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Abstract

In this paper we utilize the first large-scale ”in-the-wild”

(Aff-Wild) database, which is annotated in terms of the

valence-arousal dimensions, to train and test an end-to-end

deep neural architecture for the estimation of continuous

emotion dimensions based on visual cues. The proposed

architecture is based on jointly training convolutional

(CNN) and recurrent neural network (RNN) layers, thus

exploiting both the invariant properties of convolutional

features, while also modelling temporal dynamics that

arise in human behaviour via the recurrent layers. Various

pre-trained networks are used as starting structures which

are subsequently appropriately fine-tuned to the Aff-Wild

database. Obtained results show premise for the utilization

of deep architectures for the visual analysis of human

behaviour in terms of continuous emotion dimensions and

analysis of different types of affect.

1. Introduction

Behavioral modeling and analysis constitute a crucial as-

pect of Human Computer Interaction. Emotion recognition

is a key issue, dealing with multimodal patterns, such as

facial expressions, head pose, hand and body gestures, lin-

guistic and paralinguistic acoustic cues, as well as physi-

ological data [19] [5] [18]. However, building machines

which are able to recognize human emotions is a very chal-

lenging problem. This is due to the fact that the emotion

patterns are complex, time-varying, user and context de-

pendent, especially when considering uncontrolled environ-

ments, i.e., in-the-wild.

Currently deep neural network architectures are the

method of choise for learning-based computer vision,

speech recognition and natural language processing tasks.

They have also achieved great performances in emotion

recognition challenges and contests [23] [14] [13] [8].

Moreover, end-to-end architectures, i.e., networks designed

- trained, tested and subsequently used - as whole systems,

accepting the raw input data and learning to produce the de-

sired outputs, seem very promising for implementing plat-

forms that can reach the market and be easily used by cus-

tomers and users.

In this paper, we make a considerable effort to go beyond

current practices in facial behaviour analysis, by training

models on large scale data gathered in ”in-the-wild”, that is

in entirely uncontrolled conditions. In more detail, we uti-

lize the first, annotated in terms of continuous emotion di-

mensions, large scale ”in-the-wild” database of facial affect,

i.e. the Aff-Wild database [27]. Exploiting the abundance

of data available in video-sharing websites, the database is

enriched with spontaneous behaviours (such as subjects re-

acting to an unexpected development in a movie or a series,

a disturbing clip, etc.). The database contains more than 30

hours of video, and around 200 subjects.

Given the Aff-Wild data, we show that it is possible to

build upon the recent breakthroughs in deep learning and

propose, the first, to the best of our knowledge, end-to-end

trainable system for valence and arousal estimation using

”in-the-wild” visual data 1.

In the rest of the paper, we first describe briefly the Aff-

Wild database (Section 2), afterwards we present the pro-

posed end-to-end deep CNN and CNN-RNN architectures

(Section 3) and then the experimental results (Section 4).

Finally, conclusions and future work are presented in Sec-

1An end-to-end trainable Convolutional Neural Network (CNN) plus

Recurrent Neural Network (RNN) for valence and arousal estimation from

speech has been recently proposed in [25]. Furthermore, the recent method

in [12] combines CNN with RNN (but independently trained) for valence

and arousal in the AVEC data that have been captured in controlled condi-

tions [22].
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Figure 1: Annotated valence and arousal (Person A)

tion 5.

2. The Aff-Wild Database

Training and testing of the deep neural architectures

has been performed using the Aff-Wild database [27]; this

database shows spontaneous facial behaviors in arbitrary

recording conditions, which should be analyzed so as to

detect the valence and arousal emotion parameters. The

database contains 298 videos of 200 people in total.

Figures 1, 2 show two characteristic sequences of facial

images, taken from different videos of Aff-Wild. They in-

clude the respective video frame numbers and the valence

and arousal annotations for each of them. A visual repre-

sentation of the valence and arousal values is also depicted

on the 2-D emotion space, showing the change in the reac-

tions/behavior of the person among these time instances of

the video. Time evolution is indicated, by using a larger size

for the more recent frames and a smaller size for the older

ones.

Figure 3 shows the histogram of valence and arousal an-

notations. It can be seen that the amount of annotated pos-

itive reactions, corresponding to positive valence values, is

larger than that of negative ones. Similarly, the amount of

annotated ’evident’ reactions, with positive arousal values,

is larger than the less ’evident’, or hidden ones, with nega-

tive arousal values. We examine in more detail this issue in

the experimental section of the paper.

