal and is then used for affect synthesis. What
is more, until now, there has not been any attempt to use the blendshape mod-
els like we propose for the synthesis of the data. Finally, the proposed approach
works well, when presented with a neutral image either from a controlled or from
an in-the-wild database and with different head poses of the person appearing
in that image.

1 https://zo7.github.io/blog/2016/09/25/generating-faces.html.

https://zo7.github.io/blog/2016/09/25/generating-faces.html
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3 The Proposed Approach

3.1 The 4DFAB Database

The 4DFAB database [8] is the first large scale 4D face database designed for
biometrics applications and facial expression analysis. It consists of 180 sub-
jects (60 females, 120 males) aging from 5 to 75. 4DFAB was collected over a
period of 5 years under four different sessions, with over 1,800,000 3D faces.
The database was designed to capture articulated facial actions and sponta-
neous facial behaviors, where spontaneous expressions are elicited by emotional
video clips watching. In this paper, we use all the 1,580 spontaneous expression
sequences for our emotion analysis and synthesis; these sequences cover a wide
range of expressions as defined in [11].

To be able to develop the novel expression synthesis method, we annotate
these dynamic 3D sequences (over 600,000 frames), in terms of valence and
arousal emotion dimensions, using the tool described in [46]. Valence and arousal
values range in [−1,1]. Examples are shown in Fig. 1. In the rest of the paper,
when we refer to the 4DFAB database, we mean the 600,000 frames which are
annotated with categorical expressions, as well as 2D valence and arousal (V-A)
emotion values.

Fig. 1. The 2D Valence-Arousal Space and some representatives frames of 4DFAB

As each 3D face in 4DFAB differs in the number, as well as topology of
vertex, we need to first correlate all these meshes to an universal coordinate
frame - namely a 3D face template. This step is usually called establishing dense
correspondence. We follow the same UV-based registration approach in [8] to
bring all the 600,000 meshes into full correspondence with the mean face of
LSFM [5]. As a result, we create a new set of 600,000 3D faces that share
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identical mesh topology, while maintaining their original facial expressions; we
will use them as our 3D facial expression gallery for the facial affect synthesis.

3.2 The Methodology Pipeline

The main novelty and contribution of this paper comes from the development
of a fully automatic facial affect synthesis framework (depicted in Fig. 2). In the
first part (Fig. 2(a)), assuming that the user inputs a target V-A pair, we aim at
generating semantically correct 3D facial affect from our 4D gallery. There are
two key stages in this pipeline. The first includes the data selection from the 4D
face gallery and the utilization of these data. To this end, we discretize the 2D
Valence-Arousal (V-A) Space into 100 classes (see Fig. 3 for visualization). Each
class contains aligned meshes that are associated with the corresponding V-A
pairs; all these V-A pairs lie within the area of this class. Therefore, when a user
provides us with a V-A pair, we find its class and retrieve the data belonging
to this class. We then build a blendshape model using these data and compute
the mean face. Eventually, using this blendshape model, we can generate an
unseen 3D face with affect. The details of this part are described in Fig. 2(a)
and Sect. 3.3.

(a) Generate new facial affect, given a target V-A pair.

(b) synthesize facial affect on a 2D neutral face.

Fig. 2. Two main parts in our facial affect synthesis framework: (a) Generating new
facial affect from our 4D face gallery, given a target V-A value pair provided by the
user; (b) Synthesizing the facial affect (from part (a)) on an arbitrary 2D neutral face.
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Figure 2(b) describes the procedure of synthesizing a new facial affect to an
arbitrary 2D face. As described previously, given a target V-A pair, we create an
unseen expressive face without any identity, gender and age information. In this
part, we want to transfer the affect of this expressive face to the face of another
person, after which, we render a 2D expressive face without loss of identity.
Three processing steps are needed to achieve this goal. The first is to perform
3DMM fitting [4] to estimate the 3D shape of target face. The second step is to
transfer the facial affect from synthetic 3D face to the reconstructed 3D face.
Finally, we rasterize the new 3D face with affect to the original image frame. We
will describe this procedure in details in Sect. 3.4.

