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Abstract
Automatic understanding of human affect using visual signals is of great importance in everyday human–machine interac-
tions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished 
using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emo-
tion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. 
Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured 
in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating 
affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) 
that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on 
the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural 
architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning 
architecture, AffWildNet, includes convolutional and recurrent neural network layers, exploiting the invariant properties of 
convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The 
AffWildNet produced state-of-the-art results on the Aff-Wild Challenge. We then exploit the AffWild database for learning 
features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emo-
tion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for 
the same goal. The database and emotion recognition models are available at http://ibug.doc.ic.ac.uk/resou rces/first -affec 
t-wild-chall enge.
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1 Introduction

Current research in automatic analysis of facial affect aims 
at developing systems, such as robots and virtual humans, 
that will interact with humans in a naturalistic way under 
real-world settings. To this end, such systems should auto-
matically sense and interpret facial signals relevant to emo-
tions, appraisals and intentions. Moreover, since real-world 
settings entail uncontrolled conditions, where subjects oper-
ate in a diversity of contexts and environments, systems that 
perform automatic analysis of human behavior should be 
robust to video recording conditions, the diversity of con-
texts and the timing of display.1

For the past twenty years research in automatic analysis of 
facial behavior was mainly limited to posed behavior which 
was captured in highly controlled recording conditions (Pan-
tic et al. 2005; Valstar and Pantic 2010; Tian et al. 2001; 
Lucey et al. 2010). Some representative datasets, which are 
still used in many recent works (Jung et al. 2015), are the 
Cohn–Kanade database (Tian et al. 2001; Lucey et al. 2010), 
MMI database (Pantic et al. 2005; Valstar and Pantic 2010), 
Multi-PIE database (Gross et al. 2010) and the BU-3D and 
BU-4D databases (Yin et al. 2006, 2008).

Nevertheless, it is now accepted by the community that 
the facial expressions of naturalistic behaviors can be radi-
cally different from the posed ones (Corneanu et al. 2016; 
Sariyanidi et al. 2015; Zeng et al. 2009). Hence, efforts have 
been made in order to collect subjects displaying naturalistic 
behavior. Examples include the recently collected EmoPain 
(Aung et al. 2016) and UNBC-McMaster (Lucey et al. 2011) 
databases for analysis of pain, the RU-FACS database of 
subjects participating in a false opinion scenario (Bartlett 
et al. 2006) and the SEMAINE corpus (McKeown et al. 
2012) which contains recordings of subjects interacting with 
a Sensitive Artificial Listener (SAL) in controlled condi-
tions. All the above databases have been captured in well-
controlled recording conditions and mainly under a strictly 
defined scenario eliciting pain.

Representing human emotions has been a basic topic of 
research in psychology. The most frequently used emotion 
representation is the categorical one, including the seven 
basic categories, i.e., Anger, Disgust, Fear, Happiness, 
Sadness, Surprise and Neutral (Dalgleish and Power 2000; 
Cowie and Cornelius 2003). It is, however, the dimensional 
emotion representation (Whissel 1989; Russell 1978) 
which is more appropriate to represent subtle, i.e., not only 
extreme, emotions appearing in everyday human computer 
interactions. To this end, the 2-D valence and arousal space 

is the most usual dimensional emotion representation. Fig-
ure 1 shows the 2-D Emotion Wheel (Plutchik 1980), with 
valence ranging from very positive to very negative and 
arousal ranging from very active to very passive.

Some emotion recognition databases exist in the litera-
ture that utilize dimensional emotion representation. Exam-
ples are the SAL (Douglas-Cowie et al. 2008), SEMAINE 
(McKeown et al. 2012), MAHNOB-HCI (Soleymani et al. 
2012), Belfast naturalistic,2 Belfast induced (Sneddon et al. 
2012), DEAP (Koelstra et al. 2012), RECOLA (Ringeval 
et al. 2013), SEWA3 and AFEW-VA (Kossaifi et al. 2017) 
databases.

Currently, there are many challenges (competitions) in the 
behavior analysis domain. One such example is the Audio/
Visual Emotion Challenges (AVEC) series (Valstar et al. 
2013, 2014, 2016; Ringeval et al. 2015, 2017) which started 
in 2011. The first challenge (Schuller et al. 2011) used the 
SEMAINE database for classification purposes by binarizing 
its continuous values, while the second challenge (Schuller 
et al. 2012) used the same database but with its original 
values. The last challenge (Ringeval et al. 2017) utilized 
the SEWA database. Before this and for two consecutive 
years (Ringeval et al. 2015; Valstar et al. 2016) the RECOLA 
dataset was used.

However these databases have some of the below limita-
tions, as shown in Table 1:

(1) They contain data recorded in laboratory or controlled 
environments.

(2) Their diversity is limited due to the small total number 
of subjects they contain, the limited amount of head 
pose variations and present occlusion, the static back-
ground or uniform illumination

(3) The total duration of their included videos is rather 
short

To tackle the aforementioned limitations, we collected 
the first, to the best of our knowledge, large scale captured 
in-the-wild database and annotated it in terms of valence 
and arousal. To do so, we capitalized on the abundance of 
data available in video-sharing websites, such as YouTube 
(2011)4 and selected videos that display the affective behav-
ior of people, for example videos that display the behavior 

1 It is well known that the interpretation of a facial expression may 
depend on its dynamics, e.g. posed versus spontaneous expressions 
(Zeng et al. 2009).

2 https ://belfa st-natur alist ic-db.sspne t.eu/.
3 http://sewap rojec t.eu.
4 The collection has been conducted under the scrutiny and approval 
of the Imperial College Ethical Committee (ICREC). The majority 
of the chosen videos were under Creative Commons License (CCL). 
For those videos that were not under CCL, we have contacted the per-
son who created them and asked for their approval to be used in this 
research.

https://belfast-naturalistic-db.sspnet.eu/
http://sewaproject.eu
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Fig. 1  The 2-D Emotion Wheel

Table 1  Databases annotated for both valence and arousal and their attributes

Database No. of subjects No. of videos Duration of each video Condition

MAHNOB-HCI (Soleymani et al. 2012) 27 20 34.9–117 s Controlled
DEAP (Koelstra et al. 2012) 32 40 1 min Controlled
AFEW-VA (Kossaifi et al. 2017) < 600 600 0.5–4 s In-the-wild
SAL (Douglas-Cowie et al. 2008) 4 24 25 min Controlled
SEMAINE (McKeown et al. 2012) 150 959 5 min Controlled
Belfast naturalistic (see Footnote 2) 125 298 10–60 s Controlled
Belfast induced (Sneddon et al. 2012) 37 37 5–30 s Controlled
RECOLA (Ringeval et al. 2013) 46 46 5 min Controlled
SEWA (see Footnote 3) < 398 538 10–30 s In-the-wild
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of people when watching a trailer, a movie, a disturbing clip, 
or reactions to pranks.

To this end we have collected 298 videos displaying 
reactions of 200 subjects, with a total video duration of 
more than 30 h. This database has been annotated by 8 lay 
experts with regards to two continuous emotion dimensions, 
i.e. valence and arousal. We then organized the Aff-Wild 
Challenge based on the Aff-Wild database (Zafeiriou et al. 
2017; Kollias et al. 2017), in conjunction with International 
Conference on Computer Vision and Pattern Recognition 
(CVPR) 2017. The participating teams submitted their 
results to the challenge, outperforming the provided base-
line. However, as described later in this paper, the achieved 
performances were rather low.

For this reason, we capitalized on the Aff-Wild database 
to build CNN and CNN plus RNN architectures shown to 
achieve excellent performance on this database, outperform-
ing all previous participants’ performances. We have made 
extensive experimentations, testing structures for combining 
convolutional and recurrent neural networks and training 
them altogether as an end-to-end architecture. We have used 
a loss function that is based on the Concordance Correla-
tion Coefficient (CCC), which we also compare it with the 
usual Mean Squared Error (MSE) criterion. Additionally, we 
appropriately fused, within the network structures, two types 
of inputs, the 2-D facial images—presented at the input of 
the end-to-end architecture—and the 2-D facial landmark 
positions—presented at the 1st fully connected layer of the 
architecture.

We have also investigated the use of the created CNN-
RNN architecture for valence and arousal estimation in other 
datasets, focusing on the RECOLA and the AFEW-VA ones. 
Last but not least, taking into consideration the large in-the-
wild nature of this database, we show that our network can 
be also used for other emotion recognition tasks, such as 
classification of the universal expressions.

The only challenge, apart from last AVEC (2017) (Rin-
geval et al. 2017), using ‘in-the-wild’ data is the series of 
EmotiW (Dhall et al. 2013, 2014, 2015, 2016, 2017). It uses 
the AFEW dataset, whose samples come from movies, TV 
shows and series. To the best of our knowledge, this is the 
first time that a dimensional database and features extracted 
from it, are used as priors for categorical emotion recogni-
tion in-the-wild, exploiting the EmotiW Challenge dataset.

To summarize, there exist several databases for dimen-
sional emotion recognition. However, they have limitations, 
mostly due to the fact that they are not captured in-the-wild 
(i.e., not in uncontrolled conditions). This urged us to create 
the benchmark Aff-Wild database and organize the Aff-Wild 
Challenge. The results acquired are presented later in full 
detail. We proceeded in conducting experiments and build-
ing CNN and CNN plus RNN architectures, including the 
AffWildNet, producing state-of-the-art results.

The main contributions of the paper are the following:

• It is the first time that a large in-the-wild database—with 
a big variety of: (1) emotional states, (2) rapid emotional 
changes, (3) ethnicities, (4) head poses, (5) illumination 
conditions and (6) occlusions—has been generated and 
used for emotion recognition.

• An appropriate state-of-the-art deep neural network 
(DNN) (AffWildNet) has been developed, which is capa-
ble of learning to model all these phenomena. This has 
not been technically straightforward, as can be verified 
by comparing the AffWildNet’s performance to the per-
formances of other DNNs developed by other research 
groups which participated in the Aff-Wild Challenge.

