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ABSTRACT

The automatic recognition of spontaneous emotions from
speech is a challenging task. On the one hand, acoustic
features need to be robust enough to capture the emotional
content for various styles of speaking, and while on the other,
machine learning algorithms need to be insensitive to outliers
while being able to model the context. Whereas the latter
has been tackled by the use of Long Short-Term Memory
(LSTM) networks, the former is still under very active in-
vestigations, even though more than a decade of research
has provided a large set of acoustic descriptors. In this pa-
per, we propose a solution to the problem of ‘context-aware’
emotional relevant feature extraction, by combining Convo-
lutional Neural Networks (CNNs) with LSTM networks, in
order to automatically learn the best representation of the
speech signal directly from the raw time representation. In
this novel work on the so-called end-to-end speech emotion
recognition, we show that the use of the proposed topology
significantly outperforms the traditional approaches based
on signal processing techniques for the prediction of sponta-
neous and natural emotions on the RECOLA database.

Index Terms— end-to-end learning, raw waveform, emo-
tion recognition, deep learning, CNN, LSTM

1. INTRODUCTION AND PRIOR WORK

With the advent of deep neural networks in the last decade a
number of groundbreaking improvements have been observed
in several established pattern recognition areas such as object,
speech and speaker recognition, as well as in combined prob-
lem solving approaches, e.g. in audio-visual recognition, and
in the rather recent field of paralinguistics. For this purpose
a series of new neural network architectures have been pro-
posed, such as autoencoder networks, convolutional neural

networks (CNN), or memory enhanced neural network mod-
els such as Long Short-Term Memory (LSTM) models [1].

Numerous studies have shown the favourable property of
these network variants to model inherent structure contained
in the speech signal [2], with more recent research attempt-
ing end-to-end optimisation utilising as little human a-priori
knowledge as possible [3]. Nevertheless, the majority of these
works make use of commonly hand-engineered features have
been used as input features, such as Mel-Frequency Cepstral
Coefficients (MFCC), Perceptual Linear Prediction (PLP) co-
efficients, and supra-segmental features such as those used in
the series of ComParE [4] and AVEC challenges [5], which
build upon knowledge gained in decades of auditory research
and have shown to be robust for many speech domains.

Recently, however, a trend in the machine learning com-
munity has emerged towards deriving a representation of the
input signal directly from raw, unprocessed data. The moti-
vation behind this idea is that, ultimately, the network learns
an intermediate representation of the raw input signal auto-
matically that better suits the task at hand and hence leads to
improved performance.

1.1. Related Work

In one of the first studies that suggested learning better
features for automatic speech recognition (ASR) that used
directly the speech waveform was Jaitly and Hinton [6].
Although they did not train the system in an end-to-end man-
ner, they proposed learning an intermediate representation
by training a Restricted Boltzmann Machine directly on the
speech time signal. Experiments on the TIMIT phoneme
recognition task demonstrated results that were on-par, or
better than, state-of-the-art results at the time. More interest-
ingly, the resulting learnt filters show the bandpass behaviour
that auditory research has shown to exist in the human inner
ear.



Bhargava and Rose [7] used stacked bottleneck deep neu-
ral networks (DNNs) trained on windowed speech waveforms
and obtained results only slight worse than corresponding
MFCC on the same architecture. Sainath et al. match the per-
formance of a large-vocabulary speech recognition (LVCSR)
system based on log-Mel filterbank energies by using a Con-
volutional, LSTM-DNN [8, 9]. They observed that a time
convolution layer helps in reducing temporal variation, an-
other frequency convolution layer aids in preserving locality
and reducing frequency variation, while the the LSTM layers
serve for contextual modelling of the speech signal.