3.3 Generation of New 3D Facial Affect from 4DFAB

Discretizing the 2D Valence-Arousal Space. At first, we discretize the
2D Valence-Arousal Space into 100 classes, with each one covering a square of
size 0.2 × 0.2 and including a sufficient number of data. Although the number
of classes can be increased to further categorize the facial affect, it might not
provide a better result. This is because, if each class contained few examples,
it would be more likely that the identity information is incorporated. However,
our synthetic facial affects should only describe the expression associated with
the designated V-A value pair, rather than any of the identity, gender and age
information. Figure 3 shows on the right side the histogram of annotations (of
4DFAB database) of the discretized Valence-Arousal Space and on the left side
the corresponding mean blendshapes of various classes of this Space. Expression
blendshape models provide an effective way to parameterize facial behaviors and
are frequently used in many computer vision applications. We choose to build

Fig. 3. The mean shapes of our blendshape models and their corresponding areas in
the 2D Valence-Arousal Space, which is shown as a 2D histogram of annotations of the
4DFAB database.
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the localized blendshape model [27] to describe our selection of V-A examples.
For each 3D mesh, we subtracted it from the neutral mesh of the corresponding
sequence and created a set of m difference vectors di ∈ R

3n which were then
stacked into a matrix D = [d1, ...,dm] ∈ R

3n×m, where n is number of vertices in
our mesh. Afterwards, a variant of sparse Principal Component Analysis (PCA)
was applied to our data matrix D to identify sparse deformation components
C ∈ R

h×1:
arg min ‖D − BC‖2F + Ω (C) s.t. V (B) , (1)

here, the constraint V can be either max (|Bk|) = 1, ∀k or max (Bk) = 1, B ≥
1, ∀k, where Bk ∈ R

3n×1 denotes the kth components of sparse weight matrix
B = [B1, · · · ,Bh]. The selection of these two constraints depends on our
actual usage; the major difference is that the latter one allows negative weights
and therefore enables deformation towards both directions, which is useful for
describing shapes like muscle bulges. The regularization of sparse components C
is performed with �1/�2 norm [1,40]. To permit more local deformations from the
model, additional regularization parameters were added into Ω (C). To solve for
the optimal C and B, an iterative alternating optimization is employed, please
refer to [27] for more details.

3.4 Facial Affect Synthesis for Arbitrary 2D Image

Given a facial expression synthesis based on the valence-arousal value pair, we
aim at modifying the face in an arbitrary 2D image and generating a new facial
image with affect. This procedure consists of three steps: (1) fit a 3D morphable
model on the image; (2) generate facial affect on the reconstructed 3D face; (3)
blend the new face into the original image. Specifically, we started by performing
a 3DMM fitting [4] on a 2D facial image, and retrieved a reconstructed 3D face
with the texture sampled from the original image. Next, we calculated the facial
deformation by subtracting the synthetic face with the LSFM template, and
imposed this deformation on the reconstructed mesh. This far, we have generated
a new 3D face with certain affect; the last step would be rendering it back to the
original 2D image, where a Poisson image blending [29] is employed to produce
a natural and realistic result.

4 Experimental Study

4.1 Discovering Shared Information Between 3D Data and
Valence-Arousal

In the first experiment, we wanted to prove the validity of our Valence-Arousal
modeling and synthesis approach. This could be verified by showing that there
is shared information between our 3D data and Valence-Arousal through a cor-
relation analysis.

Due to the high volume and dimensionality of our 3D data, it is intractable
to directly perform typical correlation analysis. Hence, we first built a pow-
erful expression blendshape model using the apex frames of posed expression



482 D. Kollias et al.

sequences from the 4DFAB; in total, 12,000 expressive 3D meshes are selected,
with 2,000 for each of the six basic expressions. Then, we projected our 3D data
to its subspace and retrieved the sparse representations for future analysis. We
experimented with different number of components (i.e. 84, 150, 200, 300, 500)
of the blendshape model to select the best configuration.

