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Abstract

We propose a kernel-based framework for computing
components from a set of surface normals. This framework
allows us to easily demonstrate that component analysis
can be performed directly upon normals. We link previously
proposed mapping functions, the azimuthal equidistant pro-
jection (AEP) and principal geodesic analysis (PGA), to
our kernel-based framework. We also propose a new map-
ping function based upon the cosine distance between nor-
mals. We demonstrate the robustness of our proposed kernel
when trained with noisy training sets. We also compare our
kernels within an existing shape-from-shading (SFS) algo-
rithm. Our spherical representation of normals, when com-
bined with the robust properties of cosine kernel, produces
a very robust subspace analysis technique. In particular,
our results within SFS show a substantial qualitative and
quantitative improvement over existing techniques.

1. Introduction
Component analysis is an important tool for understand-

ing and processing visual data. Computer vision problems
often involve high-dimensional data that are non-linearly re-
lated. This has spurred a lot of interest in the development
of efficient and effective techniques for computing nonlin-
ear dimensionality reduction [25, 11, 17]. In parallel with
this, there has been increased interest in appearance based
object recognition and reconstruction [6, 5, 1, 21]. How-
ever, much of the existing work on the statistical analy-
sis of appearance-based models has focused on the use of
shape or texture, which are not necessarily robust descrip-
tors of an object. Texture, for example, is often corrupted by
outliers such as occlusions, cast shadows and illumination
changes. Surface normals, on the other hand, are invariant
to changes in illumination and still offer a method for shape
recovery via integration [10]. In fact, many reconstruction
techniques, such as shape-from-shading (SFS)[7, 24, 2], re-
cover normals directly and thus component analysis of nor-
mals is beneficial.

If we wish to perform subspace analysis on normals, we

must consider the properties of normal spaces. A distribu-
tion of unit normals define a set of points that lie upon the
surface of a spherical manifold. Therefore, the computation
of distances between normals is a non-trivial task. In order
to perform subspace analysis on manifolds we have to be
able to compute non-linear relationships. Kernel Principal
Component Analysis (KPCA), is a non-linear generalisa-
tion of the linear data analysis method Principal Component
Analysis (PCA). KPCA is able to perform subspace analy-
sis within arbitrary dimensional Hilbert spaces, including
the subspace of normals. By providing a kernel function
that defines an inner product within a Hilbert space, we can
perform component analysis in spaces where PCA would
normally be infeasible.

In this paper, we show the power of using KPCA to per-
form component analysis of normals. The difference of the
proposed framework is that instead of using off-the-shelf
kernels such as RBF or polynomial kernels used in the ma-
jority of KPCA papers, we are interested only in kernels tai-
lored to normals. By defining kernel functions on normals,
we allow more robust component analysis to be computed.
In particular, we propose a novel kernel based upon the an-
gular difference between normals that is shown to be more
robust than any existing descriptor of normals. We also in-
vestigate previous work on component analysis of normals,
and incorporate it into our framework.

Existing work on constructing a feature space whereby
distances between normals can be computed has been inves-
tigated by Smith and Hancock [18, 19]. Smith and Hancock
propose two projection methods, the Azimuthal Equidis-
tant Projection (AEP) [20] and Principal Geodesic Analysis
(PGA) [9, 15]. By projecting normals into tangent spaces,
they show that linear component analysis can be performed.
Smith and Hancock argue that projection of normals is a re-
quirement for the component analysis of normals. However,
although the observation that computing distances between
normals is non-trivial is correct, this does not actually pre-
vent component analysis directly on normals (i.e. without
applying any transformation). By formulating the compo-
nent analysis in terms of a kernel, it becomes obvious that
component analysis can be performed directly on normals

4321



by defining the kernel as the Euclidean inner product. We
generalise AEP and PGA as kernels in our framework and
provide a kernel for component analysis directly on normals
without transformation.

Other than the contributions of [18, 19, 8], little work has
been done on the component analysis of normals. We are
thus most interested in investigating the robustness of the
subspace of normals. Although normals may be extracted
from any class of objects, our results focus on faces. De-
spite the lack of research on the subspace of normals, there
has been a lot of interest in SFS algorithms [7]. We are
not interested in comparing the abilities of different SFS al-
gorithms and use a SFS algorithm proposed by Smith and
Hancock merely due to the ease of embedding a statisti-
cal model. We have, however, compared against a state-
of-the-art SFS algorithm in the form of SIRFS [2] and thus
show the value of prior knowledge in SFS algorithms. We
also note that Kemelmacher and Basri [12] provide a state-
of-the-art shape recovery procedure that focuses on faces.
However, they directly recover the shape and thus are sub-
ject to restrictive boundary conditions. In particular, their
technique requires the boundary of the reference shape to lie
upon ”slowly changing parts of the face”. Statistical models
of normals have no such constraint and can recover a much
larger portion of the face.