2.1. Database Pre­processing

The whole database contains more than 1,180,000

frames (around 900K for training and 300K for testing).

From each frame, we detected faces using the method de-

Figure 2: Annotated valence and arousal (Person B)

Figure 3: Histogram of Annotations

scribed in [15] and cropped the faces. Next, we applied the

best performing method of [3] in order to track 68 facial

landmark. Since, many of the current pre-trained networks,

such as VGG series of networks, operate on images with

resolution of 224 × 224 × 3 we have always resized the

facial images to this resolution.

In order to have a more balanced dataset for training,

we performed data augmentation, mainly through oversam-

pling by re-sampling and duplicating [16] some data from

the Aff-Wild database. To be more precise, we re-sampled

data that had negative valence and arousal values, as well

27



as positive valence and negative arousal values. As a conse-

quence, the training set consisted of about 43% of positive

valence and arousal values, 24% of negative valence and

positive arousal values, 19% of positive valence and nega-

tive arousal values and 14% of negative valence and arousal

values.

3. The End-to-End Deep Neural Architectures

We have developed end-to-end architectures, i.e., archi-

tectures that trained all-together, accepting raw data colour

images, learn to produce 2-D predictions of valence and

arousal.

In particular, we have evaluated the following architec-

tures:

(1) An architecture based on the structure of the ResNet

L50 network [9].

(2) An architecture based on the structure of the VGG

Face network [20].

(3) An architecture based on the structure of the VGG-16

network [24].

We also considered two different approaches (a) an only

frame based approach where only CNNs are trained and (b)

CNN plus RNN end-to-end approaches that can exploit the

dynamic information of the video data. In both settings, we

present experimental results based on the following scenar-

ios:

(1) The network is applied directly on cropped facial video

frames of the generated database, trained to produce

both valence and arousal (V, A) predictions.

(2) The network is trained on both the facial appearance

video frames, as well as the facial landmarks corre-

sponding to the same frame.

Regarding the CNN-RNN architecture, we utilize Long

Short Term Memory (LSTM) [10] and Gated Recurrent

Unit (GRU) [4] layers, stacked on top of the last fully con-

nected layer. The RNN-LSTM/GRU consists of one or two

hidden layers, along with the output layer that provides the

final 2-D emotion predictions. We note that all deep learn-

ing architectures have been implemented in the Tensorflow

platform [1].

For training, we utilize the Adam optimizer, that pro-

vides slightly better overall performance in comparison to

other methods, such as the stochastic gradient descent. Fur-

thermore, the utilized loss functions for evaluation and

training include the Concordance Correlation Coefficient

(CCC) and Mean Squared Error (MSE). We primarily fo-

cus on optimizing the CCC, since it can provide better in-

sight on whether the prediction follows the structure of the

ground truth annotation. In more detail, the CCC is defined

as

ρc =
2sxy

s2
x
+ s2

y
+ (x̄− ȳ)2

(1)

where sx and sy are the variances of the predicted and

ground truth values respectively, x̄ and ȳ are the correspond-

ing mean values, while sx and sy are the respective covari-

ance values.

Regarding initialization, in our experiments we trained

the proposed deep architectures by either (i) randomly ini-

tializing the weight values, or (ii) using pre-trained weights

from networks having been pre-trained on large databases,

such as the ImageNet [6]. For the second approach we used

transfer learning [17], especially of the convolutional and

pooling part of the pre-trained networks. In more detail,

we utilized the ResNet L50 and VGG-16 networks, which

have been pre-trained for object detection tasks, along with

VGG-Face, which has been pre-trained for face recognition

tasks. In all experiments, the VGG-Face provided much

better results, so, in the following we focus on the transfer

learning methodology with weight initialization using the

VGG-Face network; this has been pre-trained on the Face-

Value dataset [2]. It should be noted that when utilizing

pre-trained networks, we experimented based on two ap-

proaches: either performing fine-tuning, i.e., training the

entire architecture with a relatively small learning rate, or

freezing the pre-trained part of the architecture and retrain-

ing the rest (i.e., the fully connected layers of the CNN,

as well as the hidden layers of the RNN). In general, the

procedure of freezing a part of the network and fine-tuning

[11] the rest can be deemed very useful, in particular when

the given dataset is incremented with more videos. This in-

creases the flexibility of the architecture, as fine-tuning can

be performed by simply considering only the new videos.

Training was performed on a single TITAN X (Pascal) GPU

and the training time was around 5 days.