Next, we split the data into 2 sets: the training and the test set, contain-
ing 480,000 and 120,000 frames respectively, in a subject independent manner,
meaning that one person could only appear in the training or test set, but not on
both of them. As we have found a compact representation of our data, Canonical
Correlation Analysis (CCA) [15] can be performed on the training set and their
corresponding valence and arousal values. CCA is a shared-space component
analysis method, which recovers the loadings to project two data matrices on a
subspace where the linear correlation is maximized. This can be interpreted as
discovering the shared information conveyed by all the data (or views).

After CCA, we reduced the dimensions of our data to 2. Then, on the training
set, we performed Support Vector Regression (SVR) [2] with Radial Basis Func-
tion (RBF) kernel to map those 2 dimensions to the valence and arousal values.
In order to examine whether our 3D data highly correlate to the Valence-Arousal
labels, we predicted the V-A values of the test data using the aforementioned
models (CCA and SVR), and compare the predictions with our annotated V-A
labels. This comparison was performed with respect to two criteria: Concordance
Correlation Coefficient and the usual Mean Squared Error. The Concordance
Correlation Coefficient (CCC) can be defined as follows:

ρc =
2sxy

s2x + s2y + (x̄ − ȳ)2
, (2)

where sx and sy are the variances of the ground truth and predicted values of
the regression respectively, x̄ and ȳ are the corresponding mean values and sxy
is the respective covariance value.

Table 1 shows those two criteria for the test set when we keep different num-
bers of principal components for our expression blendshape model. We can
observe that with 200 components, highest correlation between the data and
V-A labels was achieved, as well as lowest prediction error. By selecting this
value, we ensured that the proposed synthesis approach is valid.

4.2 Databases Used for Affect Synthesis Evaluation

To evaluate our facial affect synthesis method in different scenarios (e.g. con-
trolled laboratory environment, uncontrolled in-the-wild setting), we utilized
neutral facial images from as many as 10 databases.

(1) Multi-PIE [14]: It contains 755,370 images (3072× 2048) of 337 people.
Pose, illumination, and expression are the key factors of the database. 15 view
points, 19 illuminations and 7 expressions are recorded in a controlled environ-
ment.
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Table 1. CCC and MSE evaluation of valence & arousal predictions on the test set
when we keep different number of principal components in PCA

No. of principal components to keep CCC MSE

Valence Arousal Valence Arousal

84 0.63 0.68 0.107 0.046

150 0.65 0.68 0.099 0.041

200 0.66 0.69 0.097 0.040

300 0.35 0.30 0.127 0.058

500 0.31 0.22 0.129 0.061

(2) Face place: This database 2 contains photographs of many different individ-
uals in various types of disguises, such that, for each individual, there are multiple
photographs in which hairstyle and/or eyeglasses have been changed/added. It
consists of 1,284 images of Asian, 937 images of African-American, 3,362 images
of Caucasian, 494 images of Hispanic and 497 images of multiracial people. All
images show posed expression.

(3) 2D Face Sets: We used 3 subsets from the 2D Face Sets database3.

Iranian women: It consists of 369 color images (1200 × 900) of 34 women. People
display mostly smile and neutral expression in each of five poses.

Nottingham scans: It has 100 monochrome images (50 men, 50 women) in neutral
and frontal pose. The image resolution varies from 358× 463 to 468× 536.

Pain expressions: It consists of 599 color images (720 × 576) of 13 women and
10 men. They usually display two of the six basic emotions (anger, disgust, fear,
sad, happy, surprise) plus pain 10 expressions. Profile neutral and 45◦ images
are available.

(4) FEI: The FEI database [38] is a Brazilian face database that contains a set
of face images taken between June 2005 and March 2006. 200 individuals were
recorded, and each one has 14 images, resulting in 2,800 images of size 640 × 480.
All images were color and taken against a white background in an upright frontal
position with profile rotation of up to 180◦. The subjects are mostly students
and staff at FEI, between 19 and 40 years old with distinct appearance, hairstyle
and adorns. The number of male and female subjects are both 100.

(5) Aff-Wild: Aff-Wild [20,46] consists of 298 Youtube videos, with 1, 200, 000
frames in total. The length of each video varies from 10 s to 15 min. These videos
contain spontaneous facial behaviors elicited by a variety of stimuli in arbitrary
recording conditions. There are 200 subjects (130 males and 70 females) from
2 Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition

and Department of Psychology, Carnegie Mellon University, http://www.tarrlab.
org/.