We summarise our contributions as follows:

• We provide a kernel-based framework for performing
statistical component analysis of normals.

• We formulate two existing projection operations, the
AEP and PGA within our framework.

• We show that components can be extracted directly
from normals, which becomes clear within the KPCA
framework.

• We provide a novel robust kernel based on the cosine
of the angles between normals.

• We give quantitative analysis as to the robustness of
the kernels and also show SFS results that out-perform
existing SFS techniques.

2. Kernel PCA
Given a set of, K, F -dimensional data vectors stacked

in a matrix X = [x1, . . . ,xK ] ∈ RF×K , we assume
the existence of a positive semi-definite kernel function
k(◦, ◦) : RF × RF → R. Given that k(◦, ◦) is positive
semi-definite we can use it to define the inner product in an
arbitrary dimensional Hilbert space, H, which we will call
the feature space. There then exists an implicit mapping, φ,
from the input space RF to the feature space,H:

φ : RF → H, x→ φ(x) (1)

Due to the often implicit nature of the mapping φ, we need
only the kernel function since 〈φ(xi), φ(xj)〉 = k(xi,xj),
the so-called kernel trick. Now, component analysis within
the feature space is equivalent to

arg max
Uφ

UT
φ X̄φX̄

T
φUφ s.t. UT

φUφ = I (2)

where Uφ = [u1
φ, ...,u

P
φ ] ∈ H, mφ = 1

K

K∑
i=1

φ(xi) and

X̄φ = [φ(xi)−mφ, ..., φ(xK)−mφ].
By noting that X̄φX̄

T
φ = (XφM)(XφM)T , where

M = I − 1
K11T and 1 represents a vector of ones, we can

find Uφ by performing eigenanalysis on X̄T
φ X̄φ. There-

fore,

X̄
T
φ X̄φ = V ΛV TUφ = X̄

T
φV Λ−

1
2 (3)

Though Uφ can be defined, it cannot be calculated explic-
itly. However, we can compute the KPCA-transformed fea-
ture vector ỹ = [y1, ...,yK ] by:

ỹ = UT
φφ(y) = Λ−

1
2V T X̄

T
φφ(y)

= Λ−
1
2V TMXT

φφ(y)
(4)

We can, therefore, define the projections in terms of kernel
function

XT
φφ(y) = [k(y1,x1), . . . , k(yK ,xK)]

T (5)

Reconstruction of a vector can be performed by

X̃ = φ−1
(
UφUφ

T (φ(x)−mφ) +mφ

)
(6)

Unfortunately, since φ−1 rarely exists or is extremely ex-
pensive to compute, performing reconstruction using (6) is
not generally feasible. In these cases, reconstruction can be
performed by means of pre-images [13]. However, in the
case of the kernels we propose for normals, φ−1 does exist
and explicit mapping between the space of normals and ker-
nel space is performed. Finally, we should note here that in
the general KPCA framework it is not necessary to subtract
the mean. In this case, KPCA can be seen in the perspective
of metric multi-dimensional scaling [23].

3. Kernel-PCA On Normals
Computing principal components on a subspace of nor-

mals is non-trivial due to the fact that normals exist as points
lying on the surface of a 2-sphere. For this reason, it is
claimed that linear statistical analysis techniques such as
PCA cannot be performed directly on normals 1. In or-
der to alleviate this problem, mapping techniques from the

1In particular because the definition of a mean is not well defined in
arbitrary dimensional spheres
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unit sphere to an approximate Euclidean space have been
proposed [19, 9]. The most popular proposed techniques
are the Azimuthal Equidistant Projection (AEP) and Princi-
pal Geodesic Analysis (PGA). However, in KPCA, we only
need to define a kernel that provides an inner product be-
tween two vectors in a space. This allows us to formulate
component analysis directly for normals in terms of the Eu-
clidean inner product. In the following sections we define
kernels for AEP and PGA as well as defining component
analysis directly on normals. We conclude by providing
a novel robust kernel based on the angular differences be-
tween normals.

We assume a training matrix of K columns of normals,
X , where each column of length N represents a set of
normals of the form xk = (x1k, y

1
k, z

1
k, . . . , x

N
k , y

N
k , z

N
k )T .