3.1. Implementing the CNN Architectures

In the following we provide specific information on the

selected structure and parameters in the used end-to-end

neural architectures, with reference to the results obtained

for each case in our experimental study.

Extensive testing and evaluation has been performed by

selecting different network parameter values, including (1)

the number of neurons in the CNN fully connected layers,

(2) the batch size used for network parameter updating, (3)

the value of the learning rate and the strategy for reducing it

during training (e.g. exponential decay in fixed number of

epochs), (4) the weight decay parameter value, and finally

(5) the dropout probability value.

With respect to parameter selection in the CNN archi-

tectures, we used a batch size in the range 10 − 100 and an

initial learning rate value in the range 0.0001 − 0.01 with ex-
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ponential decay. The best results have been obtained with

batch size 80 and initial learning rate 0.001. The dropout

probability value was 0.5, the decay steps of the exponen-

tial decay of the learning rate were 400, while the learning

rate decay factor was 0.97. The number of neurons per layer

per CNN type is described in the next subsections.

3.1.1 CNN architecture based on ResNet L50

Table 1 shows the configuration of the CNN architecture

based on ResNet L50. This is composed of 9 blocks.

For each convolutional layer the parameters are denoted

as (channels, kernel, stride) and for the max pooling layer

as (kernel, stride). The bottleneck modules are defined as

in [9]. For the fully connected layers, Table 1 shows the

respective number of units. Using three Fully-Connected

(FC) layers was found to provide best results.

Table 1: Architecture for CNN network based on ResNet

L50

block 1 1× conv layer (64, 7× 7, 2× 2)

batch norm layer

1× max pooling (3× 3, 2× 2)

block 2 3× bottleneck [(64, 1× 1),

(64, 3× 3),

(256, 1× 1)]

block 3 4× bottleneck [(128, 1× 1),

(128, 3× 3),

(512, 1× 1)]

block 4 6× bottleneck [(256, 1× 1),

(256, 3× 3),

(1024, 1× 1)]

block 5 6× bottleneck [(512, 1× 1),

(512, 3× 3),

(2048, 1× 1)]

block 6 1× average pooling

block 7 fully connected 1 1500

dropout layer

block 8 fully connected 2 256

dropout layer

block 9 fully connected 3 2

Table 1 refers to our second scenario where both the out-

puts of the last pooling layer of the CNN, as well as the 68

landmark 2-D positions (68 × 2 values) were provided as

inputs to the first of the three fully connected (FC) layers of

the architecture. In the contrary, in scenario (1), the outputs

of the last pooling layer of the CNN were the only inputs of

the fully connected layer of our architecture. In this case,

the architecture included only two fully connected layers,

i.e., the 1st and 3rd fully connected ones.

In general, we used 1000 − 1500 units in the first FC

layer and 200 − 500 units in the second FC layer. The last

layer consisted of 2 output units, providing the (V, A) pre-

dictions. A linear activation function was used in this last

FC layer, providing the final estimates. All units in the other

FC layers were equipped with the rectification (ReLU) non-

linearity.

3.1.2 CNN architecture based on VGG-Face/VGG-16

Table 2 shows the configuration of the CNN architecture

based on VGG-Face or VGG-16. It is also composed of 9

blocks. For each convolutional layer the parameters are de-

noted as (channels, kernel, stride) and for the max pooling

layer as (kernel, stride). Table 2 shows the respective num-

ber of units of each fully connected layer. Using four fully

connected layers was found to provide best results.

Table 2: Architecture for CNN network based on VGG-

Face/VGG-16

block 1 2× conv layer (64, 3× 3, 1× 1)

1× max pooling (2× 2, 2× 2)

block 2 2× conv layer (128, 3× 3, 1× 1)

1× max pooling (2× 2, 2× 2)

block 3 3× conv layer (256, 3× 3, 1× 1)

1× max pooling (2× 2, 2× 2)

block 4 3× conv layer (512, 3× 3, 1× 1)

1× max pooling (2× 2, 2× 2)

block 5 3× conv layer (512, 3× 3, 1× 1)

1× max pooling (2× 2, 2× 2)

block 6 fully connected 1 4096

dropout layer

block 7 fully connected 2 4096

dropout layer

block 8 fully connected 3 2622

dropout layer

block 9 fully connected 4 2

Table 2 also refers to the second scenario. In this case,

however, best results were obtained, when the 68 landmark

2-D positions (68× 2 values) were provided, together with

the outputs of the first FC layer of the CNN, as inputs to

the second of the four FC layers of the architecture. In sce-

nario 1, the outputs of the first FC layer of the CNN were

the only inputs to the second fully connected layer of our

architecture. In this case, the architecture included only 3

FC layers, i.e., the 1st, 2nd and 4th FC layers. A linear acti-

vation function was used in the last FC layer, providing the

final estimates. All units in the rest FC layers were equipped

with the rectification (ReLU) non-linearity.