3 http://pics.stir.ac.uk.

http://www.tarrlab.org/
http://www.tarrlab.org/
http://pics.stir.ac.uk
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different ethnicities. Aff-Wild serves as the benchmark of the first Affect-in-the-
wild Challenge4 [18]. For each video, there are 8 annotators to annotate the
valence and arousal, in the range of [−1, +1].

(6) AFEW 5.0: This database is a dynamic facial expressions corpus (used in
EmotiW Challenge 2017 [9]) consisting of 1,809 nearly real world scenes from
movies and reality TV shows. There are over 330 subjects aging from 1 to 77. The
database is split into three sets: training (773 videos), validation (383 videos)
and test set (653 videos). It is a challenging database because both training and
validation sets are mainly from the movies, while 114 out of 653 test videos are
from TV. Annotations of neutral and 6 basic expressions are provided.

(7) AFEW-VA: Recently, a part of the AFEW database has been annotated
in terms of Valence and Arousal, thus creating the AFEW-VA [23] database.
It includes 600 video clips selected from films with real-world conditions, i.e.,
occlusions, illumination and body movements. The length of each video ranges
from around 10 frames to over 120 frames. This database consists of per-frame
annotations of V-A. In total, more than 30,000 frames were annotated for affect
prediction of V-A, using discrete values in the range of [−10, +10].

(8) BU-3DFE: BU-3DFE database [45] is the first 3D facial expression
database, which includes 2,500 expressive meshes from 100 subjects (56 females,
44 males) with age from 18 to 70. The subjects are from various ethnic/racial
ancestries. They recorded 6 articulated expressions (happiness, disgust, fear,
angry, surprise and sadness) with 4 intensities; also, there is a neutral 3D scan
per subject.

(9) Kinect Fusion ITW: The KF-ITW database [4] is the first Kinect 3D
database captured under relatively unconstrained conditions. This database con-
sists of 17 different subjects performing some expressions (neutral, happy, sur-
prise) under various illumination conditions.

(10) Bosphorus: The Bosphorus database [32] consists of 105 subjects in var-
ious poses, expressions and occlusion conditions. 18 men had beard/moustache
and 15 others had short facial hair. There are 60 men and 45 women, they
are mostly between 25 and 35. Majority of them are Caucasian. 27 professional
actors/actresses are incorporated in the database. The number of total face scans
is 4,652, each scan has been manually labeled with 24 facial landmarks.

4.3 Qualitative Evaluation of the Facial Affect Synthesis

We used all the above-mentioned databases to supply the proposed approach
with ‘input’ neutral faces. We synthesized the emotional state of specific V-A
value pairs for these images. One important task during this facial affect synthesis
procedure is to preserve identity, age and gender of the original face. Instead of
finding the closest matching sample (or K-nearest samples) for the given V-A
pair, we categorized our 3D data based on the 2D Valence-Arousal Space (as
shown in Fig. 3) and employed the mean expression of the area that contains the
target V-A pair.
4 https://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge.

https://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge


Photorealistic Facial Synthesis in the Dimensional Affect Space 485

Figure 4 is split into three parts. In each part, the top row illustrates some
neutral images sampled from each of the aforementioned databases and the bot-
tom one shows the respective synthesized images. Figure 5 shows the neutral

Fig. 4. (a)–(c). Synthesis of facial affect across all databases: on top rows are the
neutral and on the bottom are the corresponding synthesized images.
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Fig. 5. Synthesis of facial affect: on the left side are the neutral 2D images and on the
right the synthesized images with different levels of affect

images on the left side, and the synthesized images of different valence and
arousal values on the right. It could be observed that our synthetic images are
identity preserving, realistic and vivid. We showed that the proposed frame-
work works well for images from both in-the-wild and controlled databases. This
suggests that we could effectively synthesize facial affect regardless of different
image conditions (e.g., occlusions, illumination and head poses).
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4.4 Quantitative Evaluation of the Facial Affect Synthesis

Leveraging Synthetic Data for Training Deep Neural Networks. We
used the synthetic faces to train deep neural networks for valence and arousal
prediction on two facial affect databases annotated in terms of valence and
arousal, the Aff-Wild and AFEW-VA. Our first step is to select neutral frames
from these two databases. Specifically, we selected frames with zero valence and
arousal (human inspection was also conducted to make sure they are neutral
faces), then, for each frame, we synthesized facial affect using the mean blend-
shape (as shown in Fig. 3) and assigned the median valence and arousal value of
that class.