Each column in the training matrix represents the normals
of a single face that have been concatenated into a column
vector. We also define ni

k = [xik, y
i
k, z

i
k]T so we can make

use of vector operations on individual normals. Once a vec-
tor, xk, has been mapped in to the feature space, we refer to
the concatenated feature vectors as vk. The vector vk will
have as many components as the feature space requires.

3.1. Inner Product Kernel

Given that the Euclidean inner product is well defined
for normals, we can define a kernel of the form

k(xi,xj) =

N∑
k=1

nik
T
njk =

N∑
k=1

cos θijk (7)

where θijk = 〈nik,n
j
k〉.

Since the Euclidean inner product between two vectors
yields the cosine of the angle between them, we can de-
fine component analysis for normals in terms of this kernel.
Subtracting the mean would affect the calculation of the co-
sine and thus would not preserve the cosine distance. There-
fore, we note that the inner product mapping is equivalent
to performing PCA without subtracting the mean. We refer
to this kernel as the inner product (IP) kernel, and denote it
as:

φIP (xk) = xk (8)

We can explicitly define the inverse mapping for the in-
ner product as the normalisation of each individual normal
within the feature space vector, vk:

φIP
−1(vk) =

[
x̃1k, ỹ

1
k, z̃

1
k, . . . , x̃

N
k , ỹ

N
k , z̃

N
k

]T
(9)

where x̃ik, ỹik, and z̃ik are the normalised components of each
normal.

After computing φIP (xk), we estimate U IP from (2)
and set M = I . Reconstruction of a test vector of normals
x is performed via

x̃ = φIP
−1
(
U IPU IP

TφIP (x)
)

(10)

3.2. AEP Kernel

The azimuthal equidistant projection (AEP) [20, 18] is a
cartographic projection often used for creating charts cen-
tred on the north pole. The projection has the useful prop-
erty that all lines that pass through the centre of the pro-
jection represent geodesics on the surface of a sphere. The
projection is constructed at a point P on the surface of a
sphere by projecting a local neighbourhood of points to P
on the tangent plane defined at P . In terms of normals,
we construct the projection by calculating the average nor-
mal across the training set at each point, and then projecting
each normal on to this tangent plane. This means that the
local coordinate system at each point is mean-centred ac-
cording to the total distribution.

The AEP takes each normal, nik and maps it to a new
location on a tangent plane, vik = [x̄ik, ȳ

i
k]T . The inverse

AEP takes the points vik on the tangent plane and maps them
back to normals. For a more detailed derivation of the Az-
imuthal Equidistant Projection, we invite the reader to con-
sult Smith’s paper [18]. Assuming each normal has been
projected to its tangent plane according to the AEP func-
tion, we define the AEP mapping function as

φAEP (xk) =
[
x̄1k, ȳ

1
k, . . . , x̄

N
k , ȳ

N
k

]T
(11)

and also explicitly define the inverse mapping function

φAEP
−1(vk) =

[
x1k, y

1
k, z

1
k, . . . , x

N
k , y

N
k , z

N
k

]T
(12)

After computing φAEP (xk), we estimate UAEP from (2)
and set M = I . Reconstruction of a test vector of normals
x is performed via

x̃ = φAEP
−1
(
UAEPUAEP

TφAEP (x)
)

(13)

In [18], UAEP has been used as a prior to perform facial
shape-from-shading.

3.3. PGA Kernel

Principal geodesic analysis (PGA) [9, 19] replaces the
linear subspace normally created by PCA by a geodesic
manifold. PGA can be used to represent geodesic distances
on the surface on any manifold, however, we focus on its use
on 2-spheres. This means that every principal component
in PGA on 2-spheres represents a great circle. The extrinsic
mean, as described by Pennec [15], calculated for PCA does
not represent an accurate distance on the manifold. There-
fore, we choose to use the intrinsic mean defined by the Rie-
mannian distance between two points, d(◦, ◦). Assuming a
set of data points x on embedded on a 2-sphere, we can de-
fine the intrinsic mean as µ = arg minx∈S2

∑K
i d(x,xi).

Two important operators for the 2-sphere manifold are
the logarithmic and exponential maps. Given a point on the
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surface of a sphere and the normal n at that point, we can
define a plane tangent to the sphere at n. If we then have a
vector v, that points to another point on the tangent plane,
we can define the exponential map, Expn, as the point on
the sphere that is distance ‖v‖ along the geodesic in the
direction of v from n. The logarithmic map, Logn is the
inverse of the exponential map. Given a point on the sur-
face of the sphere it returns the corresponding point on the
tangent plane at n. Given the definition of the logarithmic
map, we can define the Riemannian distance for a 2-sphere
as d(n,v) = ‖Logn(v)‖.