• It is shown that the AffWildNet has been capable of 
generalizing its knowledge in other emotion recognition 
datasets and contexts. By learning complex and emotion-
ally rich features of the AffWild, the AffWildNet consti-
tutes a robust prior for both dimensional and categorical 
emotion recognition. To the best of our knowledge, it 
is the first time that state-of-the-art performances are 
achieved in this way.

The rest of the paper is organized as follows. Section 2 
presents the databases generated and used in the presented 
experiments. Section 3 describes the pre-processing and 
annotation methodologies that we used. Section 4 begins 
by describing the Aff-Wild Challenge that was organized, 
the baseline method, the methodologies of the participating 
teams and their results. It then presents the end-to-end DNNs 
which we developed and the best performing AffWildNet 
architecture. Finally experimental studies and results are 
presented and discussed, illustrating the above develop-
ments. Section 5 describes how the AffWildNet can be used 
as a prior for other, both dimensional and categorical, emo-
tion recognition problems yielding state-of-the-art results. 
Finally, Sect. 6 presents the conclusions and future work 
following the reported developments.

2  Existing Databases

We briefly present the RECOLA, AFEW, AFEW-VA data-
bases used for emotion recognition and mention their limi-
tations which lead to the creation of the Aff-Wild database. 
Table 2 summarizes these limitations, also showing the 
superior properties of Aff-Wild.

2.1  RECOLA Dataset

The REmote COLlaborative and Affective (RECOLA) data-
base was introduced by Ringeval et al. (2013) and it contains 
natural and spontaneous emotions in the continuous domain 
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(arousal and valence). The corpus includes four modali-
ties: audio, visual, electro-dermal activity and electro-car-
diogram. It consists of 46 French speaking subjects being 
recorded for 9.5 h recordings in total. The recordings were 
annotated for 5 min each by 6 French-speaking annotators 
(three male, three female). The dataset is divided into three 
parts, namely, training (16 subjects), validation (15 subjects) 
and test (15 subjects), in such a way that the gender, age and 
mother tongue are stratified (i.e., balanced).

The main limitations of this dataset include the tightly 
controlled laboratory environment, as well as the small num-
ber of subjects. It should be also noted that it contains a 
moderate total number of frames.

2.2  The AFEW Dataset

The series of EmotiW challenges (Dhall et al. 2013, 2014, 
2015, 2016, 2017) make use of the data from the Acted 
Facial Expression In The Wild (AFEW) dataset (Dhall et al. 
2017). This dataset is a dynamic temporal facial expressions 
data corpus consisting of close to real world scenes extracted 
from movies and reality TV shows. In total it contains 1809 
videos. The whole dataset is split into three sets: training set 
(773 video clips), validation set (383 video clips) and test set 
(653 video clips). It should be emphasized that both train-
ing and validation sets are mainly composed of real movie 
records, however 114 out of 653 video clips in the test set are 
real TV clips, thus increasing the difficulty of the challenge. 
The number of subjects is more than 330, aged 1–77 years. 
The annotation is according to 7 facial expressions (Anger, 
Disgust, Fear, Happiness, Neutral, Sadness and Surprise) 
and is performed by three annotators. The EmotiW chal-
lenges focus on audiovisual classification of each clip into 
the seven basic emotion categories.

The limitations of the AFEW dataset include its small 
size (in terms of total number of frames) and its restriction to 
only seven emotion categories, some of which (fear, disgust, 
surprise) include a small number of samples.

2.3  The AFEW‑VA Database

Very recently, a part of the AFEW dataset of the series of 
EmotiW challenges has been annotated in terms of valence 
and arousal, thus creating the so called AFEW-VA (Kossaifi 
et al. 2017) database. In total, it contains 600 video clips that 
were extracted from feature films and simulate real-world 
conditions, i.e., occlusions, different illumination conditions 
and free movements from subjects. The videos range from 
short (around 10 frames) to longer clips (more than 120 
frames). This database includes per-frame annotations of 
valence and arousal. In total, more than 30,000 frames were 
annotated for dimensional affect prediction of arousal and 
valence, using discrete values in the range of [ − 10 , + 10].

The database’s limitations include its small size (in terms 
of total number of frames), the small number of annota-
tors (only 2) and the use of discrete values for valence and 
arousal. It should be noted that the 2-D Emotion Wheel 
(Fig. 1) is a continuous space. Therefore, using discrete 
only values for valence and arousal provides a rather coarse 
approximation of the behavior of persons in their everyday 
interactions. On the other hand, using continuous values can 
provide improved modeling of the expressiveness and rich-
ness of emotional states met in everyday human behaviors.

2.4  The Aff‑Wild Database

We created a database consisting of 298 videos, with a total 
length of more than 30 h. The aim was to collect sponta-
neous facial behaviors in arbitrary recording conditions. 

Table 2  Current databases used for emotion recognition in this paper, their attributes and limitations compared to Aff-Wild

Database Model of affect Condition Total no. of frames No. of videos No. of 
annota-
tors

Limitations/comments

RECOLA Valence–arousal (continuous) Controlled 345,000 46 6 Laboratory environment
Moderate total amount of frames
Small number of subjects (46)

AFEW Seven basic facial expressions In-the-wild 113,355 1809 3 Only 7 basic expressions
Small total amount of frames
Small number of annotators
Imbalanced expression categories

AFEW-VA Valence–arousal (discrete) In-the-wild 30,050 600 2 Very small total amount of frames
Discrete valence and arousal values
Small number of annotators

Aff-Wild Valence–arousal (continuous) In-the-wild 1,224,100 298 8 –
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To this end, the videos were collected using the Youtube 
video sharing web-site. The main keyword that was used 
to retrieve the videos was “reaction”. The database dis-
plays subjects reacting to a variety of stimuli, e.g. view-
ing an unexpected plot twist of a movie or series, a trailer 
of a highly anticipated movie, or tasting something hot or 
disgusting. The subjects display both positive or negative 
emotions (or combinations of them). In other cases, subjects 
display emotions while performing an activity (e.g., riding a 
rolling coaster). In some videos, subjects react on a practi-
cal joke, or on positive surprises (e.g., a gift). The videos 
contain subjects from different genders and ethnicities with 
high variations in head pose and lightning.

Most of the videos are in YUV 4:2:0 format, with some of 
them being in AVI format. Eight subjects have annotated the 
videos following a methodology similar to the one proposed 
in Cowie et al. (2000), in terms of valence and arousal. An 
online annotation procedure was used, according to which 
annotators were watching each video and provided their 
annotations through a joystick. Valence and arousal range 

continuously in [ − 1 , + 1 ]. All subjects present in each video 
have been annotated. The total number of subjects is 200, 
with 130 of them being male and 70 of them female. Table 3 
shows the general attributes of the Aff-Wild database. Fig-
ure 2 shows some frames from the Aff-Wild database, with 
people from different ethnicities displaying various emo-
tions, with different head poses and illumination conditions, 
as well as occlusions in the facial area.

Figure 3 shows an example of annotated valence and 
arousal values over a part of a video in the Aff-Wild, together 
with corresponding frames. This illustrates the in-the-wild 
nature of our database, namely, including many different 
emotional states, rapid emotional changes and occlusions in 
the facial areas. Figure 3 also shows the use of continuous 
values for valence and arousal annotation, which gives the 
ability to effectively model all these different phenomena. 
Figure 4 provides a histogram for the annotated values for 
valence and arousal in the generated database.

3  Data Pre‑processing and Annotation

In this section we describe the pre-processing process of 
the Aff-Wild videos so as to perform face and facial land-
mark detection. Then we present the annotation procedure 
including:

(1) Creation of the annotation tool.
(2) Generation of guidelines for six experts to follow in 

order to perform the annotation.

Fig. 2  Frames from the Aff-
Wild database which show 
subjects in different emotional 
states, of different ethnicities, 
in a variety of head poses, 
illumination conditions and 
occlusions

Table 3  Attributes of the Aff-Wild database

Attribute Description

Length of videos 0.10–14.47 min
Video format AVI , MP4
Average Image Resolution (AIR) 607 × 359

Standard deviation of AIR 85 × 11

Median Image Resolution 640 × 360

Fig. 3  Valence and arousal 
annotations over a part of a 
video, along with correspond-
ing frames; illustrating (i) the 
in-the-wild nature of Aff-Wild 
(different emotional states, rapid 
emotional changes, occlusions) 
and (ii) the use of continuous 
values for valence and arousal
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(3) Post-processing annotation: the six annotators watched 
all videos again, checked their annotations and per-
formed any corrections; two new annotators watched 
all videos and selected 2–4 annotations that best 
described each video; final annotations are the mean 
of the selected annotations by these two new annota-
tors.

The detected faces and facial landmarks, as well as the gen-
erated annotations are publicly available with the Aff-Wild 
database.

Finally, we present a statistical analysis of the annotations 
created for each video, illustrating the consistency of annota-
tions achieved by using the above procedure.

3.1  Aff‑Wild Video Pre‑processing

VirtualDub (Lee 2002) was used first so as to trim the raw 
YouTube videos, mainly at their beginning and end-points, 
in order to remove useless content (e.g., advertisements). 
Then, we extracted a total of 1,224,100 video frames using 
the Menpo software (Alabort-i-Medina et al. 2014). In each 
frame, we detected the faces and generated corresponding 
bounding boxes, using the method described in Mathias 
et al. (2014). Next, we extracted facial landmarks in all 
frames using the best performing method as indicated in 
Chrysos et al. (2018).

During this process, we removed frames in which 
the bounding box or landmark detection failed. Failures 
occurred when either the bounding boxes, or landmarks, 
were wrongly detected, or were not detected at all. The for-
mer case was semi-automatically discovered by: (i) detecting 
significant shifts in the bounding box and landmark positions 
between consecutive frames and (ii) having the annotators 
verify the wrong detection in the frames.