Palaz et al. [10, 11] used CNNs directly trained on the
speech signal to estimate phoneme class conditional proba-
bilities and observed that the features learnt between the first
two convolution layers tend to model the phone-specific spec-
tral envelope of sub-segmental speech signal, which leads to
a more robust performance in noisy conditions. Deep CNN
end-to-end learning was successfully applied on a music in-
formation retrieval task [12], and a similar model architecture
was recently used for polyphonic music transcription [13].

In the field of paralinguistics, several studies have been
carried out using CNNs for feature learning, e.g., recently by
Milde and Biemann [14], and Mao et al. [15]. However, these
works rely on a low-dimensional Mel filterbank feature vector
and hence did not do a full end-to-end training of their system.

1.2. Contribution of this work

In this work we study automatic affect sensing and prediction
by training – directly on the underlying audio time signal – an
end-to-end model that combines CNN and memory enhanced
neural networks. To our knowledge this is the first work in
literature that applies such a model to an emotion recognition
task and our results show that this can successfully outper-
form state-of-the-art approaches based on designed features.
Furthermore, we suggest using explicit maximisation of the
concordance correlation coefficient (ρc) [16] in our model
and show that this improves performance in terms of emotion
prediction compared to optimising the mean square error ob-
jective, which is traditionally used. Finally, by further study-
ing the activations of different cells in the recurrent layers, we
find the existence of interpretable cells, which are highly cor-
related with several prosodic and acoustic features that were
always assumed to convey affective information in speech,
such as the loudness and the fundamental frequency.

2. MODEL DESIGN

One of the first steps in a traditional feature extraction process
in audio is to use finite impulse response filters which per-
form time-frequency decomposition to reduce the influence of
background noise [17]. More complicated hand-engineered
kernels, such as gammatone filters [18], which were formu-
lated by studying the frequency responses of the receptive
fields of auditory neurons of grassfrogs, can be used as well.

A key component of our model are the 1-d convolutions
that operate on the discrete-time waveform h(k).

(f ? h)(t) =

T∑
k=−T

f(t) · h(t− k) (1)

where f(x) is a kernel function whose parameters are learnt
from the data of the task in hand. After the spatial-modelling
of the signal which removes background noise and enhances
specific parts of the signal for the task in hand, we model
the temporal structure of speech by using a recurrent net-
work with LSTM cells. We use LSTM for (i) simplicity, and
(ii) to fairly compare against existing approaches which con-
centrated in the combination of hand-engineered features and
LSTM networks. Finally, both subparts of our model are then
trained jointly by backpropagation using the same objective
function, cf. Equation 2.

2.1. Topology of the network

In contrast to previous work done in the field of paralin-
guistics, where acoustic features are first extracted and then
passed to a machine learning algorithm, we aim at learn-
ing the feature extraction and regression steps in one jointly
trained model for predicting the emotion. Our convolutional
reccurrent model is depicted in Figure 1 and summarised
below.

Input. We segment the raw waveform to 6 s long se-
quences after we preprocess the time-sequences to have zero
mean and unit variance to account for variations in different
levels of loudness between the speakers. At 16 kHz sampling
rate, this corresponds to a 96000-dimensional input vector.

Temporal Convolution. We use F = 40 space time finite
impulse filters with a 5ms window in order to extract fine-
scale spectral information from the high sampling rate signal.

Pooling across time. The impulse response of each fil-
ter is passed through a half-wave rectifier (analogous to the
cochlear transduction step in the human ear) and then down-
sampled to 8 kHz by pooling each impulse response with a
pool size = 2.

Temporal Convolution. We use M = 40 space time finite
impulse filters of 500ms window. These are used to extract
more long-term characteristics of the speech and the rough-
ness of the speech signal.

Max pooling across channels. We perform max-pooling
across the channel domain with a pool size of 20. This re-
duces the dimensionality of the signal while preserving the
necessary statistics of the convolved signal.

Recurrent layers. We segment the 6 s sequences to 150
smaller sub-sequences to match the granularity of the anno-
tation frequency of 40 ms. We use two bidirectional LSTM
layers with 128 cells each [19, 20], although we get similar
performance with the uni-directional approach.