However, as shown by Smith and Hancock in [19], PGA
amounts to performing PCA on the vectors Logµ(nk).
Therefore, a kernel-based version of PGA has a mapping
function equal to the logarithmic map and an inverse map-
ping function equal to the exponential map. Assuming we
have pre-calculated the intrinsic means, µi, we can explic-
itly define the PGA mapping function as

φPGA(xk) =
[
Logµ1(n1

k), . . . , LogµN (nNk )
]T

(14)

and the inverse mapping as

φPGA
−1(vk) =

[
Expµ1(v1k), . . . , ExpµN (vNk )

]T
(15)

After computing φPGA(xk), we estimate UPGA from (2)
and set M = I . Reconstruction of a test vector of normals
x is performed via

x̃ = φPGA
−1
(
UPGAUPGA

TφPGA(x)
)

(16)

In [19], UPGA has been used as a prior to perform facial
shape-from-shading.

3.4. Cosine Kernel

The distance between two normals can also be expressed
in terms of spherical coordinates. The spherical coordi-
nate system is defined by two angles, the azimuth angle,
φi , arctan[ ỹix̃i ] and the elevation angle, θi , arccos z̃i.
Motivated by the recent findings on the robustness of the
cosine kernel [22, 28] we wish to define a cosine-based ker-
nel for use in KPCA. Given the fact that we have two angles,
we create a kernel of the form2:

k(xi,xj) =

N∑
k=1

cos(∆φijk ) +

N∑
k=1

cos(∆θijk ) (17)

where ∆φijk = φik(nik) − φjk(njk) and ∆θijk = θik(nik) −
θjk(njk). By observing that, cos2 α + sin2 α = 1 ∀α, then

2The azimuth angle has been effectively used as a robust feature for
face recognition [14]

maximisation of (17) is equivalent to minimisation of

K∑
k

[
cosφik
sinφik
cos θik
sin θik

−


cosφjk
sinφjk
cos θjk
sin θjk

] ,
K∑
k

[
x̃ik
ỹik
z̃ik√

1− (z̃ik)2

−


x̃jk
ỹjk
z̃jk√

1− (z̃jk)2

]
(18)

Given (18), we can define the spherical mapping function
as:

φSPHER(xk) =

[
x̃1k, ỹ

1
k, z̃

1
k,
√

1− (z̃1k)2, . . . ,

x̃Nk , ỹ
N
k , z̃

N
k ,
√

1− (z̃Nk )2
]T (19)

Let us explicitly define the inverse mapping, where we con-
vert from a feature space vector of the form xk ∈ RF =
[gx1k, gy

1
k, gz

1
k, sgz

1
k, . . .]

T back to input space:

φSPHER
−1(vk) =

[
g(ρ1k, ψ

1
k), . . . , g(ρNk , ψ

N
k )
]T

(20)

where

ρik = arctan[
gyik√

(gxik)2 + (gyik)2
/

gxik√
(gxik)2 + (gyik)2

]

ψik = arctan[
sgzik√

(gzik)2 + (sgzik)2
/

gzik√
(gzik)2 + (sgzik)2

]

g(ρik, ψ
i
k) = [cosψik sin ρik, sinψ

i
k sin ρik, cosψik]T

(21)
After computing φSPHER(xk), we estimate USPHER

from (2) and setM = I . Reconstruction of a test vector of
normals x is performed via

x̃ = φSPHER
−1
(
USPHERUSPHER

TφSPHER(x)
)
(22)

4. Geometric Shape-from-shading
Geometric shape-from-shading (GSFS) is the name

given by Smith and Hancock to their SFS algorithm for sta-
tistical reconstruction of needle-maps [19, 18]. Although
we have chosen to place all KPCA kernels within this al-
gorithm, we would stress that this is merely to provide a
practical demonstration of the power of the proposed kernel
component analysis. The use of a statistical prior, however,
does produce superior results when compared to state-of-
the-art SFS techniques that have no prior knowledge of ob-
ject shape. A comparison of GSFS to a generic state-of-the-
art SFS algorithm is given in Section 5.4.
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(a) The mean total angular error between the ground truth and
normals constructed using a partially corrupted training set.