3.2. Implementing the CNN­RNN architectures

When developing the CNN-RNN architecture, the RNN

part was fed with the outputs of either the first, or the second
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fully connected layer of the respective CNN network. The

structure of the RNN, which we examined, consisted of one

or two hidden layers, with 100 - 150 units, following either

the LSTM neuron model allowing peephole connections, or

the GRU neuron model. Using one fully connected layer in

the CNN part and two hidden layers in the RNN part was

found to provide the best results.

Table 3 shows the configuration of the CNN-RNN ar-

chitecture. The CNN part of this architecture is based on

the convolutional and pooling layers of the CNN architec-

tures described above (in subsection 3.1). It is followed by

a fully connected layer. Note that in the case of the second

scenario, both the outputs of the last pooling layer of the

CNN, as well as the 68 landmark 2-D positions (68× 2 val-

ues) were provided as inputs to this fully connected layer.

For the RNN and fully connected layers, Table 3 shows the

respective number of units.

Table 3: Architecture for CNN-RNN network based on con-

volution and pooling layers of previously described CNN

architectures

block 1 CNN’s conv & pooling parts

block 2 fully connected 1 4096

dropout layer

block 3 RNN layer 1 128

dropout layer

block 4 RNN layer 2 128

dropout layer

block 5 fully connected 2 2

Long evaluation has been performed by selecting differ-

ent network parameter values. These parameters included:

the batch size used for network parameter updating; the

value of the learning rate and the strategy for reducing it

during training (e.g. exponential decay in fixed number

of epochs); the weight decay parameter value; the dropout

probability value. Final selection of these parameters was

similar to the CNN cases, apart from the batch size which

was selected in the range 100 (≈ 3 seconds) - 300 (≈ 9 sec-

onds). Best results have been obtained with batch size 100.

4. Experimental Results

In the following, we provide the main outcomes of the

experimental study, illustrating the above-described cases

and scenarios. In all experiments training and validation

was performed in the training set of the Aff-Wild database,

while testing was performed in the test set of Aff-Wild. The

first approach we tried was based on extracting SIFT fea-

tures [26] from the facial region and then using an Support

Vector Regression (SVR) [7] for valence and arousal esti-

mation. For training and testing the SVRs, we utilized the

scikit-learn library [21]. Obtained results were very poor. In

particular, in all cases, the obtained CCC values were very

low, while very low variance was present in the correspond-

ing predictions (we do not present the performance of SVR

in order not to clutter the results).

4.1. Only­CNN architectures

Table 4 summarizes the obtained CCC and MSE values

on the test set of Aff-Wild using each of the three afore-

mentioned CNN structures as pre-trained networks. The

best results have been obtained using the VGG Face pre-

trained CNN for initialization as shown in Table 4. There-

fore, we focus on utilizing this configuration for the results

presented in the rest of this section. Moreover, Table 5

shows that there is a significant improvement in the per-

formance, when we also use the 68 2-D landmark positions

as input data (case with landmarks). It should be also noted

that we have examined the following scenarios (a) having

one network for joined estimation of valence and arousal

and (b) estimation of the values of valence and arousal us-

ing two different networks (one for valence and one for

arousal). Slightly better results were obtained on the lat-

ter case; so, this architecture is being used in the following

results.

Furthermore, we have trained the networks with two dif-

ferent annotations. The first is the annotation provided by

the Aff-Wild database, which is the average over some an-

notators (please see the Aff-Wild[27]). The second is the

annotation produced by only one annotator (the one with the

highest correlation to the landmarks). Annotations coming

from a single annotator are generally less smooth than av-

erage over annotators. Hence, they are more difficult to be

learned. The results are summarized in Table 6. As it was

expected it is better to train over the annotation provided by

Aff-Wild[27].