3.2  Annotation Tool

For data annotation, we developed our own application that 
builds on other existing ones, like Feeltrace (Cowie et al. 
2000) and Gtrace (Cowie et al. 2012). A time-continuous 

annotation is performed for each affective dimension, with 
the annotation process being as follows:

(a) The user logs in to the application using an identifier 
(e.g. his/her name) and selects an appropriate joystick;

(b) A scrolling list of all videos appears and the user selects 
a video to annotate;

(c) A screen appears that shows the selected video and a 
slider of valence or arousal values ranging in [− 1, 1];

(d) The user annotates the video by moving the joystick 
either up or down;

(e) Finally, a file is created including the annotation values 
and the corresponding time instances that the annota-
tions are generated.

It should be mentioned that the time instances generated 
in the above step (e), did not generally match the video 
frame rate. To tackle this problem, we modified/re-sam-
pled the annotation time instances using nearest neighbor 
interpolation.

Figure 5 shows the graphical interface of our tool when 
annotating valence (the interface for arousal is similar); this 
corresponds to step (c) of the above described annotation 
process.

Fig. 4  Histogram of valence and arousal annotations of the Aff-Wild database

Fig. 5  The GUI of the annotation tool when annotating valence (the 
GUI for arousal is exactly the same)
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It should also be added that the annotation tool has also 
the ability to show the inserted valence and arousal annota-
tion while displaying a respective video. This is used for 
annotation verification in a post-processing step.

3.3  Annotation Guidelines

Six experts were chosen to perform the annotation task. Each 
annotator was instructed orally and through a multi-page 
document on the procedure to follow for the task. This docu-
ment included a list of some well identified emotional cues 
for both arousal and valence, providing a common basis for 
the annotation task. On top of that the experts used their own 
appraisal of the subject’s emotional state for creating the 
annotations.5 Before starting the annotation of each video, 
the experts watched the whole video so as to know what to 
expect regarding the emotions being displayed in the video.

3.4  Annotation Post‑processing

A post-processing annotation verification step was also 
performed. Every expert-annotator watched all videos for a 
second time in order to verify that the recorded annotations 
were in accordance with the shown emotions in the videos 
or change the annotations accordingly. In this way, a further 
validation of annotations was achieved.

After the annotations have been validated by the annota-
tors, a final annotation selection step followed. Two new 
experts watched all videos and, for every video, selected the 
annotations (between two and four) which best described the 

displayed emotions. The mean of these selected annotations 
constitute the final Aff-Wild labels.

This step is significant for obtaining highly correlated 
annotations, as shown by the statistical analysis presented 
next.

3.5  Statistical Analysis of Annotations

In the following we provide a quantitative and rich statisti-
cal analysis of the achieved Aff-Wild labeling. At first, for 
each video, and independently for valence and arousal, we 
computed:

 (i) The inter-annotator correlations, i.e., the correlations 
of each one of the six annotators with all other anno-
tators, which resulted in five correlation values per 
annotator;

 (ii) For each annotator, his/her average inter-annotator 
correlations, resulting in one value per annotator; the 
mean of those six average inter-annotator correla-
tions value is denoted next as MAC-A;

 (iii) The average inter-annotator correlations, across only 
the selected annotators, as described in the previous 
subsection, resulting in one value per selected anno-
tator; the mean of those 2–4 average inter-selected-
annotator correlations values is denoted next as 
MAC-S.

We then computed over all videos and independently for 
valence and arousal, the mean of MAC-A and the mean of 
MAC-S computed in (ii) and (iii) above. The mean MAC-A 
is 0.47 for valence and 0.46 for arousal, whilst the mean 
MAC-S for valence is 0.71 and for arousal 0.70. An example 
set of annotations is shown in Fig. 6, in an effort to fur-
ther clarify the obtained MAC-S values. It shows the four 
selected annotations in a video segment for valence and 
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Fig. 6  The four selected annotations in a video segment for a valence and b arousal. In both cases, the value of MAC-S (mean of average corre-
lations between these four annotations) is 0.70. This value is similar to the mean MAC-S obtained over all Aff-Wild

5 All annotators were computer scientists who were working on 
face analysis problems and all had a working understanding of facial 
expressions.
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arousal, respectively, with MAC-S value of 0.70 (similar to 
the mean MAC-S value obtained over all Aff-Wild).

In addition, Fig. 7 shows the cumulative distribution of 
MAC-S and MAC-A values over all Aff-Wild videos for 
valence (Fig. 7a) and arousal (Fig. 7b). In each case, two 
curves are shown. Every point (x, y) on these curves has a 
y value showing the percentage of videos with a (i) MAC-S 
(red curve) or (ii) MAC-A (blue curve) value greater or equal 
to x; the latter denotes an average correlation in [0, 1]. It can 
be observed that the mean MAC-S value, corresponding to a 
value of 0.5 in the vertical axis, is 0.71 for valence and 0.70 
for arousal. These plots also illustrate that the MAC-S values 
are much higher than the corresponding MAC-A values in 
both valence and arousal annotation, verifying the effective-
ness of the annotation post-processing procedure.

Next, we conducted similar experiments for the valence/ 
arousal average annotations and the facial landmarks in each 
video, in order to evaluate the correlation of annotations to 
landmarks. To this end, we utilized Canonical Correlation 
Analysis (CCA) (Hardoon et al. 2003). In particular, for each 
video and independently for valence and arousal, we computed 
the correlation between landmarks and the average of (i) all or 
(ii) selected annotations.

Figure 8 shows the cumulative distribution of these cor-
relations over all Aff-Wild videos for valence (Fig. 8a) and 
arousal (Fig. 8b), similarly to Fig. 7. Results of this analy-
sis verify that the annotator-landmark correlation is much 
higher in the case of selected annotations than in the case of 
all annotations.
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Fig. 7  The cumulative distribution of MAC-S (mean of average inter-
selected-annotator correlations) and MAC-A (mean of average inter-
annotator correlations) values over all Aff-Wild videos for valence 
(a) and arousal (b). The Figure shows the percentage of videos with 

a MAC-S/MAC-A value greater or equal to the values shown in the 
horizontal axis. The mean MAC-S value, corresponding to a value of 
0.5 in the vertical axis, is 0.71 for valence and 0.70 for arousal
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Aff-Wild videos for valence (a) and arousal (b). The figure shows the 
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4  Developing the AffWildNet

This section begins by presenting the first Aff-Wild Chal-
lenge that was organized based on the Aff-Wild database 
and held in conjunction with CVPR 2017. It includes short 
descriptions and results of the algorithms of the six research 
groups that participated in the challenge. Although the 
results are promising, there is much room for improvement.

For this reason we developed our own CNN and CNN 
plus RNN architectures based on the Aff-Wild database. We 
propose the AffWildNet as the best performing among the 
developed architectures. Our developments, ablation studies 
and discussions are presented next.

4.1  The Aff‑Wild Challenge

The training data (i.e., videos and annotations) of the Aff-
Wild challenge were made publicly available on the 30th 
of January 2017, followed by the release of the test videos 
(without annotations). The participants were given the free-
dom to split the data into train and validation sets, as well as 
to use any other dataset. The maximum number of submitted 
entries for each participant was three. Table 4 summarizes 
the specific attributes (numbers of males, females, videos, 
frames) of the training and test sets of the challenge.

In total, ten different research groups downloaded the Aff-
Wild database. Six of them made experiments and submitted 
their results to the workshop portal. Based on the perfor-
mance they obtained on the test data, three of them were 
selected to present their results to the workshop.

Two criteria were considered for evaluating the perfor-
mance of the networks. The first one is Concordance Cor-
relation Coefficient (CCC) (Lawrence and Lin 1989), which 
is widely used in measuring the performance of dimensional 
emotion recognition methods, e.g., the series of AVEC chal-
lenges. CCC evaluates the agreement between two time 
series (e.g., all video annotations and predictions) by scaling 
their correlation coefficient with their mean square differ-
ence. In this way, predictions that are well correlated with 
the annotations but shifted in value are penalized in propor-
tion to the deviation. CCC takes values in the range [− 1, 1] , 
where + 1 indicates perfect concordance and − 1 denotes per-
fect discordance. The highest the value of the CCC the better 
the fit between annotations and predictions, and therefore 
high values are desired. The mean value of CCC for valence 

and arousal estimation was adopted as the main evaluation 
criterion. CCC is defined as follows:

where �xy is the Pearson Correlation Coefficient (Pearson 
CC), sx and sy are the variances of all video valence/arousal 
annotations and predicted values, respectively and sxy is the 
corresponding covariance value.

The second criterion is the Mean Squared Error (MSE), 
which is defined as follows:

where x and y are the (valence/arousal) annotations and pre-
dictions, respectively, and N is the total number of samples. 
The MSE gives us a rough indication of how the derived 
emotion model is behaving, providing a simple comparative 
metric. A small value of MSE is desired.

4.1.1  Baseline Architecture

The baseline architecture for the challenge was based on the 
CNN-M (Chatfield et al. 2014) network, as a simple model 
that could be used to initiate the procedure. In particular, our 
network used the convolutional and pooling parts of CNN-M 
having been trained on the FaceValue dataset (Albanie and 
Vedaldi 2016). On top of that we added one 4096-fully con-
nected layer and a 2-fully connected layer that provides the 
valence and arousal predictions. The interested reader can 
refer to “Appendix A” for a short description and the struc-
ture of this architecture.

The input to the network were the facial images resized to 
resolution of 224 × 224 × 3 , or 96 × 96 × 3 , with the inten-
sity values being normalized to the range [− 1, 1].

In order to train the network, we utilized the Adam opti-
mizer algorithm; the batch size was set to 80, and the initial 
learning rate was set to 0.001. Training was performed on a 
single GeForce GTX TITAN X GPU and the training time 
was about 4–5 days. The platform used for this implementa-
tion was Tensorflow (Abadi et al. 2016).