Experiments and Data Augmentation on the AFEW-VA. Following our
approach, we created 108,864 synthetic images from the AFEW-VA database, a
number that is 3.5 times bigger than its original size. For training, we used the
CNN-RNN (VGG-Face-GRU) architecture described in [18]. Similarly to [23], we
used a 5-fold person-independent cross-validation strategy and at each fold we
augmented the training set with the synthesized images of people appearing only
in that set (preserving the person independence). Table 2 shows a comparison
of the performance of our network with the best results reported in [23]. Those
results are in terms of the Pearson Correlation Coefficient criterion (Pearson
CC), defined as follows:

ρxy =
sxy
sxsy

(3)

where sx and sy are the variances of the ground truth and predicted values
respectively and sxy is the respective covariance value.

Table 2. Pearson Correlation Coefficient evaluation of valence & arousal predictions
provided by the best architecture in [23] vs the network trained on the augmented
dataset created by our approach. Note that valence and arousal values are in [−10, 10].

Group Pearson CC MSE

Valence Arousal Valence Arousal

Best of [23] 0.407 0.45 6.96 4.97

Our network (trained on the augmented dataset) 0.542 0.589 4.75 2.74

Experiments and Data Augmentation on the Aff-Wild. Following our
approach, we created 60,135 synthetic images from the Aff-Wild database. We
added those images to the training set of the first Affect-in-the-wild Challenge.
It should be noticed that these images were synthesized from neutral faces found
only in the training set of the challenge. The network we employed here was the
same CNN-RNN (VGG-Face-GRU) architecture described in [18]. Table 3 shows
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a comparison of the performance of our network trained with the augmented
data with the best results reported in [18] and the results of the winner of the
Aff-Wild Challenge [7] (Method FATAUVA-Net).

Table 3. Concordance Correlation Coefficient evaluation of valence & arousal pre-
dictions provided by the CNN-RNN trained on the Aff-Wild dataset augmented with
images synthesized by our approach vs methods [7] and [18]. Note that valence and
arousal values are in [−1, 1].

CCC MSE

Valence Arousal Valence Arousal

FATAUVA-Net [7] 0.396 0.282 0.123 0.095

[18] 0.570 0.430 0.080 0.060

Our network trained on the augmented dataset 0.591 0.442 0.074 0.051

From both tables, it can be verified that the network trained on the aug-
mented, with synthetic images, dataset, outperformed the networks trained with-
out them. This implies that, by augmenting the original training set, our method-
ology improved the network performance. It should be noted that the boost in
performance is greater when the number of augmented images is much greater
than the number of images in the dataset (which is the case of AFEW-VA that
contains 30,000 frames, while the augmented set included 109,000 more frames).

5 Conclusions and Future Work

A novel approach to generate facial affect in faces has been presented in this
paper. It leverages a dimensional emotion model in terms of valence and arousal,
and a large scale 4D face database, the 4DFAB. An efficient method has been
developed for matching different blendshape models on large amounts of images
extracted from the database and using these to render the appropriate facial
affect on a selected face. A variety of faces and facial expressions has been exam-
ined in the experimental study, from ten databases showing expressions accord-
ing to dimensional, but also categorical emotion models. The proposed approach
has been successfully applied to faces from all databases, being able to render
photorealistic facial expressions on them.

In our future work we will extend this approach to synthesize, not only dimen-
sional affect in faces, but also Facial Action Units. In this way a Global Local
synthesis of facial affect will be possible, through a unified modeling of global
dimensional emotion and local action unit based facial expression synthesis.
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