Fig. 1. Illustration of the proposed convolutional recurrent network topology for emotion prediction from the raw waveform
signal. The convolutional layers replace the need for hand-engineering features which were used till now in the paralinguistics
community.

2.2. Objective function

To evaluate the agreement level between the predictions of
the network and the gold-standard derived from the annota-
tions, the concordance correlation coefficient (ρc) [16] has
recently been proposed [21, 5]. Nonetheless, previous work
minimised the MSE during the training of the networks, but
evaluated the models with respect to ρc [21, 5]. Instead, we
propose to include the metric used to evaluate the perfor-
mance in the objective function (Lc) used to train the net-
works. Since the objective function is a cost function, we
define Lc as follow:

Lc = 1− ρc = 1−
2σ2

xy

σ2
x + σ2

y + (µx − µy)2

= 1− 2σ2
xyψ

−1 (2)

where ψ = σ2
x + σ2

y + (µx − µy)
2 and µx = E(x),

µy = E(y), σ2
x = var(x), σ2

y = var(y) and σ2
xy = cov(x,y)

Thus, to minimise Lc (or maximise ρc), we backpropagate
the gradient of the last layer weights with respect to Lc,

∂Lc

∂x
∝ 2

σ2
xy(x− µy)

ψ2
+
µy − y

ψ
, (3)

where all vector operations are done element-wise.

3. EXPERIMENTS AND DATA SET

Time-continuous prediction of spontaneous and natural emo-
tions (arousal and valence) is investigated on speech data by
using the RECOLA database [22]; the full dataset is used for
the purpose of this study, which corresponds to speech record-
ings from 46 French-speaking participants with 5 minutes for
each. The dataset is split equally in three partitions – train
(16 subjects), validation (15 subjects) and test (15 subjects)
– by stratifying (i.e., balancing) the gender and the age of
the speakers. The same procedure as the one used in the lat-
est edition of the Audio-Visual Emotion Recognition Chal-
lenge (AV+EC 2015) [5] is used to extract acoustic features

from the speech recordings: the extended Geneva minimalis-
tic acoustic feature set (eGeMAPS) [23] is applied at a rate
of 40 ms using overlapping windows of 3 s length. Because
the complexity of this feature set is quite low, and could thus
make the comparison unfair with the CNN approach, we also
extracted the low-level descriptors (LLDs) that are used in
the series of computational paralinguistic challenges (Com-
ParE) [4]. We then applied functionals (max, min, range,
mean, and standard-deviation) [21] with the same rate and
window length as used for eGeMAPS, on those LLDs.

As a first baseline machine learning algorithm, we used
Support Vector Regression models with a linear kernel – poly-
nomial and RBF kernels provided lower performance, using
the libsvm library. The complexity parameter is optimised
with a logarithmic grid in the range [10−6−100]. As a second
baseline algorithm, we utilised a BLSTM-DRNNs with the
architecture preserved from [5, 21], i.e., we used three hidden
layers with 64 units for each layer. Input noise with σ = 0.1
is added and early stopping is also used to prevent overfitting.
Stochastic gradient descent with a batch size of 5 sequences
is used in all experiments. The learning rate of the network is
optimised on the validation set for each emotional dimension
(arousal, valence) and objective function (MSE, ρc), using the
ρc as evaluation performance, which is computed on the gold-
standard and prediction values concatenated over all record-
ings, in accordance with the approach defined in the AV+EC
challenge [5].

For training our proposed model, we utilised stochastic
optimisation, with a mini-batch of 50 samples, Adam opti-
misation method [24], and a fixed learning rate of 2 · 10−3

throughout all experiments. Also, for regularisation of the
network, we used dropout [25] with p = 0.5 for all layers ex-
cept the recurrent ones. This step is important as our models
have a large amount of parameters (≈ 1.5M ) and not regular-
ising the network makes it prone on overfitting on the training
data.