4.1.2  Participating Teams’ Algorithms

The three papers accepted to this challenge are briefly 
reported below, while Table 5 compares the acquired results 
(in terms of CCC and MSE) by all three methods and the 
baseline network. As one can see, FATAUVA-Net (Chang 
et al. 2017) has provided the best results in terms of the 
mean CCC and mean MSE for valence and arousal.

(1)𝜌c =
2sxy

s2
x
+ s2

y
+ (x̄ − ȳ)2

=
2sxsy𝜌xy

s2
x
+ s2

y
+ (x̄ − ȳ)2

,

(2)MSE =
1

N

N
∑

i=1

(xi − yi)
2
,

Table 4  Attributes of training and test sets of Aff-Wild

Set No. of males No. of 
females

No. of videos Total No. of 
frames

Training 106 48 252 1,008,650
Test 24 22 46 215,450
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We should note that after the end of the challenge, more 
groups enquired about the Aff-Wild database and sent results 
for evaluation, but here we report only on the teams that 
participated in the challenge.

In the MM-Net method (Li et al. 2017), a variation of a 
deep convolutional residual neural network (ResNet) (He 
et al. 2016) is first presented for affective level estimation 
of facial expressions. Then, multiple memory networks are 
used to model temporal relations between the video frames. 
Finally, ensemble models are used to combine the predic-
tions of the multiple memory networks, showing that the 
latter steps improve the initially obtained performance, as 
far as MSE is concerned, by more than 10%.

In the FATAUVA-Net method (Chang et  al. 2017), 
a deep learning framework is presented, in which a core 
layer, an attribute layer, an action unit (AU) layer and a 
valence–arousal layer are trained sequentially. The core 
layer is a series of convolutional layers, followed by the 
attribute layer which extracts facial features. These layers 
are applied to supervise the learning of AUs. Finally, AUs 
are employed as mid-level representations to estimate the 
intensity of valence and arousal.

In the DRC-Net method (Mahoor and Hasani 2017), three 
neural network-based methods which are based on Inception-
ResNet (Szegedy et al. 2017) modules redesigned specifically 
for the task of facial affect estimation are presented and com-
pared. These methods are: Shallow Inception-ResNet, Deep 
Inception-ResNet, and Inception-ResNet with Long Short 
Term Memory (Hochreiter and Schmidhuber 1997). Facial 
features are extracted in different scales and both, the valence 
and arousal, are simultaneously estimated in each frame. Best 
results are obtained by the Deep Inception-ResNet method.

All participants applied deep learning methods to the 
problem of emotion analysis of the video inputs. The 

following conclusions can be drawn from the reported 
results. First, CCC of arousal predictions was really low for 
all three methods. Second, MSE of valence predictions was 
high for all three methods and CCC was low, except for the 
winning method. This illustrates the difficulty in recogniz-
ing emotion in-the-wild, where, for instance, illumination 
conditions differ, occlusions are present and different head 
poses are met.

4.2  Deep Neural Architectures and Ablation Studies

Here, we present our developments and ablation studies 
towards designing deep CNN and CNN plus RNN architec-
tures for the Aff-Wild. We present the proposed architecture, 
AffWildNet, which is a CNN plus RNN network that pro-
duced the best results in the database.

4.2.1  The Roadmap

A. We considered two network settings:

(1) A CNN network trained in an end-to-end man-
ner, i.e., using raw intensity pixels, to produce 2-D 
predictions of valence and arousal,

(2) A RNN stacked on top of the CNN to capture tem-
poral information in the data, before predicting 
the affect dimensions; this was also trained in an 
end-to-end manner.

   To extract features from the frames we experimented 
with three CNN architectures, namely, ResNet-50, 
VGG-Face (Parkhi et al. 2015) and VGG-16 (Simon-
yan and Zisserman 2014). To consider the contextual 
information in the data (RNN case) we experimented 
with both the Long Short-Term Memory (LSTM) and 
the Gated Recurrent Unit (GRU) (Chung et al. 2014) 
architectures.

B. To further boost the performance of the networks, we 
also experimented with the use of facial landmarks. Here 
we should note that the facial landmarks are provided 
on-the-fly for training and testing the networks. The fol-
lowing two scenarios were tested:

(1) The networks were applied directly on cropped 
facial video frames of the generated database.

(2) The networks were trained on both the facial video 
frames as well as the facial landmarks correspond-
ing to the same frame.

C. Since the main evaluation criterion of the Aff-Wild 
Challenge was the mean value of CCC for valence and 
arousal, our loss function was based on that criterion and 
was defined as: 

Table 5  Concordance Correlation Coefficient (CCC) and Mean 
Squared Error (MSE) of valence and arousal predictions provided by 
the methods of the three participating teams and the baseline archi-
tecture. A higher CCC and a lower MSE value indicate a better per-
formance

Best results are shown in bold

Methods Valence Arousal Mean value

(A) CCC 
MM-Net 0.196 0.214 0.205
FATAUVA-Net 0.396 0.282 0.339
DRC-Net 0.042 0.291 0.167
Baseline 0.150 0.100 0.125
(B) MSE
MM-Net 0.134 0.088 0.111
FATAUVA-Net 0.123 0.095 0.109
DRC-Net 0.161 0.094 0.128
Baseline 0.130 0.140 0.135
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 where �a and �v are the CCC for the arousal and valence, 
respectively.

D. In order to have a more balanced dataset for training, 
we performed data augmentation, mainly through over-
sampling by duplicating (More 2016) some data from 
the Aff-Wild database. We copied small video parts 
showing less-populated valence and arousal values. 
In particular, we duplicated consecutive video frames 
that had negative valence and arousal values, as well 
as positive valence and negative arousal values. As a 
consequence, the training set consisted of about 43% 
of positive valence and arousal values, 24% of nega-
tive valence and positive arousal values, 19% of positive 
valence and negative arousal values and 14% of negative 
valence and arousal values. Our main target has been a 
trade-off between generating balanced emotion sets and 
avoiding to severely change the content of videos.

4.2.2  Developing CNN Architectures for the Aff‑Wild

For the CNN architectures, we considered the ResNet-50 
and VGG-16 networks, pre-trained on the ImageNet (Deng 
et al. 2009) dataset that has been broadly used for state-of-
the-art object detection. We also considered the VGG-Face 
network, pre-trained for face recognition on the VGG-Face 
dataset (Parkhi et al. 2015). The VGG-Face has proven to 
provide the best results, as reported next in the experimental 
section. It is worth mentioning that in our experiments we 
have trained those architectures for predicting both valence 
and arousal at their output, as well as for predicting valence 
and arousal separately. The obtained results were similar in 
the two cases. In all experiments presented next, we focus on 
the simultaneous prediction of valence and arousal.

The first architecture we utilized was the deep residual 
network (ResNet) of 50 layers (He et al. 2016), on top of 
which we stacked a 2-layer fully connected (FC) network. 
For the first FC layer, best results have been obtained when 
using 1500 units. For the second FC layer, 256 units pro-
vided the best results. An output layer with two linear units 
followed providing the valence and arousal predictions. 
The interested reader can refer to “Appendix A” for a short 
description and the structure of this architecture.

The other architecture that we utilized was based on the 
convolutional and pooling layers of VGG-Face or VGG-16 
networks, on top of which we stacked a 2-layer FC network. 
For the first and second FC layers, best results have been 
obtained when using 4096 units. An output layer followed, 
including two linear units, providing the valence and arousal 
predictions. The interested reader can refer to “Appendix A” 

(3)total = 1 −
�a + �v

2
,

for a short description and the structure of this architecture 
as well.

In the case when landmarks were used (scenario B.2 in 
Sect. 4.2.1), these were input to the first FC layer along with: 
(i) the outputs of the ResNet-50, or (ii) the outputs of the last 
pooling layer of the VGG-Face/VGG-16. In this way, both 
outputs and landmarks were mapped to the same feature 
space before performing the prediction.

With respect to parameter selection in those CNN archi-
tectures, we have used a batch size in the range 10–100 and 
a constant learning rate value in the range 0.00001–0.001. 
The best results have been obtained with batch size equal to 
50 and learning rate equal to 0.0001. The dropout probability 
value has been set to 0.5.

4.2.3  Developing CNN Plus RNN Architectures 
for the Aff‑Wild

In order to consider the contextual information in the data, 
we developed a CNN-RNN architecture, in which the RNN 
part was fed with the outputs of either the first, or the second 
fully connected layer of the respective CNN networks.

The structure of the RNN, which we examined, consisted 
of one or two hidden layers, with 100–150 units, following 
either the LSTM neuron model with peephole connections, 
or the GRU neuron model. Using one fully connected layer 
in the CNN part and two hidden layers in the RNN part, 
including GRUs, has been found to provide the best results. 
An output layer followed, including two linear units, provid-
ing the valence and arousal predictions.

Table 6 shows the configuration of the CNN-RNN archi-
tecture. The CNN part of this architecture was based on the 
convolutional and pooling layers of the CNN architectures 
described above (VGG-Face, or ResNet-50) that was fol-
lowed by a fully connected layer. Note that in the case of 
scenario B.2 of Sect. 4.2.1, both the outputs of the last pool-
ing layer of the CNN, as well as the 68 landmark 2-D posi-
tions ( 68 × 2 values) were provided as inputs to this fully 
connected layer. Table 6 shows the respective number of 
units for the GRU and the fully connected layers. We call 
this CNN plus RNN architecture AffWildNet and illustrate 
it in Fig. 9.

Table 6  The AffWildNet architecture: the fully connected 1 layer 
has 4096, or 1500 hidden units, depending on whether VGG-Face or 
ResNet-50 is used

Block 1 VGG-Face or ResNet-50 conv and 
pooling parts

Block 2 Fully connected 1 dropout 4096 or 1500
Block 3 GRU layer 1 dropout 128
Block 4 GRU layer 2 128
Block 5 Fully connected 2 2
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Network evaluation has been performed by testing dif-
ferent parameter values. The parameters included: the batch 
size and sequence length used for network parameter updat-
ing, the value of the learning rate and the dropout probabil-
ity value. Final selection of these parameters was similar 
to the CNN cases, apart from the sequence length which 
was selected in the range 50–200 and batch size that was 
selected in the range 2–10. Best results have been obtained 
with sequence length 80 and batch size 4. We note that all 
deep learning architectures have been implemented in the 
Tensorflow platform.