(b) The value of Q for F001-Disgust in the BU4D-FE data-
set. The ideal line marks an upper bound for Q.

Figure 1: Quantitative results for corrupted training sets.

GSFS extends the SFS algorithm given by Worthington
and Hancock [24] to include a statistical prior on needle-
maps. The algorithm is simple to compute and produces re-
sults that are visually appealing and guaranteed to represent
the space of faces. They initialise the needle-map by assum-
ing global convexity, and then proceed to iterate by first re-
constructing the normals using the PCA model and then en-
forcing the hard-irradiance constraint. The hard-irradiance
constraint is enforced by rotating the potentially off-cone
reconstructed surface normal back onto the reflectance cone
specified by the light direction and intensity of a given pixel.
An overview of the algorithm is given in Algorithm 1. We
augment the original GSFS algorithm by replacing the sta-
tistical reconstruction step with each of the kernels detailed
in Section 3.

In the case of SFS, we assume our input to be a needle-
map describing a surface z(x, y) as a set of local surface
normals n(x, y) projected on to the view plane. When re-
constructing using component analysis, the normals have
been concatenated into a column vector x as described in
Section 3.

5. Experiments

We evaluated the performance of our kernel-base frame-
work for component analysis on surface normals within
three experimental setups. The experiments performed
were chosen for two reasons: (1) We wanted to compare
the reconstruction properties of all KPCA kernels from nor-
mals. (2) To compare the statistical prior of all KPCA ker-
nels within shape-from-shading.

We use the BU-4DFE data-set [26] and performed man-
ual alignment of the scans. We also use FRGC v2 3D face
database [16] to provide components of faces when operat-

Algorithm 1 GEOMETRIC SHAPE-FROM-SHADING

Iterate until
∑
i,j arccos

(
n(i, j)

′ · n(i, j)
′′)
< ε:

(1) Calculate an initial estimate of the surface nor-
mals.

(2) Project the needle-map into the feature space
using one of the projection operators from Section 3:
φF (x)

(3) Reconstruct the best fit feature space vector:
UFUF

TφF (x).
(4) Use the inverse mapping to recreate a set of sur-

face normals, x′ = φF
−1
(
UFUF

TφF (x)
)

, with indi-

vidual normals n(i, j)
′

(5) Enforce hard-irradiance constraint on the re-
constructed normals to find the on-cone surface normal,
n(i, j)

′′.

ing within the GSFS framework. In each of the experiments,
component analysis was performed as described in the pre-
vious section, and we refer to the AEP kernel as AEP, the
PGA kernel as PGA, the inner product kernel as IP and the
spherical kernel as SPHERICAL.

5.1. Reconstruction Robustness

We considered a set of 108 aligned 3D face scans from
the BU-4DFE data-set, specifically for subject F001 with
the emotion ’Disgust’. These scans capture the face of F001
whilst displaying a posed example of the emotion where she
transitions from neutral, to apex and back to neutral. We
create two principal subspaces from this set of scans. In the
first, which we callUnoise−free, we simply perform KPCA
on the scans for each of the considered kernel functions. In
the second, which we call Unoisy , we artificially occlude
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(a) The mean angular error per pixel between the ground truth
normals and the reconstructions.

(b) The mean error per pixel between the integrated shape
and ground truth z-values.

Figure 2: Quantitative results for shape-from-shading.

20% of the scan with a randomly generated patch of nor-
mals. We occlude a total of 20% of the images in the set
before creating the noisy principal subspace. The perfor-
mance measure we use to evaluate each kernel is indepen-
dent of the feature-space, instead computing the total sim-
ilarity between the principal components of Unoise−free
and Unoisy . Formally, the performance measure is defined
as Q =

∑k
i=1

∑k
j=1 cos(αij) where αij is the angle be-

tween each of the k eigenvectors defined by Unoise−free
and Unoisy .

The ideal value of Q would be k, the number of co-
incident spaces, and is shown in Figure 1b as the black
diamond-marked line. Figure 1b shows the mean value
over 10 different sets of randomly placed normals for F001-
Disgust. In Figure 1b we can clearly see that AEP and
SPHERICAL are the most robust to the noisy subspace.