Table 4: CCC and MSE evaluation of valence & arousal

predictions provided by the CNN architecture when using 3

different pre-trained networks for initialization

CCC MSE

Valence Arousal Valence Arousal

VGG Face 0.46 0.35 0.10 0.09

VGG-16 0.40 0.30 0.13 0.11

ResNet-50 0.33 0.24 0.16 0.13

4.2. CNN plus RNN architectures

Let us now turn to the application of CNN plus RNN

end-to-end neural architecture on Aff-Wild. We first per-

form a comparison between two different units that can be

used in an RNN network, i.e. an LSTM vs GRU. Table

9 summarises the CCC and MSE values when using LSTM

and GRU. It can be seen that best results have been obtained
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Table 5: CCC and MSE evaluation of valence & arousal

predictions provided by the best CNN network (based on

VGG Face), with/without landmarks

With Landmarks Without Landmarks

Valence Arousal Valence Arousal

CCC 0.46 0.35 0.38 0.31

MSE 0.10 0.09 0.14 0.11

Table 6: CCC and MSE evaluation of valence & arousal

predictions provided by the best CNN network (based on

VGG Face), using either one annotators values or the mean

of annotators values

1 Annotator Mean of Annotators

Valence Arousal Valence Arousal

CCC 0.35 0.25 0.46 0.35

MSE 0.18 0.14 0.10 0.09

Table 7: Comparison of best CCC and MSE values of va-

lence & arousal provided by best CNN and CNN-RNN ar-

chitectures

CCC MSE

Valence Arousal Valence Arousal

CNN 0.46 0.35 0.10 0.09

CNN-RNN 0.57 0.43 0.08 0.06

Table 8: Effect of Changing Number of Hidden Units &

Hidden Layers for CCC valence & arousal values in the

CNN-RNN architecture

1 Hidden Layer 2 Hidden Layers

Hidden Units Valence Arousal Valence Arousal

100 0.40 0.33 0.47 0.40

128 0.49 0.40 0.57 0.43

150 0.44 0.37 0.50 0.41

when the GRU model was used. All results reported in the

following are, therefore, based on the GRU model. Table

7 shows the improvement in the CCC and MSE values ob-

tained when using the best CNN-RNN end-to-end neural ar-

chitecture compared to the best only-CNN one. In particu-

lar, we compare networks that take as input facial landmarks

and are based on the pre-trained VGG Face network. It can

be seen that this improvement is about 24% in valence esti-

mation and about 23% in arousal estimation, which clearly

indicates the ability of the CNN-RNN architecture to better

capture the dynamic phenomenon.

We have tested various numbers of hidden layers and

hidden units per layer when training and testing the CNN-

RNN network. Some characteristic selections and the cor-

Figure 4: Predictions vs Ground Truth for valence for a part of

a video

Figure 5: Predictions vs Ground Truth for arousal for a part of

a video

responding CNN-RNN performances are shown in Table 8.

Table 9: CCC and MSE evaluation of valence & arousal

predictions provided by the best CNN-GRU and CNN-

LSTM architectures that had same network configurations

(2 hidden layers with 128 units each)

CCC MSE

Valence Arousal Valence Arousal

CNN-GRU 0.57 0.43 0.08 0.06

CNN-LSTM 0.49 0.38 0.10 0.09

In Figures 4 and 5, we qualitatively illustrate some of the

obtained results, comparing a segment of the obtained va-

lence/arousal predictions compared to the ground truth val-

ues, in over 6000 consecutive frames of test data.
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5. Conclusions and future work

In this paper, we present the design, implementation

and testing of deep learning architectures for the problem

of analysing human behaviour utilizing continuous dimen-

sional emotions. In more detail, we present, to the best

of our knowledge, the first such architecture that is trained

on hundred thousands of data, gathered ”in-the-wild” (i.e.,

in entirely uncontrolled conditions) and annotated in terms

of continuous emotion dimensions. It should be empha-

sized that a major challenge in facial expression and emo-

tion recognition lies in the large variability of spontaneous

expressions and emotions, arising in uncontrolled environ-

ments. This prevents pre-trained models and classifiers to

be successfully utilized in new settings and unseen datasets.

In the current paper, our focus has been on experiments in-

vestigating the ability of the proposed deep CNN-RNN ar-

chitectures to provide accurate predictions of the 2D emo-

tion labels in a variety of scenarios, as well as with cross-

database experiments. Presented results are very encourag-

ing, and illustrate the ability of the presented architectures

to predict the values of continuous emotion dimensions on

data gathered ”in-the-wild”. Planned future work lies in

extending the analysis to simultaneously interpret the be-

haviour of multiple subjects appearing in videos, as well

as to further extend the derived representations obtained by

the CNN-RNN architectures for subject and setting specific

adaptation.
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