4.3  Experimental Results

In the following we present the affect recognition results 
obtained when applying the above derived CNN-only and 
CNN plus RNN architectures to the Aff-Wild database.

At first, we have trained the VGG-Face network using 
two different annotations. One, which is provided in the Aff-
Wild database, is the average of the selected (as described in 
Sect. 3.4) annotations. The second is that of a single annota-
tor (the one with the highest correlation to the landmarks). It 
should be mentioned that the latter is generally less smooth 
than the former, average, one. Hence, they are more difficult 
to be modeled. Then, we tested the two trained networks in 
two scenarios, as described in Sect. 4.2.1 case B, using/not 
using the 68 2-D landmark inputs.

The results are summarized in Table  7. As was 
expected, better results were obtained when the mean of 
annotations was used. Moreover, Table 7 shows that there 

is a notable improvement in the performance, when we 
also used the 68 2-D landmark positions as input data.

Next, we examined the use of various numbers of hid-
den layers and hidden units per layer when training and 
testing the VGG-Face-GRU network. Some characteris-
tic selections and their corresponding performances are 
shown in Table 8. It can be seen that the best results have 
been obtained when the RNN part of the network con-
sisted of 2 layers, each of 128 hidden units.

Table 9 summarizes the CCC and MSE values obtained 
when applying all developed architectures described in 
Sects. 4.2.2 and 4.2.3, to the Aff-Wild test set. It shows 
the improvement in the CCC and MSE values obtained 
when using the AffWildNet compared to all other devel-
oped architectures. This improvement clearly indicates 

Fig. 9  The AffWildNet: it 
consists of convolutional and 
pooling layers of either VGG-
Face or ResNet-50 structures 
(denoted as CNN), followed 
by a fully connected layer 
(denoted as FC1) and two RNN 
layers with GRU units (V and 
A stand for valence and arousal 
respectively)

Table 7  CCC and MSE based evaluation of valence and arousal pre-
dictions provided by the VGG-Face (using the mean of annotators 
values, or using only one annotator values; when landmarks were or 
were not given as input to the network)

Best results are shown in bold

With landmarks Without landmarks

Valence Arousal Valence Arousal

(A) CCC 
One annotator 0.39 0.27 0.35 0.25
Mean of annotators 0.51 0.33 0.44 0.32
(B) MSE
One annotator 0.15 0.13 0.16 0.14
Mean of annotators 0.10 0.08 0.12 0.11
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the ability of the AffWildNet to better capture the dynam-
ics in Aff-Wild.

In Fig. 10a, b, we qualitatively illustrate some of the 
obtained results by comparing a segment of the obtained 
valence/arousal predictions to the ground truth values, in 
10000 consecutive frames of test data.

Moreover, in Fig.  11a, b, we illustrate, in the 2-D 
valence and arousal space, the histograms of the ground 
truth labels of the test set and the corresponding predic-
tions of our AffWildNet.

The results shown in Table 9 and the above figures 
verify the excellent performance of the AffWildNet. They 
also show that it greatly outperformed all methods sub-
mitted in the Aff-Wild Challenge.

4.4  Discussing AffWildNet’s Performance

The reasons why the AffWildNet outperformed the other 
methods are related to both the network design and the net-
work training.

At first, the AffWildNet is a CNN-RNN network. The 
CNN part is based on the VGG-Face (or ResNet-50) net-
work’s convolutional and pooling layers. The VGG-Face 
network has been pre-trained with a large dataset for face 
recognition (many human faces have been, therefore, used 
in its construction).

In our implementation, this CNN part is followed by a 
single FC layer. The inputs of this layer are: (a) the outputs 
of the last pooling layer of the CNN part; (b) the facial land-
marks, which are directly passed as inputs to this FC layer. 
As a consequence, this layer has the role to map its two types 
of inputs to the same feature space, before forwarding them 
to the RNN part. The facial landmarks, which are provided 
as additional input to the network, in this way, contribute to 
boosting the performance of our model. The output of the 
fully connected layer is then passed to the RNN part.

The RNN is used in order to model the contextual infor-
mation in the data, taking into account temporal variations. 
The RNN is composed of 2-layers, with GRU units in each 
layer; the first layer processes the FC layer outputs, the sec-
ond layer is followed by the output layer that gives the final 
estimates for valence and arousal.

Table 8  Obtained CCC values for valence and arousal estimation, 
when changing the number of hidden units and hidden layers in the 
VGG-Face-GRU architecture. A higher CCC value indicates a better 
performance

Best results are shown in bold

CCC 1 Hidden layer 2 Hidden layers

Hidden units Valence Arousal Valence Arousal

100 0.44 0.36 0.50 0.41
128 0.53 0.40 0.57 0.43
150 0.46 0.39 0.51 0.41

Table 9  CCC and MSE based evaluation of valence and arousal pre-
dictions provided by: (1) the CNN architecture when using three dif-
ferent pre-trained networks for initialization (VGG-16, ResNet-50, 
VGG-Face) and (2) the VGG-Face-LSTM and AffWildNet architec-
tures (2 RNN layers with 128 units each). A higher CCC and a lower 
MSE value indicate a better performance

Best results are shown in bold

Valence Arousal Mean value

(A) CCC 
VGG-16 0.40 0.30 0.35
ResNet-50 0.43 0.30 0.37
VGG-Face 0.51 0.33 0.42
VGG-Face-LSTM 0.52 0.38 0.45
AffWildNet 0.57 0.43 0.50
(B) MSE
VGG-16 0.13 0.11 0.12
ResNet-50 0.11 0.11 0.11
VGG-Face 0.10 0.08 0.09
VGG-Face-LSTM 0.10 0.09 0.10
AffWildNet 0.08 0.06 0.07
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Fig. 10  Predictions versus Labels for a valence and b arousal over a 
video segment of the Aff-Wild
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Part of AffWildNet’s design was the fixing of its optimal 
hyper-parameters (number of FC and RNN layers, number 
of hidden units in these layers, batch size, sequence length, 
dropout, learning rate). Finally, the specification of the loss 
function used for network training was another important 
issue. Our loss function was based on the CCC, as this was 
the main evaluation criterion of the Aff-Wild Challenge; this 
was not the case in the competing methods that used the 
usual MSE criterion in their training phases.

As far as network training is concerned, the AffWildNet 
has been trained as an end-to-end architecture, by jointly 
training its CNN and RNN parts, rather than separately train-
ing the two parts.

We would also like to mention that the data augmentation 
that was conducted so as to achieve a more balanced dataset, 

also contributed in achieving the AffWildNet a state-of-the-
art performance.

5  Feature Learning from Aff‑Wild

When it comes to dimensional emotion recognition, there 
exists great variability between different databases, espe-
cially those containing emotions in-the-wild. In particular, 
the annotators and the range of the annotations are dif-
ferent and the labels can be either discrete or continuous. 
To tackle the problems caused by this variability, we take 
advantage of the fact that the Aff-Wild is a powerful data-
base that can be exploited for learning features, which may 
then be used as priors for dimensional emotion recognition. 
In the following, we show that it can be used as prior for the 
RECOLA and AFEW-VA databases that are annotated for 
valence and arousal, just like Aff-Wild. In addition to this, 
we use it as a prior for categorical emotion recognition, on 
the EmotiW dataset, which is annotated in terms of the seven 
basic emotions. Experiments have been conducted on these 
databases yielding state-of-the-art results and thus verifying 
the strength of Aff-Wild for affect recognition.

5.1  Prior for Valence and Arousal Prediction

5.1.1  Experimental Results for the Aff‑Wild and RECOLA 
Database

In this subsection, we demonstrate the superiority of our 
database when it is used for pre-training a DNN. In particu-
lar, we fine-tune the AffWildNet on the RECOLA and for 
comparison purposes we also train on RECOLA an architec-
ture comprised of a ResNet-50 and a 2-layer GRU stacked 
on top (let us call it ResNet-GRU network). Table 10 shows 
the results only for the CCC score as our minimization loss 
was depending on this metric. It is clear that the performance 
on both arousal and valence of the fine-tuned model on the 
Aff-Wild database is much higher than the performance of 
the ResNet-GRU model.

To further demonstrate the benefits of our model when 
predicting valence and arousal, we demonstrate a histogram 

Fig. 11  Histogram in the 2-D valence and arousal space of: a annota-
tions and b predictions of AffWildNet, on the test set of the Aff-Wild 
Challenge

Table 10  CCC based evaluation of valence and arousal predictions 
provided by the fine-tuned AffWildNet and the ResNet-GRU on the 
RECOLA test set. A higher CCC value indicates a better performance

Best results are shown in bold

CCC 

Valence Arousal

Fine-tuned AffWildNet 0.526 0.273
ResNet-GRU 0.462 0.209
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in the 2-D valence and arousal space of the annotations 
(Fig. 12a) and predictions of the fine-tuned AffWildNet 
(Fig. 12b) for the whole test set of RECOLA.

Finally, we also illustrate in Fig. 13a, b the network pre-
diction and ground truth for one test video of RECOLA, for 
the valence and arousal dimensions, respectively.

5.1.2  Experimental Results for the AFEW‑VA Database

In this subsection, we focus on recognition of emotions in 
the AFEW-VA database, which annotation’s is somewhat 
different from the annotation of the Aff-Wild database. 
In particular, the labels of the AFEW-VA database are in 
the range [ − 10 , + 10 ], while the labels of the Aff-Wild 
database are in the range [ − 1 , + 1 ]. To tackle this prob-
lem, we scaled the range of the AFEW-VA labels to [ − 1 , 
+ 1 ]. Moreover, differences were observed, due to the fact 
that the labels of the AFEW-VA are discrete, while the 
labels of the Aff-Wild are continuous. Figure 14 shows 

the discrete valence and arousal values of the annotations 
in AFEW-VA database, whereas Fig. 15 shows the corre-
sponding histogram in the 2-D valence and arousal space.