Finally, for all investigated methods, a chain of post-
processing is applied to the predictions obtained on the devel-



opment set: (i) median filtering (with size of window ranging
from 0.4 s to 20 s) [5], (ii) centring (by computing the bias be-
tween gold-standard and prediction) [26], (iii) scaling (using
the ratio of standard-deviation of gold-standard and predic-
tion as scaling factor) [26] and (iv) time-shifting (by shifting
the prediction forward in time with values ranging from 0.04 s
to 10 s), to compensate for delays in the ratings [27]. Any of
these post-processing steps is kept when an improvement is
observed on the ρc of the validation set, and applied then with
the same configuration on the test partition.

Results obtained for each method are shown in Table 1. In
all of the experiments, our model outperforms the designed
features in terms of ρc. One may note, however, that the
eGEMAPS feature set provides close performance on va-
lence, which is much more difficult to predict from speech
compared to arousal. Furthermore, we show that by incorpo-
rating ρc directly in the optimisation function of all networks
allows us to optimise the models on the metric (ρc) on which
we evaluate the models. This provides us with i) a more ele-
gant way to optimise models, and ii) gives consistently better
results across all test-runs as seen in Table 1.

Predictor Features Arousal Valence

a. Mean squared error objective

SVR eGeMAPS .318 (.489) .169 (.210)
SVR ComParE .366 (.491) .180 (.178)
BLSTM eGeMAPS .300 (.404) .192 (.187)
BLSTM ComParE .132 (.221) .117 (.152)
Proposed raw signal .684 (.728) .249 (.312)

b. Concordance correlation coefficient objective

BLSTM eGeMAPS .316 (.445) .195 (.190)
BLSTM ComParE .382 (.478) .187 (.246)

Proposed raw signal .686 (.741) .261 (.325)

Table 1. RECOLA dataset results (in terms of ρc) for pre-
diction of arousal and valence. In parenthesis are the perfor-
mance obtained on the development set. In a) we optimised
the models wrt. MSE whereas in b) wrt. ρc.

4. RELATION TO EXISTING ACOUSTIC AND
PROSODIC FEATURES

The speech signals convey information about the affective
state either explicitly, i.e., by linguistic means, or implicitly,
i.e., by acoustic or prosodic cues. It is well accepted amongst
the research community that certain acoustic and prosodic
features play an important role in recognising the affective
state [28]. Some of these features, such as the mean of the
fundamental frequency (F0), mean speech intensity, loudness,
as well as pitch range [23], should thus be captured by our
model.
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Fig. 2. A visualisation of three different gate activations vs.
different acoustic and prosodic features that are known to af-
fect arousal for an unseen recording to the network. From
top to bottom: range of RMS energy (ρ = 0.81), loud-
ness (ρ = 0.73), mean of fundamental frequency (ρ = 0.72)

To gain a better understanding of what our model learns,
and how this relates to existing literature, we study the statis-
tics of gate activations in the network applied on an unseen
speech recording; a visualisation of the hidden-to-output con-
nections of different cells in the recurrent layers of the net-
work is given in Figure 2. This plot shows that certain cells
of the model are very sensitive to different features conveyed
in the original speech wave form.

5. CONCLUSIONS

In this paper, we propose a convolutional recurrent model that
operates on the raw signal, to perform an end-to-end sponta-
neous emotion prediction task from speech data. Further, we
propose the direct optimisation of the concordance correla-
tion coefficient, which is used to evaluate the agreement rate
between the predictions and the gold-standard. The proposed
method achieves significantly better performance in compari-
son to traditional designed features on the RECOLA database,
thus demonstrating the efficacy of learning features that bet-
ter suit the task-at-hand. As a final contribution, we study
the gate activations of the recurrent layers and find cells that
are highly correlated with prosodic features that were always
assumed to cause arousal.
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