5.2. Reconstruction Evaluation

We used the same experimental setup as in Section 5.1 to
produceUnoisy for each kernel. For every corrupted image
in the training set we then projected it into the appropriate
feature-space and reconstructed it with an increasing num-
ber of principal components from Unoisy:

X̃ = φ−1
(
Unoisy Unoisy

Tφ(X)
)

(23)

where φ and φ−1 are different for each method, as defined
in Section 3. After reconstruction we project the feature
vector back in to the input space of surface normals and re-
normalised each normal. Finally, our evaluation metric was
defined as the total angular error between the reconstructed
and the ground truth normals. The mean value of the total
angular error for the first 10 principal components is given

in Figure 1a. Here we can see that SPHERICAL outper-
forms the other techniques by a large margin.

5.3. Shape-from-shading

Images from the Photoface Database [27] were used to
provide a ground truth model. We used the photometric
stereo algorithm presented by Barsky and Petrou [4] in or-
der to reconstruct a set of normals. We consider the normals
computed by photometric stereo as ground truth due to their
relative accuracy over SFS.

Seven people from the data-set were chosen at random.
The four images of each person were manually aligned
and photometric stereo was performed to produce a set of
ground truth normals per subject. Then, one of the images
was chosen and the GSFS framework described by Smith
and Hancock [19, 18] was performed to reconstruct nor-
mals. The set of priors used to guide the GSFS was gener-
ated according to the KPCA framework described in Sec-
tions 2 and 3 and the training set used was provided by
building a model from the FRGC v2 dataset [16].

The model was built from the Spring 2003 subset of the
FRGC database after applying some simple pre-processing
in the form of hole filling and a median filter. A needle-map
was created from the depthmap. Each image in the FRGC
database was manually annotated with 68 points, as were
the images from the Photoface database. We performed
a thin-plate spline warp to each needle-map of the FRGC
database to warp the needle-map into the reference space
defined by the Photoface image landmarks. Due to the dif-
ferent reference spaces, a separate set of warped needle-
maps was built for each input image. Statistical models
were then created from the warped needle-maps according
to the kernels described in Section 3.

To produce Figure 3 we applied the procedure described
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Input Image Ground Truth AEP IP PGA SPHERICAL SIRFS

Figure 3: Each row represents a subject. From top to bottom the subject identifiers are ’bej’, ’bln’

in Algorithm 1 with each of the kernels, AEP, PGA, IP and
SPHERICAL in turn. Once a set of best-fit normals was re-
covered from GSFS, we applied the integration method of
Frankot and Chellapa [10]. Therefore, Figure 3 shows the
surfaces reconstructed after integration. Figure 2a shows
the mean angular error per pixel. Here we see that SPHER-
ICAL consistently outperforms the other kernels for angular
error accuracy. SPHERICAL also performs well in terms of
the mean height error between the photometric stereo recon-
struction and the GSFS result as shown in Figure 2b. Fig-
ure 3 shows that the GSFS produces realistic results within
this setting for all kernels.

5.4. Comparison to other SFS techniques

Barron and Malik provide a state-of-the-art SFS tech-
nique in [2, 3] which they call shape, illumination and re-
flectance from shading (SIRFS). We attempted to recon-
struct the same input images given in the first column of
Figure 3 using the default parameters provided by the au-
thors. An example of the output produced by the SIRFS
algorithm is given in the final column of Figure 3. As we
can see, the lack of prior knowledge produces a result that
is clearly less accurate than the proposed statistical models
of normals.

Kemelmacher and Basri [12] propose a methodology
to recover facial shape from single images using a single
template shape. Unfortunately, we were unable to repro-
duce their results and received no response when contacting
them. However, Figure 4 shows that when running GSFS on
a subset of the same images of celebrities reported in [12],
we can achieve comparable results. For example, in Fig-
ure 5 we can see that GSFS is also capable of recovering the
wrinkles from an input image. The results in Figure 4 fol-
low a similar methodology to the Photoface database where

Figure 4: The result of the GSFS algorithm on images of
celebrities taken from [12] using the SPHERICAL kernel.

Figure 5: A close up of the wrinkles recovered when run-
ning GSFS on the image of Samuel Beckett shown in Fig-
ure 4

the light direction is estimated as in [12] and the kernel used
is SPHERICAL.
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6. Conclusion
We introduced a kernel-based framework for performing

component analysis of normals. We linked existing projec-
tion methods, the azimuthal equidistant projection and prin-
cipal geodesic analysis, to a unified framework. We show
that, with the help of our kernel-based formulation, compo-
nent analysis can be performed directly upon normals with-
out transformation. We also propose a new robust kernel
for performing component analysis on normals. In partic-
ular, our new kernel based on the angular distance, shows
qualitative and quantitative improvement over existing tech-
niques in both artificial reconstruction and SFS settings.
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