We then performed fine-tuning of the AffWildNet to 
the AFEW-VA database and tested the performance of the 

Fig. 12  Histogram in the 2-D valence and arousal space of a annota-
tions and b predictions for the test set of the RECOLA database
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Fig. 13  Fine-tuned AffWildNet’s Predictions versus Labels for a 
valence and b arousal for a single test video of the RECOLA database

Fig. 14  Discrete values of annotations of the AFEW-VA database
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generated network. Similarly to Kossaifi et al. (2017), we 
used a fivefold person-independent cross-validation strat-
egy. Table 11 shows a comparison of the performance of 
the fine-tuned AffWildNet with the best results reported in 
Kossaifi et al. (2017). Those results are in terms of the Pear-
son CC. It can be easily seen that the fine-tuned AffWildNet 
greatly outperformed the best method reported in Kossaifi 
et al. (2017).

For comparison purposes, we also trained a CNN network 
on the AFEW-VA database. This network’s architecture was 
based on the convolution and pooling layers of VGG-Face 
followed by 2 fully connected layers with 4096 and 2048 
hidden units, respectively. As shown in Table 12, the per-
formance of the fine-tuned AffWildNet, in terms of CCC, 
greatly outperformed this network as well.

All these verify that our network can be used as a pre-
trained one to yield excellent results across different dimen-
sional databases.

5.2  Prior for Categorical Emotion Recognition

5.2.1  Experimental Results for the EmotiW Dataset

To further show the strength of the AffWildNet, we used 
the AffWildNet—which is trained for dimensional emotion 
recognition task—in a very different problem, that of cat-
egorical in-the-wild emotion recognition, focusing on the 
EmotiW 2017 Grand Challenge. To tackle categorical emo-
tion recognition, we modified the AffWildNet’s output layer 
to include 7 neurons (one for each basic emotion category) 
and performed fine-tuning on the AFEW 5.0 dataset.

In the presented experiments, we compare the fine-tuned 
AffWildNet’s performance with that of other state-of-the-art 
CNN and CNN-RNN networks; the CNN part of which is 
based on the ResNet 50, VGG-16 and VGG-Face architec-
tures, trained on the same AFEW 5.0 dataset. The accuracies 
of all networks on the validation set of the EmotiW 2017 
Grand Challenge are shown in Table 13. A higher accuracy 
value indicates better performance for the model. We can 

Fig. 15  Histogram in the 2-D valence and arousal space of annota-
tions of the AFEW-VA database

Table 11  Pearson Correlation Coefficient (Pearson CC) based evalu-
ation of valence and arousal predictions provided by the best archi-
tecture in Kossaifi et al. (2017) versus our AffWildNet fine-tuned on 
the AFEW-VA. A higher Pearson CC value indicates a better perfor-
mance

Best results are shown in bold

Group Pearson CC

Valence Arousal

Best of Kossaifi et al. (2017) 0.407 0.45
Fine-tuned AffWildNet 0.514 0.575

Table 12  CCC based evaluation 
of valence and arousal 
predictions provided by the 
CNN architecture based on 
VGG-Face and the fine-tuned 
AffWildNet on the AFEW-VA 
training set. A higher CCC 
value indicate a better 
performance

Best results are shown in bold

CCC AFEW-VA

Valence Arousal

Only CNN 0.44 0.474
Fine-tuned 

AffWild-
Net

0.515 0.556

Table 13  Accuracies on the 
EmotiW validation set obtained 
by different CNN and CNN-
RNN architectures versus the 
fine-tuned AffWildNet. A 
higher accuracy value indicates 
better performance

Best results are shown in bold

Architectures Accuracy

Neutral Anger Disgust Fear Happy Sad Surprise Total

VGG-16 0.327 0.424 0.102 0.093 0.476 0.138 0.133 0.263
VGG-16  +  RNN 0.431 0.559 0.026 0.07 0.444 0.259 0.044 0.293
ResNet 0.31 0.153 0.077 0.023 0.534 0.207 0.067 0.211
ResNet  +  RNN 0.431 0.237 0.077 0.07 0.587 0.155 0.089 0.261
VGG-Face  +  RNN 0.552 0.593 0.026 0.047 0.794 0.259 0.111 0.384
Fine-tuned AffWildNet 0.569 0.627 0.051 0.023 0.746 0.709 0.111 0.454
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easily see that the AffWildNet outperforms all those other 
networks in terms of total accuracy.

We should note that:

 (i) The AffWildNet was trained to classify only video 
frames (and not audio) and then video classification 
based on frame aggregation was performed

 (ii) The cropped faces provided by the challenge were 
only used (and not our own detection and/or normali-
zation procedure)

 (iii) No data-augmentation, post-processing of the results 
or ensemble methodology have been conducted.

It should also be mentioned that the fine-tuned AffWildNet’s 
performance, in terms of total accuracy, is:

 (i) Much higher than the baseline total accuracy of 
0.3881 reported in Dhall et al. (2017).

 (ii) Better than all vanilla architectures’ performances 
that were reported by the three winning methods in 
the audio–video emotion recognition EmotiW 2017 
Grand Challenge (Hu et al. 2017; Knyazev et al. 
2017; Vielzeuf et al. 2017).

 (iii) Comparable and better in some cases than the rest 
of the results obtained by the three winning methods 
(Hu et al. 2017; Knyazev et al. 2017; Vielzeuf et al. 
2017).

The above are shown in Table 14. Those results verify 
that the AffWildNet can be appropriately fine-tuned and suc-
cessfully used for dimensional, as well as for categorical 
emotion recognition.

6  Conclusions and Future Work

Deep learning and deep neural networks have been suc-
cessfully used in the past years for facial expression and 
emotion recognition based on still image and video frame 
analysis. Recent research focuses on in-the-wild facial anal-
ysis and refers either to categorical emotion recognition, 
targeting recognition of the seven basic emotion catego-
ries, or to dimensional emotion recognition, analyzing the 
valence–arousal (V–A) representation space.

In this paper, we introduce Aff-Wild, a new, large in-the-
wild database that consists of 298 videos of 200 subjects, 
with a total length of more than 30 h. We also present the 
Aff-Wild Challenge that was organized on Aff-Wild. We 
report the results of the challenge, and the pitfalls and chal-
lenges in terms of predicting valence and arousal in-the-
wild. Furthermore, we design a deep convolutional and 
recurrent neural architecture and perform extensive experi-
mentation with the Aff-Wild database. We show that the 
generated AffWildNet provides the best performance for 
valence and arousal estimation on the Aff-Wild dataset, 
both in terms of the Concordance Correlation Coefficient 
and the Mean Squared Error criteria, when compared with 
other deep learning networks trained on the same database.

Subsequently, we then demonstrate that the AffWildNet 
and Aff-Wild database constitute tools that can be used for 
facial expression and emotion recognition on other data-
sets. Using appropriate fine-tuning and retraining meth-
odologies, we show that best results can be obtained by 
applying the AffWildNet to other dimensional databases, 
including the RECOLA and the AFEW-VA ones and by 

Table 14  Overall accuracies 
of the best architectures of 
the three winning methods 
of the EmotiW 2017 Grand 
Challenge reported on the 
validation set versus our fine-
tuned AffWildNet. A higher 
accuracy value indicates better 
performance

Best results are shown in bold

Group Architecture Total accuracy

Original After fine-tuning 
on FER2013

Data 
augmen-
tation

Hu et al. (2017) DenseNet-121 0.414 – –
HoloNet 0.41
ResNet-50 0.418

Knyazev et al. (2017) VGG-Face 0.379 0.483 –
FR-Net-A 0.337 0.446 –
FR-Net-B 0.334 0.488 –
FR-Net-C 0.376 0.452 –
LSTM  +  FR-NET-B – 0.465 0.504

Vielzeuf et al. (2017) Weighted C3D (no overlap) – – 0.421
LSTM C3D (no overlap) 0.432
VGG-Face 0.414
VGG-LSTM 1 layer 0.486

Our Fine-tuned AffWildNet 0.454 – –
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comparing the obtained performances with other state-of-
the-art pre-trained and fine-tuned networks.

Furthermore, we observe that fine-tuning on the 
AffWildNet can produce state-of-the-art performance, 
not only for dimensional, but also for categorical emo-
tion recognition. We use this approach to tackle the facial 
expression and emotion recognition parts of the EmotiW 
2017 Grand Challenge, referring to recognition of the 
seven basic emotion categories, finding that we produce 
comparable or better results to the winners of this contest.

It should be stressed that it is the first time, to the best of 
our knowledge, that the same deep architecture can be used 
for both types of dimensional and categorical emotion anal-
ysis. To achieve this, the AffWildNet has been effectively 
trained with the largest existing, in-the-wild, database for 
continuous valence–arousal recognition (regression analy-
sis problem) and then used for tackling the discrete seven 
basic emotion recognition (classification) problem.

The proposed procedure for fine-tuning the AffWildNet 
can be applied to further extend its use in the analysis 
of other new visual emotion recognition datasets. This 
includes our current work on extending the Aff-Wild with 
new in-the-wild audiovisual information, as well as using 
it as a means for unifying different approaches to facial 
expression and emotion recognition. These approaches 
contain dimensional emotion representations, basic and 
compound emotion categories, facial action unit repre-
sentations, as well as specific emotion categories met in 
different contexts, such as negative emotions, emotions 
in games, in social groups and other human machine (or 
robot) interactions.
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A Appendix

A.1 Baseline: CNN‑M

The exact structure of the network is shown in Table 15. 
In total, it consists of 5 convolutional, batch normalization 
and pooling layers and 2 fully connected (FC) ones. For 
each convolutional layer the parameters are the filter and the 
stride, in the form of (filter height, filter width, input chan-
nels , output channels/feature maps) and (1, stride height, 
stride width , 1), respectively, and for the max pooling layer 
the parameters are the ksize and stride, in the form of (pool-
ing height, pooling width, input channels, output channels) 
and (1, stride height, stride width , 1), respectively. We fol-
low the TensorFlow’s platform notation for the values of all 
those parameters. Note that the activation function in the 

Table 15  Baseline architecture 
based on CNN-M, showing the 
values of the parameters of the 
convolutional and pooling layers 
and the number of hidden units 
in the fully connected layers. 
We follow the TensorFlow’s 
platform notation for the values 
of all those parameters

Layer Filter Ksize Stride Padding No. of units

conv 1 [7, 7, 3, 96] [1, 2, 2, 1] ‘VALID’
batch norm
max pooling [1, 3, 3, 1] [1, 2, 2, 1] ‘VALID’
conv 2 [5, 5, 96, 256] [1, 2, 2, 1] ‘SAME’
batch norm
max pooling [1, 3, 3, 1] [1, 2, 2, 1] ‘SAME’
conv 3 [3, 3, 256, 512] [1, 1, 1, 1] ‘SAME’
batch norm
conv 4 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
batch norm
conv 5 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
batch norm
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
Fully connected 1 4096
Fully connected 2 2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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convolutional and batch normalization layers is the ReLU 
one; this is also the case in the first FC layer. The activation 
function of the second FC layer, which is the output layer, 
is a linear one.

A.2 ResNet‑50

Residual learning is adopted in these models by stacking 
multiple blocks of the form:

where �k , �k and �k indicate the input, the weights, and 
the output of layer k, respectively,  indicates the residual 
function that is learnt and h is the identity mapping between 
the residual function and the input. The h identity mapping 

(4)�k = (�k, {�k}) + h(�k),

is a projection of �k to match the dimensions of (�k, {�k}) 
(done by 1 × 1 convolutions), as in He et al. (2016).

The first layer of the ResNet-50 model is comprised 
of a 7 × 7 convolutional layer with 64 feature maps, fol-
lowed by a max pooling layer of size 3 × 3 . Next, there are 
4-bottleneck blocks, where a shortcut connection is added 
after each block. Each of these blocks is comprised of 3 
convolutional layers of sizes 1 × 1 , 3 × 3 , and 1 × 1 with 
different number of feature maps.

The architecture of the network is depicted in Fig. 16. 
Each convolutional layer is in the format: filter height × fil-
ter width, number of input feature maps, number of output 
feature maps.

Fig. 16  The CNN-only architecture for valence and arousal estima-
tion, based on ResNet-50 structure and including two fully connected 
layers (V and A stand for valence and arousal respectively). Each con-

volutional layer is in the format: filter height × filter width, number of 
input feature maps, number of output feature maps

Table 16  CNN architecture 
based on VGG-Face/VGG-
16, showing the values of the 
parameters of the convolutional 
and pooling layers and the 
number of hidden units in 
the fully connected layers. 
We follow the TensorFlow’s 
platform notation for the values 
of all those parameters

Layer Filter Ksize Stride Padding No of 
units

conv 1 [3, 3, 3, 64] [1, 1, 1, 1] ‘SAME’
conv 2 [3, 3, 64, 64] [1, 1, 1, 1] ‘SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
conv 3 [3, 3, 64, 128] [1, 1, 1, 1] ‘SAME’
conv 4 [3, 3, 128, 128] [1, 1, 1, 1] ‘SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
conv 5 [3, 3, 128, 256] [1, 1, 1, 1] ‘SAME’
conv 6 [3, 3, 256, 256] [1, 1, 1, 1] ‘SAME’
conv 7 [3, 3, 256, 256] [1, 1, 1, 1] ‘SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
conv 8 [3, 3, 256, 512] [1, 1, 1, 1] ‘SAME’
conv 9 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
conv 10 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
conv 11 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
conv 12 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
conv 13 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’
Fully connected 1 dropout 4096
Fully connected 2 4096
Fully connected 3 2
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A.3 VGG‑Face/VGG‑16

Table 16 shows the configuration of the CNN architecture 
based on VGG-Face or VGG-16. In total, it is composed 
of thirteen convolutional and pooling layers and three fully 
connected ones. For all those layers the form of the param-
eters is the same as described above in the baseline architec-
ture. We follow the TensorFlow’s platform notation for the 
values of all those parameters. The output number of units 
is also shown in the Table.

A linear activation function was used in the last FC 
layer, providing the final estimates. All units in the remain-
ing FC layers were equipped with the ReLU. Dropout 
has been added after the first FC layer in order to avoid 
over-fitting. The architecture of the network is depicted 
in Fig. 17.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. 
(2016). Tensorflow: A system for large-scale machine learning. 
OSDI, 16, 265–283.

Alabort-i-Medina, J., Antonakos, E., Booth, J., Snape, P., & Zafeiriou, 
S. (2014). Menpo: A comprehensive platform for parametric 
image alignment and visual deformable models. In Proceedings 
of the ACM international conference on multimedia, MM ’14 (pp. 
679–682). ACM, New York, NY.

Albanie, S., & Vedaldi, A. (2016). Learning grimaces by watching 
TV. In: Proceedings of the British Machine Vision Conference 
(BMVC).

Aung, M. S., Kaltwang, S., Romera-paredes, B., Martinez, B., 
Singh, A., Cella, M., et al. (2016). The automatic detection of 
chronic pain-related expression: Requirements, challenges and a 

multimodal dataset. IEEE Transactions on Affective Computing, 
1, 1.

Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & 
Movellan, J. (2006). Fully automatic facial action recognition 
in spontaneous behavior. In: 7th international conference on 
automatic face and gesture recognition, 2006, FGR 2006 (pp. 
223–230). IEEE.

Chang, W. Y., Hsu, S. H., & Chien, J. H. (2017). Fatauva-net : An 
integrated deep learning framework for facial attribute recogni-
tion, action unit (AU) detection, and valence–arousal estimation. 
In: Proceedings of the IEEE conference on computer vision and 
pattern recognition workshop.

Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). 
Return of the devil in the details: Delving deep into convolutional 
nets. arXiv preprint arXiv :1405.3531.

Chrysos, G. G., Antonakos, E., Snape, P., Asthana, A., & Zafeiriou, 
S. (2018). A comprehensive performance evaluation of deform-
able face tracking in-the-wild. International Journal of Computer 
Vision, 126(2–4), 198–232.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical eval-
uation of gated recurrent neural networks on sequence modeling. 
arXiv preprint arXiv :1412.3555.

Corneanu, C., Oliu, M., Cohn, J., & Escalera, S. (2016). Survey on 
rgb, 3d, thermal, and multimodal approaches for facial expression 
recognition: History, trends, and affect-related applications. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 38, 
1548–1568.

Cowie, R., & Cornelius, R. R. (2003). Describing the emotional states 
that are expressed in speech. Speech Communication, 40(1), 5–32.

Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, 
M., & Schröder, M. (2000). ‘feeltrace’: An instrument for record-
ing perceived emotion in real time. In ISCA tutorial and research 
workshop (ITRW) on speech and emotion.

Cowie, R., McKeown, G., & Douglas-Cowie, E. (2012). Tracing emo-
tion: An overview. International Journal of Synthetic Emotions 
(IJSE), 3(1), 1–17.

Dalgleish, T., & Power, M. (2000). Handbook of cognition and emo-
tion. Hoboken: Wiley.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). 
Imagenet: A large-scale hierarchical image database. In IEEE 

Fig. 17  The CNN-only architecture for valence and arousal estimation, based on VGG-Face structure (V and A stand for valence and arousal 
respectively)

http://arxiv.org/abs/1405.3531
http://arxiv.org/abs/1412.3555


 International Journal of Computer Vision

1 3

conference on computer vision and pattern recognition, 2009. 
CVPR 2009 (pp. 248–255). IEEE.

Dhall, A., Goecke, R., Ghosh, S., Joshi, J., Hoey, J., & Gedeon, T. 
(2017). From individual to group-level emotion recognition: 
Emotiw 5.0. In Proceedings of the 19th ACM international con-
ference on multimodal interaction (pp. 524–528). ACM.

Dhall, A., Goecke, R., Joshi, J., Hoey, J., & Gedeon, T. (2016). Emotiw 
2016: Video and group-level emotion recognition challenges. In 
Proceedings of the 18th ACM international conference on multi-
modal interaction (pp. 427–432). ACM.

Dhall, A., Goecke, R., Joshi, J., Sikka, K., & Gedeon, T. (2014). Emo-
tion recognition in the wild challenge 2014: Baseline, data and 
protocol. In Proceedings of the 16th international conference on 
multimodal interaction (pp. 461–466). ACM.

Dhall, A., Goecke, R., Joshi, J., Wagner, M., & Gedeon, T. (2013). 
Emotion recognition in the wild challenge 2013. In Proceedings of 
the 15th ACM on international conference on multimodal interac-
tion (pp. 509–516). ACM.

Dhall, A., Ramana Murthy, O., Goecke, R., Joshi, J., & Gedeon, T. 
(2015). Video and image based emotion recognition challenges 
in the wild: Emotiw 2015. In: Proceedings of the 2015 ACM on 
international conference on multimodal interaction (pp. 423–
426). ACM.

Douglas-Cowie, E., Cowie, R., Cox, C., Amier, N., & Heylen, D. K. 
(2008). The sensitive artificial listner: An induction technique for 
generating emotionally coloured conversation. In LREC workshop 
on corpora for research on emotion and affect. ELRA.

Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2010). 
Multi-pie. Image and Vision Computing, 28(5), 807–813.

Hardoon, D.R., Szedmak, S., & Shawe-Taylor, J. (2003). Canonical 
correlation analysis; An overview with application to learning 
methods. Technical report, Royal Holloway, University of London.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning 
for image recognition. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 770–778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. 
Neural Computation, 9(8), 1735–1780.

Hu, P., Cai, D., Wang, S., Yao, A., & Chen, Y. (2017). Learning super-
vised scoring ensemble for emotion recognition in the wild. In 
Proceedings of the 19th ACM international conference on multi-
modal interaction (pp. 553–560). ACM.

Jung, H., Lee, S., Yim, J., Park, S., & Kim, J. (2015). Joint fine-tuning 
in deep neural networks for facial expression recognition. In Pro-
ceedings of the IEEE international conference on computer vision 
(pp. 2983–2991).

Knyazev, B., Shvetsov, R., Efremova, N., & Kuharenko, A. (2017). 
Convolutional neural networks pretrained on large face recogni-
tion datasets for emotion classification from video. arXiv preprint 
arXiv :1711.04598 .

Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebra-
himi, T., et al. (2012). Deap: A database for emotion analysis; 
using physiological signals. IEEE Transactions on Affective Com-
puting, 3(1), 18–31.

Kollias, D., Nicolaou, M. A., Kotsia, I., Zhao, G., & Zafeiriou, S. 
(2017). Recognition of affect in the wild using deep neural net-
works. In 2017 IEEE conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW) (pp. 1972–1979). IEEE.

Kossaifi, J., Tzimiropoulos, G., Todorovic, S., & Pantic, M. (2017). 
AFEW-VA database for valence and arousal estimation in-the-
wild. Image and Vision Computing.

Lawrence, I., & Lin, K. (1989). A concordance correlation coefficient 
to evaluate reproducibility. Biometrics, 45, 255–268.

Lee, A. (2002). Welcome to virtualdub.org!—virtualdub.org.
Li, J., Chen, Y., Xiao, S., Zhao, J., Roy, S., Feng, J., et al. (2017). 

Estimation of affective level in the wild with multiple memory 

networks. In Proceedings of the IEEE conference on computer 
vision and pattern recognition workshop.

Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., & Mat-
thews, I. (2010). The extended Cohn–Kanade dataset (CK+): A 
complete dataset for action unit and emotion-specified expression. 
In 2010 IEEE computer society conference on computer vision 
and pattern recognition workshops (CVPRW) (pp. 94–101). IEEE.

Lucey, P., Cohn, J. F., Prkachin, K. M., Solomon, P. E., & Matthews, I. 
(2011). Painful data: The UNBC-McMaster shoulder pain expres-
sion archive database. In 2011 IEEE international conference on 
automatic face and gesture recognition and workshops (FG 2011) 
(pp. 57–64). IEEE.

Mahoor, M., & Hasani, B. (2017). Facial affect estimation in the wild 
using deep residual and convolutional networks. In Proceedings 
of the IEEE conference on computer vision and pattern recogni-
tion workshop.

Mathias, M., Benenson, R., Pedersoli, M., & Van Gool, L. (2014). Face 
detection without bells and whistles. In European conference on 
computer vision (pp. 720–735). Springer.

McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. 
(2012). The semaine database: Annotated multimodal records of 
emotionally colored conversations between a person and a limited 
agent. IEEE Transactions on Affective Computing, 3(1), 5–17.

More, A. (2016). Survey of resampling techniques for improving classi-
fication performance in unbalanced datasets. arXiv preprint arXiv 
:1608.06048 .

Pantic, M., Valstar, M., Rademaker, R., & Maat, L. (2005). Web-based 
database for facial expression analysis. In IEEE international con-
ference on multimedia and expo, 2005. ICME 2005 (p. 5). IEEE.

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recogni-
tion. In BMVC (Vol. 1, p. 6).

Plutchik, R. (1980). Emotion: A psychoevolutionary synthesis. New 
York, NY: Harpercollins College Division.

Ringeval, F., Schuller, B., Valstar, M., Cowie, R., & Pantic, M. (2015). 
AVEC 2015: The 5th international audio/visual emotion challenge 
and workshop. In Proceedings of the 23rd ACM international con-
ference on multimedia (pp. 1335–1336). ACM.

Ringeval, F., Schuller, B., Valstar, M., Gratch, J., Cowie, R., Scherer, 
S., et al. (2017). AVEC 2017—Real-life depression, and affect 
recognition workshop and challenge.

Ringeval, F., Sonderegger, A., Sauer, J., & Lalanne, D. (2013). Intro-
ducing the RECOLA multimodal corpus of remote collaborative 
and affective interactions. In: 2013 10th IEEE international con-
ference and workshops on automatic face and gesture recognition 
(FG) (pp. 1–8). IEEE.

Russell, J. A. (1978). Evidence of convergent validity on the dimen-
sions of affect. Journal of Personality and Social Psychology, 
36(10), 1152.

Sariyanidi, E., Gunes, H., & Cavallaro, A. (2015). Automatic analysis 
of facial affect: A survey of registration, representation, and rec-
ognition. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 37(6), 1113–1133.

Schuller, B., Valstar, M., Eyben, F., McKeown, G., Cowie, R., & Pan-
tic, M. (2011). AVEC 2011—The first international audio/visual 
emotion challenge. In S. D’Mello, A. Graesser, B. Schuller, & J. 
C. Martin (Eds.), Affective computing and intelligent interaction. 
Berlin: Springer.

Schuller, B., Valster, M., Eyben, F., Cowie, R., & Pantic, M. (2012). 
AVEC 2012: The continuous audio/visual emotion challenge. In 
Proceedings of the 14th ACM international conference on multi-
modal interaction (pp. 449–456). ACM.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv 
:1409.1556.

http://arxiv.org/abs/1711.04598
http://arxiv.org/abs/1608.06048
http://arxiv.org/abs/1608.06048
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


International Journal of Computer Vision 

1 3

Sneddon, I., McRorie, M., McKeown, G., & Hanratty, J. (2012). The 
belfast induced natural emotion database. IEEE Transactions on 
Affective Computing, 3(1), 32–41.

Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. (2012). A multi-
modal database for affect recognition and implicit tagging. IEEE 
Transactions on Affective Computing, 3(1), 42–55.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Incep-
tion-v4, inception-ResNet and the impact of residual connections 
on learning. In: AAAI (Vol. 4, p. 12).

Tian, Yl, Kanade, T., & Cohn, J. F. (2001). Recognizing action units for 
facial expression analysis. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 23(2), 97–115.

Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Tor-
res Torres, M., et al. (2016). Avec 2016: Depression, mood, and 
emotion recognition workshop and challenge. In Proceedings of 
the 6th international workshop on audio/visual emotion challenge 
(pp. 3–10). ACM.

Valstar, M., & Pantic, M. (2010). Induced disgust, happiness and sur-
prise: An addition to the mmi facial expression database. In Pro-
ceedings of 3rd international workshop on EMOTION (satellite 
of LREC): Corpora for research on emotion and affect (p. 65).

Valstar, M., Schuller, B., Smith, K., Almaev, T., Eyben, F., Krajewski, 
J., et al. (2014). Avec 2014: 3d dimensional affect and depression 
recognition challenge. In Proceedings of the 4th international 
workshop on audio/visual emotion challenge (pp. 3–10). ACM.

Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., 
et al. (2013). Avec 2013: The continuous audio/visual emotion 
and depression recognition challenge. In Proceedings of the 3rd 
ACM international workshop on audio/visual emotion challenge 
(pp. 3–10). ACM.

Vielzeuf, V., Pateux, S., & Jurie, F. (2017). Temporal multimodal 
fusion for video emotion classification in the wild. arXiv preprint 
arXiv :1709.07200 .

Whissel, C. (1989). The dictionary of affect in language, emotion: 
Theory, research and experience. In R. Plutchik & H. Kellerman 
(Eds.), The measurement of emotions. New York: Academic.

Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-
resolution 3d dynamic facial expression database. In: 8th IEEE 
international conference on automatic face & gesture recognition, 
2008. FG’08 (pp. 1–6). IEEE.

Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3d facial 
expression database for facial behavior research. In: 7th inter-
national conference on automatic face and gesture recognition, 
2006. FGR 2006 (pp. 211–216). IEEE.

YouTube, L. L. C. (2011). Youtube. Retrieved, 27, 2011.
Zafeiriou, S., Kollias, D., Nicolaou, M. A., Papaioannou, A., Zhao, G., 

& Kotsia, I. (2017). Aff-wild: Valence and arousal ‘in-the-wild’ 
challenge. In 2017 IEEE conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW) (pp. 1980–1987). IEEE.

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey 
of affect recognition methods: Audio, visual, and spontaneous 
expressions. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 31(1), 39–58.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1709.07200

	Deep Affect Prediction in-the-Wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond
	Abstract
	1 Introduction
	2 Existing Databases
	2.1 RECOLA Dataset
	2.2 The AFEW Dataset
	2.3 The AFEW-VA Database
	2.4 The Aff-Wild Database

	3 Data Pre-processing and Annotation
	3.1 Aff-Wild Video Pre-processing
	3.2 Annotation Tool
	3.3 Annotation Guidelines
	3.4 Annotation Post-processing
	3.5 Statistical Analysis of Annotations

	4 Developing the AffWildNet
	4.1 The Aff-Wild Challenge
	4.1.1 Baseline Architecture
	4.1.2 Participating Teams’ Algorithms

	4.2 Deep Neural Architectures and Ablation Studies
	4.2.1 The Roadmap
	4.2.2 Developing CNN Architectures for the Aff-Wild
	4.2.3 Developing CNN Plus RNN Architectures for the Aff-Wild

	4.3 Experimental Results
	4.4 Discussing AffWildNet’s Performance

	5 Feature Learning from Aff-Wild
	5.1 Prior for Valence and Arousal Prediction
	5.1.1 Experimental Results for the Aff-Wild and RECOLA Database
	5.1.2 Experimental Results for the AFEW-VA Database

	5.2 Prior for Categorical Emotion Recognition
	5.2.1 Experimental Results for the EmotiW Dataset


	6 Conclusions and Future Work
	Acknowledgements 
	References




